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Abstract—We introduce a non-interactive RSA time-lock puz-
zle scheme whose level of difficulty can be arbitrarily chosen by
artificially enlarging the public exponent. Solving a puzzle for a
message m means for Bob to encrypt m with Alice’s public puzzle
key by repeated modular squaring. The number of squarings
to perform determines the puzzle complexity. This puzzle is
non-parallelizable. Thus, the solution time cannot be shortened
significantly by employing many machines and it varies only
slightly across modern CPUs. Alice can quickly verify the puzzle
solution by decrypting the ciphertext with a regular private
key operation. Our main contribution is an offline submission
protocol which enables an author being currently offline to
commit to his document before the deadline by continuously
solving an RSA puzzle based on that document. When regaining
Internet connectivity, he submits his document along with the
puzzle solution which is a proof for the timely completion of the
document. We have implemented a platform-independent tool
performing all parts of our offline submission protocol: puzzle
benchmark, issuing a time-lock RSA certificate, solving a puzzle
and finally verifying the solution for a submitted document. Two
other applications we propose for RSA time-lock puzzles are
trial certificates from a well-known CA and a CEO disclosing
the signing private key to his deputy.

I. INTRODUCTION

Due to the evolution of the Internet, online submission of
documents like conference papers, homework assignments,
applications or claims has become very popular. Many in-
stitutions even establish paperless electronic submissions as
the only submission mode, since it significantly reduces their
processing costs. Each call for submission has, of course, its
deadline and each document received past the time limit has
to be rejected by the institution for fairness reasons. However,
there may be situations where the document is completed
in time, but cannot be submitted by the author before the
expiration of the deadline because of technical issues. One
possible reason may be a broken network connection in all its
flavors, e. g., the access network—be it ADSL, UMTS, WiFi
or dialup—becoming temporarily unavailable, an ISP failure
or a DNS resolution problem. The submission server itself
may also become temporarily unreachable due to a crash or a
Denial-of-Service (DoS) attack. Finally, it is also conceivable
that by the time of the deadline the author stays in a remote
region without Internet access and therefore cannot submit the
document in time. Today, in all these scenarios the author just
has bad luck and there is nothing he can do about it, since
the institution accepting the document is usually not able to
verify and thus to consider any mitigating circumstances.

In this paper, we propose a new cryptographic protocol
inspired by Rivest’s time-lock puzzles [1]. It enables an author
to commit to a document in an offline manner before the
deadline and to submit it at some time past the deadline when
being online again. The main idea is to let the author solve
a modular exponentiation puzzle involving an arbitrary large
number of non-parallelizable modular squaring operations.
We construct the puzzle from the document’s cryptographic
hash value. The number of puzzle operations is determined
by the time period between the deadline and the point in time
where the author regains connectivity to the submission server.
Each puzzle operation has a time value of some nanoseconds
assigned by the institution managing the submission process
and is dictated by current CPU speeds. By submitting his
document along with the appropriate puzzle solution the author
can prove to the institution that the document has actually been
completed at some time in the past before the deadline.

We introduce a time-lock RSA puzzle scheme for delayed
encryption and signature verification. The basis of our offline
submission protocol is a delayed RSA encryption of the
document to be submitted using the institution’s public key.
Having received the delayed submission, the institution verifies
the puzzle solution and the assigned level of difficulty by
performing an RSA decryption with its private key. Running
the offline submission protocol requires the author to hold a
computer with a reasonably up-to-date processor and to con-
tinuously solve the puzzle from the expiration of the deadline
until the actual online submission. Owners of older hardware
can compensate by completing the document and beginning
to solve the puzzle at some point before the actual deadline—
the earlier the better. We show that in combination with the
non-parallelizability feature the difference in puzzle processing
speed between recent off-the-shelf computers usually does not
exceed factor 1.5.

We have implemented a platform-independent tool which
performs all parts of our offline submission protocol: puzzle
benchmark, issuing a time-lock RSA certificate, solving a
puzzle and finally verifying the solution for a submitted
document. The tool is available for free download including
the sources and can be instantly used by the two parties—
institution and author—to enable a delayed submission for an
online submission system.

The remainder of this paper is organized as follows. In
the next section, we discuss existing approaches on time-lock
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cryptography. Section III introduces our RSA time-lock puzzle
scheme. In Section IV we describe how to construct an offline
submission protocol on that basis. Section V presents the
implementation of our offline submission tool and evaluates its
performance. Finally, we conclude the paper with a summary
in Section VI.

II. RELATED WORK

A. Time-Lock Puzzles

Time-lock puzzles have been introduced by Rivest et al. [1]
to encrypt messages which can be decrypted by others only
after a pre-determined amount of time has passed. Possible
applications proposed for timed-release cryptography are: seal-
ing bids in an auction which cannot be opened prior the end
of the bidding period, releasing documents like diaries in the
future, scheduling electronic payments, or implementing a key-
escrow scheme where the government can get a secret key
after a fixed period. Non-parallelizability of the underlying
repeated squaring operation makes up the key feature of time-
lock puzzles—the solver cannot speed-up the computation by
engaging multiple CPU cores or machines. In contrast, hash-
based client puzzles proposed by Juels and Brainard [2] as a
countermeasure against DoS attacks are fully parallelizable.
The task of reversing a one-way hash function by brute force
can be easily distributed across many machines.

Rivest’s time-lock puzzle is in a way related to his RSA
cryptosystem and works as follows: To encrypt a message m
for a period of T seconds Alice
• generates at random two large primes p and q.
• computes the modulus n = p q and Euler’s totient

function ϕ(n) = (p− 1) (q − 1).
• determines the number of squaring operations modulo n

per second, denoted by S, that can be performed by the
solver Bob, and computes t = T · S.

• encrypts m with a symmetric cipher using the key K.
• picks a random a, 1 < a < n, and encrypts K as

CK = K + a2
t

mod n. (1)

To make the exponentiation efficient, Alice reduces the
exponent modulo ϕ(n) by computing

r = 2t mod ϕ(n) (2)

and obtains a2
t

mod n from ar mod n.
• outputs the time-lock puzzle (n, a, t, CK).
To reveal K from CK , Bob needs to compute a2

t

mod n and
in contrast to Alice cannot take the shortcut via ϕ(n), since
determining ϕ(n) is provably as hard as factoring n. Instead,
Bob must do the computation step by step by repeatedly
performing modular squarings—altogether t times which takes
T seconds. This is assumed to be an intrinsically sequential
process since each next step requires the intermediate result
from the previous one. Parallelization of the squaring oper-
ation itself cannot achieve a significant speedup either. Each
squaring requires only trivial computational resources and any
non-trivial scale of parallelization inside the squaring operation

would be likely penalized by communication overhead among
the processors [3].

In complexity theory, the class P contains all decision
problems that can be solved by a deterministic Turing machine
in polynomial time. NC ⊆ P represents the class of problems
that can be efficiently solved by a parallel computer. It is
still an open question whether modular exponentiation is
P-complete, i. e., not in NC [4], [5]. Likewise, it is unknown
if factoring is really not in P. Hence, the security of time-lock
puzzles is based on these two unproven assumptions which
are known to be hard problems for many years.

A comprehensive survey on efficient algorithms for modular
exponentiation can be found in [6] and [7]. The most important
algorithms beside the basic binary exponentiation are the k-ary
method, the sliding-window method, and addition chains.
However, when dealing with a power-of-two exponent as is the
case with time-lock puzzles, repeated squaring—a special case
of the binary exponentiation—constitutes the most efficient
technique. To compute ax mod n with x = 2t it takes
t modular squarings and no additional multiplications while
blog xc is the lower bound for the number of multiplica-
tions to perform a single exponentiation in a general group.
To accelerate the modular multiplication, especially when
being performed repeatedly during modular exponentiation,
Montgomery proposed to use an alternative representation
of integers modulo n, called the Montgomery reduction [8].
It allows to carry out the modular multiplication without
performing the classical modular reduction step. Instead, the
more efficient Montgomery reduction is applied.

While the costs of solving the time-lock puzzle in an optimal
way are well known, the release time will vary depending on
the speed of the recipient’s processor and is somewhat coarse-
grained. However, Rivest argues that the speeds of hardware
available to consumers differ only by a small constant factor
and even the power of high-end hardware available to compa-
nies is usually within the same order of magnitude due to non-
parallelizability of the problem. We agree on this rationale and
further investigate it by comparing the puzzle solution times
on different off-the-shelf machines. Our offline submission
protocol tolerates authors with slower machines if they start
to solve their puzzle at some time before the deadline.

B. More Timed-Release Cryptography

In [3] Mao developed a zero-knowledge protocol which en-
ables Alice to prove to Bob that a timed encryption or a timed
signature based on time-lock puzzles can be actually unlocked
by performing t modular squarings. Boneh and Naor [9]
introduced a verifiable timed commitment scheme extending
the standard notion of commitments. It adds a potential forced
opening phase which permits the receiver to recover with some
effort the committed value without the help of the committer.
Like in time-lock puzzles, the recovery rests upon repeated
squaring. Possible applications for timed commitments are
contract signing, honesty-preserving auctions, and concurrent
zero-knowledge. Building on the work of Boneh and Naor,



Garay and Jakobsson proposed a timed release scheme for
standard digital signatures—RSA, Schnorr and DSA [10].

A different approach to timed-release cryptography that
does not require the receiver to solve a puzzle and provides
fine-grained timing is presented by Blake and Chan [11]. They
assume a trusted time server which periodically broadcasts
signed time-bound key updates It to the users. The time server
does not need to interact with either the sender or the receiver
and is therefore passive. At release time t the receiver can
decrypt his message by means of It. This scheme is based
upon a bilinear pairing. Cathalo et al. [12] improved it by
introducing a new stringent security model and strengthening
the anonymity of receivers. Other contributions to timed-
release cryptography using trusted time servers are, e. g., [13]–
[15]. In contrast, we pursue an offline approach and cannot rely
on or even assume the presence of a trusted time server.

III. RSA TIME-LOCK PUZZLE SCHEME

A. Key Generation

We incorporate the time-lock puzzle mechanism into the
default RSA public-key cryptosystem and make the puzzle
non-interactive. Everyone who knows Alice’s public puzzle
key can solve a puzzle by encrypting an arbitrarily chosen
message m. The puzzle complexity is determined by the size
of Alice’s public key. Alice constructs her RSA puzzle key
pair with the artificially enlarged public key by performing
the following steps:

1) Generate at random two large primes p and q of equal
bit-length (e. g., 1024 bits).

2) Compute the modulus n = p q and Euler’s totient
function ϕ(n) = (p− 1) (q − 1).

3) Randomly choose a private exponent d, 1 < d < ϕ(n),
such that gcd(d, ϕ(n)) = 1 and determine its multiplica-
tive inverse modulo ϕ(n): e = d−1 mod ϕ(n).

4) Choose the puzzle difficulty t which is the number
of modular squarings Bob has to perform to solve
the puzzle, i. e., to carry out the public key operation.
Suppose that a high-performance reference machine can
do S squarings modulo n per second and a public key
operation shall take T seconds, then t = T · S.

5) Compute the remainder

r = 2t mod ϕ(n) (3)

and the public exponent

ẽ = 2t + ϕ(n)− r + e. (4)

z = ϕ(n)− r+ e denotes the lower bits of ẽ which are
preceded by a long sequence of 0-bits and finally the
leading 1-bit at position t.

6) (n, ẽ) is the public and (n, d) the private key. Since
ẽ is an extremely large number with lots of 0-bits
after the leading 1-bit, the public key can be efficiently
represented by storing the triple (n, t, z). In binary, z is
at most twice as long as n.

The inflated public exponent ẽ is constructed by adding a
large multiple of ϕ(n) to the regular exponent e. It holds that
me ≡ mẽ (mod n) for all m ∈ Zn, since e ≡ ẽ (mod ϕ(n))
and n is a product of distinct primes. ẽ has been chosen to
be the smallest appropriate exponent which is larger than 2t.
The time to perform the modular reduction of 2t in step 5
depends, of course, on the puzzle difficulty t. However, even
when creating a puzzle with a solution time in the order of
several days, step 5 will take only a few minutes.

B. Public and Private Key Operation

Solving a puzzle for a context m, 0 < m < n, chosen by
the solver Bob means to carry out the public key operation
by encrypting m with Alice’s public key (n, ẽ) in the usual
manner, i. e., to compute the ciphertext

c = mẽ mod n. (5)

Due to the special structure of ẽ, the fastest way to perform
this giant modular exponentiation is to solve the actual puzzle

α = m2t mod n (6)

in T seconds by repeated squaring and to quickly do the
regular-sized modular exponentiation

β = mz mod n (7)

which yields
c = α · β mod n. (8)

Bob submits the pair (m, c), i. e., the context and the corre-
sponding puzzle solution, to Alice. She verifies the solution by
applying her private key (n, d) in the usual manner to decrypt
the ciphertext and to compare the result with m:

cd mod n
?
= m. (9)

Since d is of regular size, this operation takes just a few
milliseconds. If the verification succeeds, Alice is convinced
that Bob has spent about T seconds to solve the puzzle (or
even longer, if his computer ist not as fast as Alice’s high-end
reference machine).

C. Security Analysis

The security of our RSA puzzle scheme can be reduced to
the security of Rivest’s puzzle construction. It must be impos-
sible for Bob to compute c without performing the t modular
squarings in (6). Determining ϕ(n) in order to reduce ẽ to e is
provably as hard as factoring n and therefore is not an option.
Bob knows 2t, ẽ = 2t+z and z = ϕ(n)−r+e respectively, but
has no information about the individual summands ϕ(n), −r,
and e. With regard to ϕ(n) and r = 2t mod ϕ(n), the case is
the same as in Rivest’s scheme. Being the modular inverse of
the randomly generated number d, e is completely random as
well and therefore is not correlated with either ϕ(n) or r. Thus,
we cannot identify ϕ(n) or r from z. The only possibility
remaining is to determine e from z if some information on
the relationship between ϕ(n) and r is known. Suppose Bob
can easily find the difference ϕ(n)− r, then Rivest’s scheme



would be broken as well. In this case Bob would be able to
compute

y = aϕ(n)−r mod n = a−r mod n = (ar)−1 mod n (10)

and to determine the puzzle solution a2
t

mod n by inverting y
modulo n. For the very unlikely case that y is not invertible,
gcd(y, n) = p or gcd(y, n) = q and we have factored n.

It is crucially important that after publishing ẽ Alice never
reveals for the same key pair another exponent ê, e. g., a
smaller one to make the puzzle easier. Otherwise the mod-
ulus n could be factored quite quickly. δ = ẽ− ê is a multiple
of ϕ(n) and there exists an efficient randomized algorithm
which allows to factor n if a multiple of ϕ(n) is given [16].
Though the algorithm requires to perform at least one modular
exponentiation with an exponent in the order of δ, i. e., takes
about as long as solving one instance of the puzzle, knowing
the factorization of n enables to solve all future puzzles
instantly.

D. Delayed Encryption and Signature Verification

Our RSA time-lock scheme can be used not only to solve
puzzles, but also to delay the regular RSA encryption and
signature verification process. Using the public exponent ẽ
instead of e the public key operation will take about T seconds
where T can be chosen arbitrarily. What is this good for? We
propose two possible applications.

The first one is a well-known certificate authority (CA)
which decides to provide its services for advertising purposes
free of charge or a for very low fee, if the certificate holders
accept a restriction on the computational speed of their public
key. Companies and large organizations usually do not bother
about the certification fee and buy a full-fledged certificate.
Thus, the primary target group would be individuals and
small societies who often cannot afford to pay the regular
fee. Instead of limiting the validity of a trial certificate to
some days which makes it actually useless, the CA would
accept only artificially enlarged public exponents for long-
term certification within the promotion. It could prescribe to
provide a public exponent of the form 2t+z where t is chosen
as large as to perform the public key operation in not less than
T seconds. Reasonable values for T may be, e. g., 60 seconds
for a free and 10 seconds for a low-fee certificate. Such
an overhead when encrypting a message for the certificate
holder or verifying his signature would not constitute a serious
limitation for parties with whom individuals or small societies
usually communicate. The proposed marketing strategy would
make the CA even more popular and leverage the deployment
of public key cryptography.

The second application focuses on delayed signature verifi-
cation in the context of contract signing. In a company only
very few persons should be authorized signatories, i. e., possess
the company’s private key enabling them to sign arbitrary
contracts on behalf of the company. Besides the CEO, there
may be only one deputy who has access to the private key and
even he may not enjoy the CEO’s full confidence. The CEO
will be keen on to restrict the deputy’s signing capability but

must pay attention not to compromise the company’s capacity
to act in case of his sudden absence or illness. Our approach
to this dilemma is for the CEO to generate two key pairs
and to certify for his company two public keys. The first and
regular public key is of normal size while the second one
is an artificially enlarged puzzle key (n, t, z) and takes, e. g.,
T = 48 h per operation. The private key corresponding to the
regular public key would be known solely to the CEO, while
the second private key is disclosed to the deputy. Computing
a signature is an easy task with both private keys. However,
only a signature created with the CEO’s private key can be
efficiently verified. Under normal circumstances all current
contracts are signed by the CEO and the other party can
immediately check the signature. Concluding an agreement
with the deputy is not attractive due to the extremely time-
consuming signature verification. But in case that the CEO
is temporarily not available, the only way to stay in business
is for the deputy to sign the pending contract and for the
other party to be patient while validating the signature. Except
for this inconvenience, the other party receives a full-fledged
signature which, if necessary, can be presented in court. It
will take the court once again time T to check the signature,
but this is not an issue. As soon as the CEO is available, he
may resign the contract with his private key yielding a quickly
verifiable signature. Holding a private key whose genuineness
cannot be easily validated, the deputy is much less vulnerable
to attempts to rapidly extort the key under threat of violence
than the CEO. Under the condition that the deputy does not
know ϕ(n), which he does not need to know to generate
signatures, the hijackers would have to wait for time T to test
whether the revealed private key is actually genuine. Instead,
in case of sharing the regular private key, both the CEO and
his deputy would be worthwile targets.

E. Other Applications for RSA Time-Lock Puzzles

Generally speaking, the solution of an RSA time-lock puzzle
constitutes a non-interactive and non-parallelizable proof of
work for an arbitrarily chosen context m that took (at least)
time T . Beyond the offline submission that we present in the
next section, one could make use of RSA puzzles to enable
an ordinary citizen to get an appointment with a high-ranking
politician, e. g., a mayor or a minister, and to discuss a crucial
concern m. By solving a long-term puzzle for m the citizen
demonstrates that he really has a strong intention and deserves
to be listened to. This increases his chances for getting a time-
slot for the concern m—and only for it.

F. Small Private Exponent

To speed up the private key operation, the private exponent d
can be chosen considerably smaller than the modulus n. Boneh
and Durfeecite [17] showed that as long as d < n0.292, one
can break RSA by recovering the private exponent from the
public key. However, this attack on small private exponents is
only feasible if the public exponent e < n1.875. Hence, since
our RSA puzzle scheme relies on an extremely large public
exponent, Boneh’s attack does not apply here. Of course,



d must be chosen large enough that it cannot be guessed by
brute force. A minimal size in the same order of magnitude as
symmetric keys seems to be appropriate, e. g., 128–192 bits.

IV. OFFLINE SUBMISSION PROTOCOL

Based on the RSA time-lock puzzle scheme, we propose
now an offline submission protocol which enables an author
currently being offline to commit to its ready-made document
before the deadline and to submit it at some time past the
deadline upon regaining connectivity. The goal is to convince
the accepting institution of the timely completion of the
document by means of a successfully solved RSA puzzle.

A. Basic Design

The institution generates an RSA puzzle key pair where
the public key operation takes time T on a reference machine
being equipped with a state-of-the-art high-end processor. It
can perform S modular squarings per second and should be
one of the fastest systems available on the market to end users.
Setting the bar high is important to ensure that nobody can
gain a time advantage over other authors who submit in time.
The institution publishes the public puzzle key (n, t, z) in the
usual fashion, e. g., by requesting a certificate from a trusted
CA and making it available on its website and in public key
directories. An author intending to submit a document obtains
the puzzle certificate in advance—just in case he has no
Internet connection to the submission server when the deadline
approaches. Many different scenarios are conceivable, ranging
from hardware or ISP failure, a cable break, a DoS attack on
the submission server to a location-dependent unavailability
of Internet access in a remote region.

Should this be the case, the author begins to solve an
RSA puzzle for his document. Note that electricity to run
the computer is usually available even in an adverse en-
vironment. He applies a cryptographic hash function (e. g.,
SHA-1 or RIPEMD-160) to his document producing a digest
which serves as input m for the puzzle. If his computer is
as fast as the reference machine, he computes the solution
c = mẽ mod n in time T . Assuming that at that time the
Internet connection to the server is available again, the author
finally submits its document along with the puzzle solution c.
Now the institution verifies the solution by decrypting c with
its private key and matching the result against the document’s
hash value: cd mod n

?
= m. If the validation succeeds,

the institution is convinced that the author has finalized his
document at least T seconds ago. Is this point in time before
the deadline, the submission can be predated and accepted. It
is up to the institution to specify a maximum submission delay
beyond which no documents can be considered any more due
to the closure of the review process.

In case that the author holds a slower processor than
the reference machine, he can compensate for this handicap
by beginning to solve the puzzle at some point before the
deadline—ideally, just after the finalization of the document.
Let S′ denote the number of modular squarings that the
author’s machine can perform per second, then he must start

solving a puzzle designed for T seconds at least ( S
S′ − 1)T

seconds before the deadline to succeed.

B. Building a Puzzle Chain

In practice, the author cannot predict exactly when he
regains connectivity to the submission server. Solving a single
but very complex puzzle which probably takes more time than
the period without Internet access lasts would be suboptimal,
especially for owners of older hardware. Therefore we propose
for the institution to issue several public puzzle keys with
different levels of difficulty, e. g., one for 12 hours, for 4 hours,
for 1 hour, and one for 10 minutes. The author can estimate the
anticipated offline time and begins to solve the most suitable
puzzle. If he is still offline after having solved the first puzzle,
he continues to solve puzzles by building up a puzzle chain:
The solution c1 of the first puzzle becomes the input m2 of the
second, usually shorter lasting puzzle. The author continues to
chain up his puzzle solutions according to this scheme until he
finally regains connectivity to the server after k puzzle steps.
Then he can submit his document along with the k chain links
c1, ..., ck. Each solution should bear a label stating the public
key used. The institution now validates the chain by verifying
each puzzle solution: cdi

i mod ni
?
= mi for 1 ≤ i ≤ k where

m1 = m and mi = ci−1 for i > 1. Note that this task can
be performed in parallel. Summing up the times Ti assigned
to the utilized public keys yields the total time by which the
submission is predated.

C. Alternative Approach

Another approach for solving the puzzle only as long as
necessary is for the author to choose the large exponent
for the computation by himself. He could simply compute
c = m2t mod n by repeated squaring for a t which is as large
as he actually needs, i. e., the final t would be the number
of modular squarings performed until the Internet connection
becomes available again. This approach would ignore the RSA
property of the original puzzle construction and require only
the modulus n along with the speed indication S from the
reference machine. The institution would need to compute
r = 2t mod ϕ(n) first prior to verifying mr mod n

?
= c. A

drawback of this scheme is the relatively expensive modular
reduction of 2t which must be rerun for each submitted puzzle
instead of performing it only once during the key generation.
Moreover, in the modular exponentiation mr mod n the
exponent r is roughly the same size as n, while in the RSA
puzzle scheme a smaller private exponent d can be chosen,
see Section III-F. Verifying a short chain of RSA puzzles is
therefore several orders of magnitudes faster.

V. IMPLEMENTATION AND EVALUATION

A. The OSRTLP Tool

We have implemented a platform-independent tool in C++,
called OSRTLP 1, which performs all parts of our offline
submission protocol. It is available for free download including

1This is the acronym for Offline Submission with RSA Time-Lock Puzzles.



TABLE I
PERFORMANCE COMPARISON OF THE MODULAR SQUARING OPERATION ON DIFFERENT PLATFORMS.

platform CPU release S: modular squarings / sec
date & price 1024 bits 2048 bits 4096 bits

Intel Core 2 Duo E6400 2.13 GHz Linux 2.6.31 64-bit 07 / 2006 183 $ 941 320 261 750 71 340
Intel Core 2 Duo E6750 2.66 GHz Windows 7 32-bit

07 / 2007 183 $

290 420 80 790 21 520
Windows 7 64-bit 1 161 860 323 410 87 880
Linux 2.6.31 32-bit 328 670 94 340 26 360
Linux 2.6.31 64-bit 1 174 160 324 670 88 590

Intel Core 2 Quad Q9400 2.66 GHz Linux 2.6.31 64-bit 08 / 2008 183 $ 1 180 970 326 250 88 810
Intel Core 2 Duo T9900 3.06 GHz Linux 2.6.31 64-bit 04 / 2009 530 $ 1 396 290 386 330 104 780
Intel Xeon X3360 2.83 GHz Linux 2.6.31 64-bit 03 / 2008 266 $ 1 237 160 346 730 93 940
AMD Athlon II X2 240e 2.80 GHz Linux 2.6.31 64-bit 10 / 2009 77 $ 1 092 270 345 080 99 600

the sources (with Visual C++ project, GNU Makefile and
precompiled binaries for Windows) [18]. At the beginning, the
institution can use OSRTLP for running a puzzle benchmark
on a high-end reference machine to determine the number of
modular squaring operations S executed per second. Next, it
creates an RSA key pair with a public puzzle key taking T sec-
onds per operation. Both the modulus size n and puzzle time T
can be chosen arbitrarily. OSRTLP outputs the puzzle’s private
key and a puzzle certificate in X.509 v3 format containing,
besides subject information and public puzzle key, the puzzle
time T . It is signed by the institution’s CA private key. If
necessary, the institution may ask a well-known CA to cross-
certify its CA public key. The author utilizes OSRTLP to solve
a puzzle for his document by supplying the institution’s puzzle
certificate. It can be verified by OSRTLP against a trusted CA
certificate (or even a chain). At first, OSRTLP performs a short
benchmark to inform the user about the time expected to finish
the puzzle and indicates the current progress in percent. One
can choose between the hash functions SHA-1, SHA-256 and
RIPEMD-160. While solving the puzzle, OSRTLP periodically
backups the intermediate result to a file and can simply resume
the computation in case of a crash. Finally, the institution
runs OSRTLP to quickly verify the solution for a submitted
document by applying the puzzle’s private key.

For the large-integer arithmetic we employ the open source
library MPIR [19] which is a fork of the well-known GMP
library from GNU [20]. GMP claims to be faster than any
other bignum library by using fast algorithms with highly
optimized assembly code. This serves our needs very well
since we aim to provide a puzzle solver which cannot be easily
outperformed. The institution must have confidence that the
author is not able to solve the puzzle quicker than supposed,
at least not at an acceptable price. MPIR / GMP implements
several state-of-the-art multiplication algorithms, ranging from
the base-case schoolbook method to the Karatsuba, Toom-
Cook, and FFT algorithms. The choice depends on the bit
length. For squaring integers which have the size of a typical
RSA modulus, i. e., 1024–4096 bits, MPIR / GMP resorts to
the schoolbook and Karatsuba method. The thresholds are
platform-dependent. On current CPUs, for integers larger than
1536–1920 bits Karatsuba’a algorithm, running in O(N1.585),
outperforms the basecase O(N2) method. N denotes the num-
ber of machine words (in practice, 32 or 64 bits long) required
to represent the integer. For repeated modular squaring we

make use of Montgomery reduction instead of performing
the classical reduction by dividing. This speeds-up the puzzle
solution by a factor of 1.3–2.0, especially for small moduli in
the order 1024–2048 bits. The private key operation for puzzle
verification is also optimized by performing two exponentia-
tions modulo p and q and afterwards applying the Chinese
Remainder Theorem which yields the solution modulo n.

All MPIR / GMP functions operate on integers which are
completely stored in memory. However, 2t is far too large
to be held in memory and consists almost only of zeros. To
perform the modular reduction r = 2t mod ϕ(n) we have
therefore modified the library’s division routine to efficiently
represent the dividend by occupying storage space only in the
order of the modulus (i. e., the divisor). The same issue arises
when storing the public exponent ẽ = 2t + z in an X.509
certificate. We address it by encoding ẽ as the odd integer
E = z ·265+t·21+1 where t is represented as a 64-bit integer.
Such a puzzle time-lock certificate can be distinguished from a
regular one by a time-lock indication in the subject alternative
name extension.

Fast modular multiplication has been also successfully
implemented in hardware, especially on FPGAs [21], [22],
and for modern GPUs [23], [24]. The FPGA implementations
are very competitive and a few years ago they outperformed
ordinary software implementations. However, a current com-
parison [24] shows that nowadays FPGA implementations are
about as fast as software implementations on up-to-date CPUs.
GPUs also do not surpass CPUs in general, at least not when
running a single modular exponentiation as is the case with
our puzzle. Moreover, special purpose hardware like FPGAs
is quite expensive, so the great majority of authors would not
buy it for offline submission.

B. Performance Evaluation

We run OSRTLP in benchmark mode on different platforms
to measure the number of modular squaring operations S that
each machine can perform per second. Our goal is to compare
to what extent the puzzle solution time differs between an
up-to-date high-end CPU being a candidate for the reference
machine and a processor that was purchased some years ago.
We also investigate the difference between 32-bit and 64-
bit architectures and the impact of the operating system. We
compiled OSRTLP and MPIR 1.3.1 with GCC 4.4.1 on Linux
and Visual C++ 2008 SP-1 on Windows. The results for 1024,



TABLE II
COMPUTATION TIME OF r = 2t mod ϕ(n) ON AN INTEL CORE 2 DUO

E6750 2.66 GHZ FOR DIFFERENT PUZZLE DIFFICULTIES t = T · S WITH
AN INTEL CORE 2 DUO T9900 3.06 GHZ AS REFERENCE MACHINE FOR S .

puzzle time T
modulus size n

1024 bits 2048 bits 4096 bits
10 min 0.754 sec 0.292 sec 0.132 sec
1 h 4.512 sec 1.738 sec 0.791 sec
12 h 53, 98 sec 20, 91 sec 9.50 sec
24 h 108.0 sec 41, 84 sec 18.98 sec
72 h 324.2 sec 125.7 sec 56.93 sec

2048, and 4096 bit moduli, all averaged over multiple runs,
are shown in Table I. To make it easier putting in relation
the different CPUs, we state their release date as well as the
manufacturer’s release price (in 1000-unit quantities).

Evaluating the results, two main observations can be made:
First, a 64-bit implementation of OSRTLP outperforms its
32-bit counterpart by a factor of 3.4–4.0. Consequently, in
the face of the performance achievable on a 64-bit platform,
running a 32-bit version of OSRTLP is not an option. Since
all desktop CPUs manufactured during the last four years
are 64-bit capable and 64-bit operating systems are widely
available, this is in fact not an issue. Second, the difference in
speed between 64-bit platforms, ranging from a 3.5 years old
Core 2 Duo E6400 2.13 GHz, a 2 years old high-performance
Xeon X3360 2.83 GHz to a current Core 2 Duo T9900
3.06 GHz costing 530 $ at release time, amounts to no more
than factor 1.5. For the majority of users holding an up-to-date
computer the gap between the reference CPU and their own
CPU will be actually smaller. This result strongly supports our
assumption that non-parallelizable puzzles constitute a feasible
approach to measure how much time must have elapsed since
the beginning of the computation. Another observation is
that the choice of the operating system hardly influences the
runtime of the puzzle.

The time required for the institution to perform the modular
reduction r = 2t mod ϕ(n) when creating the public puzzle
key is indicated in Table II. It is proportional to the desired
puzzle solution time T . For a long-term puzzle of several days’
duration it takes only a few minutes. The larger the modulus n,
the faster the computation of r takes since S decreases for
increasing n more quickly than the division speed.

VI. CONCLUSION

In this paper we have introduced a non-interactive and non-
parallelizable RSA time-lock puzzle scheme. By artificially
enlarging the public exponent the time required to encrypt a
message can be arbitrarily tuned. Based on RSA time-lock
puzzles, we have proposed an offline submission protocol.
It enables an author currently being offline to commit to its
document before the deadline and to submit it at some time
past the deadline upon regaining connectivity. Presenting the
correct solution of a puzzle with assigned solution time T
proves to the institution that the submitted document has
been finalized at least time T ago. We have implemented a
platform-independent tool performing all parts of our offline
submission protocol and evaluated the variance of the solution
time between different platforms. It turned out to be fairly low.
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