CLL: A Cryptographic Link Layer
for Local Area Networks

Yves Igor Jerschow, Christian Lochert, Bjorn Scheuermann, and Martin Mauve
{jerschow, lochert, scheuermann, mauve } @cs.uni-duesseldorf.de

Institute of Computer Science, Heinrich Heine University, Diisseldorf, Germany

Abstract. Ethernet and IP form the basis of the vast majority of LAN installa-
tions. But these protocols do not provide comprehensive security mechanisms,
and thus give way for a plethora of attack scenarios. In this paper, we introduce a
layer 2/3 security extension for LANs, the Cryptographic Link Layer (CLL). CLL
provides authentication and confidentiality to the hosts in the LAN by safeguard-
ing all layer 2 traffic including ARP and DHCP handshakes. It is transparent to
existing protocol implementations, especially to the ARP module and to DHCP
clients and servers. Beyond fending off external attackers, CLL also protects from
malicious behavior of authenticated clients. We discuss the CLL protocol, moti-
vate the underlying design decisions, and finally present implementations of CLL
for both Windows and Linux. Their performance is demonstrated through real-
world measurement results.

1 Introduction

Ethernet and the Internet Protocol (IP) are the main building blocks for the vast majority
of modern Local Area Networks (LANs). However, these protocols, and thus virtually
all installed LANSs, do not provide comprehensive security mechanisms. Hence, mali-
cious local users are potentially able to eavesdrop, to inject or modify information, or
to take on fake identities.

One especially critical component is the Address Resolution Protocol (ARP) [20]. It
performs the task of coupling the network layer with the link layer by resolving IP ad-
dresses into the corresponding MAC addresses. However, ARP lacks an authentication
mechanism, making it vulnerable to different types of attacks. This constitutes a severe
threat in every LAN that is accessible to not fully trustworthy users. By emitting ARP
messages with wrong IP/MAC mappings—commonly referred to as ARP spoofing—
a malicious user can impersonate other hosts, intercept and modify foreign IP traffic
by becoming a Man in the Middle (MiM), or mount a Denial of Service (DoS) attack
against other hosts. Using freely available tools, e. g. [9,18], ARP spoofing can be easily
performed even by users without deeper knowledge of the underlying protocols.

Preventing ARP attacks in the case of dynamic IP addresses requires to take also
the Dynamic Host Configuration Protocol (DHCP) [7] into account. It is employed in
almost every LAN to automatically assign IP addresses and configuration parameters.
It does not provide an authentication mechanism either and thus can also become the
target of various attacks. By setting up a rogue DHCP server and announcing forged IP

addresses for the default gateway or the DNS server, an adversary is able to run a MiM
or DoS attack against clients requesting an IP address via DHCP. Furthermore, the legit-
imate DHCP server is also vulnerable. In a DHCP starvation attack the adversary takes
on many different client identities (usually MAC addresses) and requests each time a
new IP address, until the server’s address pool gets exhausted. Thereby the attacker can
prevent new clients from acquiring a valid IP configuration.

Since modern operating systems enable the injection of raw Ethernet packets con-
taining arbitrary MAC and IP addresses in their headers even in user mode, there exists
no external barrier which would impede address fraud. The outlined attack scenarios
are covered in more detail, e. g., in [1,5,23].

In this paper, we tackle the challenge of securing the communication in local area
networks, including ARP and DHCP. We introduce a comprehensive layer 2/3 security
protocol—the Cryptographic Link Layer (CLL). It provides authentication and confi-
dentiality between neighboring hosts in Ethernet LANs. Each machine gets identified
by its IP/MAC address pair. Beyond safeguarding ARP and DHCP, CLL protects arbi-
trary layer 2 traffic, especially all encapsulated IP packets. We propose to employ CLL,
e. g., in enterprise and campus networks being often accessed by frequently changing,
not fully trustworthy users as well as in all kinds of publicly accessible LANs (like In-
ternet cafés or Wi-Fi hotspots). Note that CLL does not affect the operation of higher
layer security protocols.

Beginning with an ARP request, CLL applies public key cryptography to perform an
initial handshake between two hosts with the aim to establish a security association. The
two hosts prove their identity to each other and exchange keying material. Hereupon,
secured IP data packets may be sent.

We have implemented and evaluated CLL on both Windows and Linux. In typi-
cal LANs running at 100 Mbit/s, our implementation operates at full wire-speed, thus
securing the network without compromising the throughput. To ease the migration pro-
cedure, CLL-enabled machines can be configured to interoperate with ordinary, unse-
cured hosts. We make our CLL implementation available for free download including
the sources, and complement it with a toolkit for key and certificate management [12].

The remainder of this paper is organized as follows. In the next section, we review
previous approaches on securing ARP, DHCP, and the link layer. Section 3 sketches
the architecture of CLL, before Section 4 justifies the underlying cryptographic design
decisions. In Sections 5 and 6 we detail the operation of CLL’s protocol components.
Section 7 describes the implementation of CLL and evaluates its performance. Finally,
we conclude the paper with a summary in Section 8.

2 Related Work

Above the link layer, there already exist well-proven security protocols which provide
authentication and confidentiality by means of cryptography. SSH [24] and SSL/TLS [6]
operate at the application level or directly below it. At the network layer, /Psec [13] can
protect IP datagrams being exchanged between two end-points. However, I[Psec does
not authenticate the IP address of the communicating party. This enables an authorized
IPsec user to impersonate the IP address of another host that is temporarily switched

off or knocked out by a DoS attack. While SSH, SSL/TLS, and IPsec cannot protect
from attacks on ARP and DHCP, the encryption performed by these protocols will still
prevent the disclosure of sensitive data. An attacker would have to content himself with
the power of rendering his victims unable to communicate.

Reviewing the attempts to cope with the insecurity of ARP, there exist two main
directions. One is to detect the bulk of ARP attacks by means of a specialized Intru-
sion Detection System (IDS) like Antidote [2] or ArpWatch [3] and to warn the user
or network administrator in time. Such tools monitor all incoming ARP messages and
trigger an alarm, e. g., on observing an abnormally high number of ARP replies or a
changed IP/MAC mapping. However, these ARP watchdogs cannot provide full protec-
tion against ARP attacks; in particular, they are not able to distinguish whether the MAC
address in the first ARP reply is genuine or not. The other approach is to secure ARP
by using cryptographic techniques. In the following, we discuss some current research
taking this direction.

Gouda and Huang [10] specify a theoretical architecture with an ARP server sharing
a symmetric key for message authentication with every host in the LAN. Each host pe-
riodically notifies the server about its current IP/MAC mapping and resolves the MAC
addresses of its neighbors with the aid of the ARP server. However, this does not prevent
an authorized machine from purposely announcing a mapping of a neighboring host’s
IP address to its own MAC address. In contrast, CLL authenticates all hosts based on
their IP/MAC address pair. It thus also avoids ARP spoofing attempts originating from
malicious, but authorized users. Furthermore, CLL does not require a central server.

In [5], Bruschi et al. introduce Secure ARP (S-ARP) which uses public key signa-
tures to authenticate the ARP replies. All hosts in the LAN hold a private/public key
pair and initially enroll at a central server, the Authoritative Key Distributor (AKD). The
AKD maintains a repository of public keys and the corresponding (static) IP addresses.
Whenever a host requires a neighbor’s public key to verify the signature of an ARP
reply, it inquires about it from the AKD. The AKD’s reply packet is digitally signed
as well and the AKD’s public key is preinstalled on all machines. S-ARP comes with
an implementation for Linux 2.4, but it requires a kernel patch and does not support
dynamically assigned IP addresses.

On the basis of S-ARP, Lootah et al. propose Ticket-based ARP (TARP) [16]. It fore-
goes a central key server and instead employs digitally signed attestations of IP/MAC
mappings, so-called tickets. The tickets are issued by a trusted party, the Local Ticket
Agent (LTA). The host responding to an ARP request attaches its ticket to the ARP re-
ply and thereby proves the validity. Since the LTA’s public key is preinstalled on each
host, received tickets can be verified quickly. In comparison to S-ARP, TARP requires
at most one public key operation per ARP exchange and no private key operations, and
thus offers better performance. However, the authors state that an attacker is able to
impersonate a host that is currently offline, by replaying its previously captured ticket.
TARP has been implemented on Linux 2.6 with support for DHCP-assigned IP ad-
dresses. Note, however, that both S-ARP and TARP aim to secure only ARP, while
CLL provides overall layer 2 security by safeguarding DHCP and data packets as well.

RFC 3118 [8] specifies how DHCP can be extended by an authentication mecha-
nism. In this scheme, the DHCP server shares with each client a symmetric key. It is

application layer ?

network layer IP

link and physical layer

Fig. 1. CLL in the protocol stack.

used to authenticate the DHCP messages. However, DHCPDISCOVER, the first mes-
sage sent by the client, remains unauthenticated. Consequently, users still might be able
to perform a DHCP starvation attack. This is not the case with CLL. Another drawback
is that currently no DHCP implementations with RFC 3118 support are available.

Applying cryptography at the link layer is common in Wi-Fi networks. Wi-Fi Pro-
tected Access (WPA) and WPA2 provide authentication and confidentiality between
wireless nodes and the access point. The IEEE working group 802.1AE [11] speci-
fies MACsec as the analog of WPA/WPA2 for LANSs. In contrast to CLL, WPA/WPA2
and MACsec authenticate hosts based only on their MAC address. The content of ARP
and DHCP control packets encapsulated in layer 2 frames is not examined. Therefore
these protocols cannot protect from ARP and DHCP attacks originating from legitimate
users. Moreover, we are not aware of any MACsec implementation being available at
this time.

The main contribution of this paper is a novel, comprehensive approach to layer 2
security, which provides a more complete protection of the LAN than even a combina-
tion of three existing protocols (e. g., TARP, RFC 3118, and IPsec) could achieve. That
is because besides eliminating the discussed shortcomings of these protocols, CLL also
authenticates broadcast traffic. The tackled security problems are all related to each
other—they arise from the lack of authentication at layer 2 and the link to layer 3. Thus,
a comprehensive approach to solve them seems appropriate.

3 Protocol Overview

CLL is designed as a transparent filtering service between the network adapter and the
IP stack. It thus operates at the border between the link and the network layer, as dis-
played in Figure 1. All outgoing packets including the Ethernet header are authenticated
and their payload is optionally encrypted before they are handed over to the network
card for transmission. Incoming packets are passed to the IP stack only after they have
been successfully authenticated and—if applicable—decrypted. CLL can be enabled or
disabled without modifying the other protocol stack components. For them, CLL’s ser-

vices are transparent. But in fact, CLL appends its cryptographic headers to outgoing
packets, and puts its own ID into the EtherType field of the Ethernet header. From suc-
cessfully authenticated incoming packets CLL strips off its cryptographic headers and
restores the original EtherType value before passing them up. While the operation of
CLL does not require any modifications to switches, routers must either support CLL
(and benefit from it) or exchange packets with the end systems in the standard, insecure
manner.

CLL identifies hosts by their IPP/MAC address pair. Each machine on the LAN
holds a private/public key pair and a certificate issued by the local Certificate Authority
(CA)—usually the network administrator—which establishes the binding between its
public key, the MAC and the IP address. To verify certificates, each host requires the
CA’s public key. Typically it will be installed in the form of a self-signed certificate
along with the host’s own certificate, but a more complex Public Key Infrastructure
(PKI) to support multiple LANSs is also conceivable.

Basically, CLL divides all network traffic into four packet types: ARP and DHCP'
control packets, unicast and broadcast IP data packets. Authentication is performed for
all packet types and, in addition, an optional payload encryption is provided for unicast
IP packets.

While ARP and broadcast IP packets are authenticated by means of public key
cryptography (digital signatures in conjunction with certificates), unicast IP and DHCP
packets get secured using fast symmetric key algorithms. Safeguarding unicast IP pack-
ets with a message authentication code and optionally a block cipher requires each pair
of communicating hosts to share a secret key. For that purpose, CLL employs a key
exchange protocol to negotiate shared keys on-demand. Since the IP traffic flow be-
tween two hosts always begins with an ARP exchange, CLL adopts it to establish a
security association (SA) between the two peers. The two machines authenticate each
other, negotiate a secret key and agree on the cryptographic algorithms to protect their
IP packets. The establishment of an SA is subsequently referred to as handshake.

To determine the sender’s (claimed) identity during the authentication of incom-
ing packets, CLL examines the Ethernet header and, depending on the protocol, also
the ARP, IP, or DHCP header. Where applicable, it performs a consistency check: the
sender’s MAC address can be also found in the ARP header or—in case of a DHCP
client—in the DHCP header, and it must match the address specified in the Ethernet
header. Such a cross-layer consistency check is not performed by other protocol lay-
ers. It is, however, crucially important to ward off ARP spoofing and DHCP starvation
attacks. Layer 2 authentication alone would not suffice for this purpose.

The following listing summarizes the various LAN attacks fended off by CLL:

ARP spoofing: impersonation, MiM and DoS attack

DHCP spoofing: rogue DHCP server (MiM & DoS), DHCP starvation attack (DoS)
generic unicast attacks: injection of spoofed packets, eavesdropping

generic broadcast attacks: injection of spoofed packets, special case: smurf attack?

! Though being encapsulated in an UDP segment and an IP datagram, we handle DHCP mes-
sages as a separate layer 3 packet type due to the functional position of DHCP below the
network layer.

2 Flooding the victim via spoofed broadcast ping messages being answered by all other hosts.

4 Cryptographic Design Decisions

The security philosophy of CLL is to provide the user with a suite of up-to-date crypto-
graphic algorithms and corresponding parameters, letting her choose between them on
her own responsibility. Such a design has the advantage of considering individual se-
curity perceptions, allowing to trade off between highest-level security and best perfor-
mance, and supporting the prompt exchange of an algorithm being reported as broken.
With our implementation, we nevertheless provide a reasonable default configuration to
assist users without deeper understanding of cryptography. The general level of protec-
tion provided by CLL may be also selected. Either CLL just authenticates all types of
packets or it additionally also encrypts the payload of unicast IP packets (including the
IP header). Skipping the encryption step will result in a better performance and should
be done whenever a higher layer security protocol like IPsec already ensures confiden-
tiality. CLL allows to use different ciphers and hash functions in each direction of an
SA. With regard to system complexity, we however prescribe the algorithms used for
key exchange, key derivation, and DHCP packet authentication. Table 1 summarizes
the algorithms proposed for CLL and supported by our implementation.

During the handshake CLL applies the Diffie-Hellman key agreement protocol to
exchange a symmetric master key with perfect forward secrecy between the two peers.
Since handshake packets are digitally signed, there exists no susceptibility to man-in-
the-middle attacks. To the negotiated master key we apply a deterministic key derivation
function to generate for each direction two properly sized keys—one for the message
authentication code and one for the optional cipher.

CLL guarantees the authenticity of unicast IP and DHCP packets by means of a
Hashed Message Authentication Code (HMAC) [4] attached to the end of each packet.
In addition to authentication, CLL offers to protect unicast IP packets from eavesdrop-
ping by optionally encrypting them with a block cipher in Cipher Block Chaining (CBC)
mode. When establishing an SA, we generate a random [Initialization Vector (IV) and
use afterwards the last encrypted block of the preceding packet as the next packet’s IV.
Since transmissions on the link layer are unreliable, the sender also prepends the current
IV to each packet. If the payload size is not a multiple of the block size, random padding
bytes are appended. We first encrypt the plaintext and then compute the HMAC for the

Table 1. Algorithms and parameters in CLL.

¢ HMAC with MDS5, SHA-160/256, RIPEMD-160 or HAS-160
e 128-256 bit key length
e optionally with a block cipher in CBC mode, 128-256 bit key length

message auth. codes

encryption e available ciphers: Twofish, AES, RC6, RC5, Blowfish, MARS,
Serpent, CAST-128/256, SEED, GOST

key exchange Diffie-Hellman, 2048-bit group No. 14 from the IPsec specification

key derivation IEEE 1363a Key Derivation Function 2 (KDF2) using RIPEMD-160

key rollover periodically on demand, e. g., every 30 min

o RSA with variable key length (typically 1024-2048 bits)
o RSASSA-PSS signature scheme with SHA-160/256 or RIPEMD-160
certificates X.509 v3 with RSA signature, ASN.1 BER/DER encoding

digital signatures

ciphertext, since this is the only order that is generally considered secure [14]. It also
enables to detect a forged packet without the need to decrypt it.

To sign handshake and broadcast IP packets, CLL applies the well-known RSA
algorithm in conjunction with certificates. RSA offers the great advantage of supporting
public key signatures and encryption with a single key pair. And though CLL’s security
architecture does not require any public key encryption, in practice the local CA can
make use of RSA encryption to securely deploy the DHCP HMAC keys to the users.

5 Operation of CLL in Detail

5.1 Basic Packet Format

‘ destination MAC address | 6 bytes

Ethernet 3

header source MAC address | 6 bytes
i EtherType: 0x07D0 (CLL) |} 2 bytes
CLL version (1) i 3bits

CLL ; packet type ‘ 4 bits -1 byte

header ! !) 60 - 1514 bytes

3 compressed (yes/no) 1 1bit

: more CLL headers !
(depending on packet type)

payload (IP* / ARP / DHCP)
* possibly encrypted

3 | HMAC / RSA signature | :

Fig. 2. An Ethernet frame in CLL.

When securing Ethernet frames, CLL inserts its own headers and replaces the Ether-
Type value in the Ethernet header with its own identifier (0x07D0, otherwise unassigned
by IEEE). Figure 2 depicts the generic layout of an Ethernet frame safeguarded by CLL.
The CLL header is placed behind the Ethernet header. It has been designed as a com-
pact bit field to save overhead. It consists of a version number (currently 1) like in IP,
a field specifying the encapsulated packet type (unicast or broadcast IP packet, ARP
handshake packet, DHCP client or server packet, internal certificate packet), and a
Boolean flag stating whether the payload has been optionally compressed by CLL. This
main CLL header is followed by one or more inner headers depending on the encap-
sulated packet’s type. Therein we store, among cryptographic parameters, the original
EtherType number. Behind the inner headers resides the payload, i.e., an ARP, IP, or
DHCP packet. Finally, each secured Ethernet frame terminates with an authentication
field containing either an HMAC (unicast IP and DHCP packets) or an RSA signature
(ARP handshake and broadcast IP packets) computed over the whole frame.

5.2 ARP Handshake and SA Setup

Overview To safeguard unicast IP packets, CLL needs to establish an SA between each
pair of communicating hosts. For this, CLL takes advantage of the ARP mechanism and

expands it at the same time with authentication. Figure 3 illustrates this ARP handshake
between two hosts A and B.

When started, a CLL implementation should first flush the ARP cache, thus ensur-
ing that all IP traffic to other hosts is preceded by an ARP request. Having intercepted
the ARP request, CLL wraps it up into a digitally signed handshake packet. It includes
the host certificate and cryptographic parameters to establish the SA. The handshake
packet is broadcasted like an ordinary ARP request and every station on the LAN checks
whether it holds the inquired IP address. At the destination host, CLL verifies the cer-
tificate of the requesting host and validates the packet’s signature. Invalid packets are
dropped. Then it must be checked whether the sender’s IPP/MAC address pair claimed
in the ARP request (and its MAC address stated in the Ethernet header) matches the one
specified in its certificate.

If the handshake packet turns out to be valid, CLL creates a new SA with the re-
questing host, based on the local and the received cryptographic parameters. Finally,
CLL strips off everything from the handshake packet except for the ARP header, re-
stores the ARP EtherType number in the Ethernet header and passes the resulting ordi-
nary ARP request up the protocol stack to the ARP module. The ARP module creates
then an ARP table entry for the requesting host, and responds with an ARP reply. This
reply gets intercepted again and is encapsulated into a digitally signed handshake packet
analogously to the ARP request, along with the local cryptographic parameters and the
host certificate. CLL then unicasts this second handshake packet to the requesting host
like a usual ARP reply. In the following, we refer to the first handshake packet as the
handshake request and to the second one as the handshake reply. On the requesting
host the handshake reply undergoes the same verification process before the SA is es-
tablished and the ARP reply is passed up to the ARP module.

Creating an SA implies the computation of a joint master key from the public and
private Diffie-Hellman values. From the master key, CLL then derives the four keys for
the HMAC and the optional block cipher. At any time, only one SA is permitted per
host pair.

Handshake Packet Details We employ a UNIX timestamp and a nonce to protect
against replay attacks. CLL requires the clocks of all hosts on the LAN to be synchro-
nized within reasonable limits decided on by the network administrator, e. g., in the

signa- Diffie-Hellman A
ture 4l crypto algorithms A timestamp A
nonce certificate A (MAC + IP)

Diffie-Hellman B s'i:‘gsn‘g_
{l crypto algorithms B timestamp B ture,
nonce certificate B (MAC + IP)

Fig. 3. ARP handshake: Diffie-Hellman key exchange in conjunction with RSA signatures.

range of 2-5 minutes. This can be easily achieved if the users manually adjust their
computer’s clock occasionally. An automatic clock synchronization, for instance by us-
ing NTP [17], is also possible after having established an SA to a trustworthy server.

The nonce is a random 64-bit number generated by the initiator of the handshake,
which expects to find it repeated in the handshake reply. It ensures that the peer actually
participates in the protocol, i. e., its handshake reply has not been replayed. Due to the
nonce, it is not necessary to verify the timestamp in the handshake reply. It must, how-
ever, be stored for comparisons with timestamps of possibly future handshake requests.

The other important handshake element are the cryptographic parameters. Each host
specifies the hash function configured for the HMAC and the block cipher potentially
chosen to protect the payload against eavesdropping, along with the key sizes. A com-
pression algorithm may be specified as well, if a host intends to compress its outgoing
unicast IP packets. Moreover, each party states how long the SA should be valid before
it is either extended or removed due to inactivity. The actual SA validity period is the
minimum of the two claims. However, it may not fall below a threshold currently set to
15 minutes to prevent permanent handshakes or renegotiations.

Retransmissions and Conflicts CLL addresses the possibility of a handshake packet
loss by means of retransmissions. In case of a lost (or just unanswered) handshake re-
quest the standard ARP retransmission mechanism will trigger a new ARP request.
Having intercepted this ARP request, CLL retransmits the respective cached hand-
shake request after updating its timestamp and signature. Through caching we avoid
the computation-intensive generation of new Diffie-Hellman values.

The loss of a handshake reply will also result in a retransmission of the correspond-
ing handshake request. The answering peer caches the received original handshake re-
quest as well as its own handshake reply. It is therefore able to recognize the incoming
duplicate handshake request, and retransmits its handshake reply. Due to the receiver
relying on the nonce, we can even omit to update timestamp and signature in this case.

Theoretically, it is conceivable that two hosts without an SA concurrently send each
other a handshake request, when both of them have a pending IP datagram destined
for the other one. However, only the creation of a single SA is allowed between two
hosts. CLL resolves this issue by performing an integer comparison between the two
48-bit MAC addresses: the handshake request of the host with the higher MAC address
“wins”.

Complete and Incomplete SAs From the point of view of a host, we refer to an SA as
complete when it is known for sure that the peer has also established the SA. Host A as
the initiator of an ARP handshake can set up the SA with its peer B only after having
received the handshake reply. A’s SA is therefore complete right from the start. Host A
can immediately send secured unicast IP packets to its peer B and be certain that B will
be able to verify and decrypt them.

In contrast, host B first has an incomplete SA, as long as it cannot be sure whether
A has received its handshake reply. Usually, the IP datagram of host A that triggered the
ARP request will quickly reach host B and thereby confirm the set up SA. However, as
long as this is not the case, host B may not transmit any IP packets to its peer—A might

sequence
number A

o Twofish)
sequence
number B

Fig. 4. Transmission of unicast IP packets safeguarded with a block cipher and a message authen-
tication code.

not be able to authenticate them. Instead, in the unlikely case that B wants to transmit
to A before A has sent the first packet, B must queue its IP datagram and send a new
handshake request to A. This enforces the creation of a new SA, replacing the existing
incomplete one.

Safeguarding against Replay Attacks While the initiator of the SA protects itself
against a replayed handshake reply with the aid of a nonce, its peer has to rely on
the timestamp check when judging the freshness of an incoming handshake request.
However, a timestamp is considered valid within a period of several minutes (smaller
than the minimum SA duration) to tolerate time deviations. It hence does not assure a
complete protection by itself. An attacker may try to replace an existing SA by replaying
a captured outdated handshake request bearing a timestamp which is still valid. CLL
fends off such attacks by comparing the timestamp of a new handshake request with
the timestamp of the handshake request or reply which led to the establishment of the
currently existing SA. The use of timestamps avoids the necessity of a third message
for a second nonce in the other direction, which would render the ARP handshake more
complex.

5.3 Unicast IP Packets

Having created ARP table entries and established an SA, unicast IP packets can be
transmitted between the two peers. This is illustrated in Figure 4. While host A encrypts
its packets with the block cipher AES and authenticates them with an HMAC using
the hash function SHA-1, its peer B employs Twofish and MD5. Taking the sender’s
MAC address the receiver looks up the corresponding SA to verify the packet’s HMAC,
sequence number, source IP address, and to decrypt the IP datagram. Only if the peer is
a router, its IP address may differ from the source address stated in the IP header.

Each unicast IP packet contains a sequence number to protect against replay attacks.
It is incremented by one with each packet sent to the respective destination. The receiver
tolerates packet losses and only checks whether a packet’s sequence number is larger
than that of its predecessor. The sequence numbers are transmitted as plaintext to avoid
an unnecessary decryption of replayed unicast IP packets. However, in order not to

via old SA —
. «————{ renegotiation reply ——
i —[renegotiation ack }M)

o via old SA B
—I renegotiation request I—) q

Fig. 5. Renegotiation—renewing an SA.

reveal the number of packets exchanged between two hosts so far, we generate the
initial sequence numbers—one for each direction—at random.

Note that once having created an SA, CLL can also secure unicast packets carrying
some other layer 3 protocol, e. g., Novell’s IPX.

5.4 Periodical Key Rollover

By design, an SA has a short lifetime of typically 15-60 minutes like an ARP cache
entry. But if any IP packets are transmitted during this period, it is renewed by a new
Diffie-Hellman key exchange. New session keys for the HMAC and block cipher as
well as sequence numbers are derived from a new master key. We call the extension of
an SA renegotiation. Figure 5 illustrates the messages exchanged between two peers to
extend their SA.

The renegotiation request and reply are the counterparts of the handshake request
and reply. They are transferred through the existing SA like usual unicast packets. Each
peer establishes a new SA after receiving the corresponding renegotiation packet. Just
like when initially setting up an SA, host A’s SA is complete from the beginning on,
while host B first has an incomplete SA. But in case of a renegotiation, we cannot expect
that an IP packet will be transmitted from A to B shortly and render B’s SA complete as
well. Therefore, host A has to explicitly acknowledge the reception of the renegotiation
reply. It does so by means of a renegotiation ack sent through the new SA.

The renegotiation is initiated by the peer that first determines the expiration of the
SA according to its clock. Concurrent renegotiation attempts are resolved in the same
way as in the ARP handshake by performing a MAC address comparison.

During the renegotiation the peers re-exchange and re-validate their current cer-
tificates to address a possible expiration of the previous ones, especially in case of
short-lived certificates issued via DHCP. While a renegotiation is in progress, pending
IP packets destined for the peer can be still transferred through the old SA, i.e., there
is no need to delay and queue them. We address the possibility of renegotiation packet
losses by means of a retransmission mechanism.

5.5 Broadcast Packets

CLL authenticates broadcast IP packets like handshake packets by means of an RSA
signature. To verify the signature, the receivers require the sender’s host certificate.
However, the variable payload size of a broadcast packet may well be too large to pig-
gyback the certificate and still stay within the maximum segment size limit. Therefore,

we broadcast the certificate in advance in a special certificate packet. CLL sends a cer-
tificate packet only when dispatching a broadcast packet and when more than a minute
has passed since the previous certificate transmission, i. e., periodically on demand. All
hosts on the LAN cache the received host certificates. Thus they need to validate each
certificate only once and henceforth have the correct public key readily available for
future signature verifications.

Like handshake packets, broadcast packets are protected against replay attacks by
means of a timestamp combined with an additional counter. If a host sends more than
one broadcast packet at the same UNIX time (i.e., within one second), it increments
this counter with each packet by one. All receivers store for each sender the timestamp
and counter from its last broadcast packet. Subsequent packets from the same sender
must bear a newer timestamp or the same timestamp with a higher counter value.

When dealing with high-rate broadcast traffic, the generation of RSA signatures on
a per-packet basis may become computationally infeasible in real-time. However, in
this case it is conceivable to queue outgoing broadcast packets for a short time and sign
the accumulated group of packets as a whole with a single private key operation before
dispatching them. The receivers would reassemble this group and verify the overall
signature attached to the last packet. A sophisticated but also more complex approach
tolerating packet losses might be the application of a specialized broadcast authentica-
tion protocol like TESLA [19].

6 Integrating and Securing DHCP

6.1 Basic Concept

So far, we have described the case of a static IP configuration, where the local CA
creates for each machine a host certificate incorporating its MAC and IP address. How-
ever, CLL also supports the automatic assignment of IP addresses by means of DHCP.
The DHCP message exchange is safeguarded and extended. CLL protects DHCP not
only from unauthorized attackers, but also from malicious behavior originating from
authenticated hosts.

In case DHCP is used, the local CA issues a base certificate for each host, bearing
only the machine’s MAC address and no IP address. The DHCP server uses the base
certificate as a template to generate a full-fledged host certificate, which contains the
assigned IP address. Thus, it acts as a second CA. The host certificate issued by the
DHCP server has the same validity period as the IP address lease. When extending the
DHCP lease, the host certificate is renewed accordingly.

Securing DHCP implies the authentication of all DHCP packets and a consistency
check of the DHCP header in client-originated messages. Since CLL supervises the
complete DHCP traffic in a transparent way, it also takes on the automatic application
for a host certificate and its issuing. Its operation does not require any modifications
on the employed DHCP client or server. On the client side, CLL attaches the base cer-
tificate to the DHCPREQUEST message. On the server CLL verifies this request and
strips off its own headers, before passing it up to the DHCP module. It then waits for
the outgoing DHCPACK message. This message constitutes the confirmation that the

DHCEP server has assigned the requested IP address. CLL extracts from it the allocated
IP address along with the lease time, and issues a corresponding host certificate. Piggy-
backed on the DHCPACK message, the new host certificate finally reaches the client,
which can now finalize its IP configuration and is ready to establish SAs.

6.2 Authenticating the Packets

We have designed the authentication of DHCP packets in a way that allows to employ
an HMAC from the beginning, without requiring an initial public key handshake. DHCP
traffic occurs only between the clients and typically one single trusted server controlled
by the local CA. Therefore, the number of communicating host pairs is limited and it
is feasible to statically configure pre-shared HMAC keys. This task may be performed
during the certificate enrollment without any additional effort. The local CA can gen-
erate a secret HMAC key for a host along with its base certificate. After encrypting the
HMAC key with the host’s public RSA key it can deliver these items to the user, e. g.,
via e-mail.

If the issued HMAC key were completely random, one would have to promptly
configure it on the DHCP server as well, which involves some effort. Instead, we use a
single DHCP master key, a concept adopted from [8]. From this master key we derive
for each host the corresponding HMAC key by means of a key derivation function.
The master key is known only to the local CA and the DHCP server. The pair <MAC
address, expiration time of the base certificate>, in the following denoted as client ID,
serves as the derivation parameter. This scheme does not require to inform the DHCP
server about any newly certified hosts.

Since all hosts include their client ID into every sent DHCP packet, the DHCP server
can deduce the corresponding HMAC key in an ad-hoc fashion and authenticate the
packet. Conversely, when the DHCP server responds to the client, it has the right HMAC
key already available. By incorporating the expiration time of the base certificate into
the client ID we restrict the lifetime of the HMAC key. DHCP packets with expired
client IDs are thus easily dropped without further verification. This allows, for instance,
to immediately ignore DHCPDISCOVER messages sent by no longer authorized hosts.

To protect against replay attacks, we employ the same technique already introduced
with broadcast packets, i. e., a UNIX timestamp in conjunction with a counter for pack-
ets bearing the same timestamp. A consistency check of the MAC and IP addresses
stated in the DHCP header renders the authentication complete.

6.3 Further Security Measures

We consider the two DHCP messages DHCPDECLINE and DHCPRELEASE as a se-
curity risk. The first one allows a malicious client to spuriously tell the DHCP server
that the IP address assigned to it is already in use by some other machine, thus making
a DHCP starvation attack possible. The second one is utilized to release an assigned IP
address to the DHCP server’s address pool before the corresponding lease has expired.
However, we cannot force a host to give up its certificate, and a malicious user might
continue to use its certificate and with it the released IP address, while the address has
also been assigned to some other machine. Therefore, we decided to simply drop these

messages. Note that this does not violate the DHCP specification: these messages are
transmitted in an unreliable manner without any retransmissions, i. e., they may get lost
en route anyway. Moreover, no host is obliged to release its IP address ahead of time.

CLL allows to restrict the number of authenticated DHCP packets originated by the
same host that the DHCP server will process during a specified time interval. Thereby
the server can be secured against overload caused by malicious or misconfigured clients,
attempting to renew their IP address lease extremely often. This would force the server
to continuously issue new host certificates, which includes an expensive private key
operation.

These security measures prevent malicious behavior originating from authenticated
hosts. Without them attacks on DHCP would be still feasible and one would have to
extensively analyze the server’s DHCP logfiles to backtrack the identity of the attacker.

7 Implementation and Evaluation

7.1 CLL as a Cross-Platform Service

We have implemented CLL in C++ as a user-mode service on both Windows (2000, XP,
2003, Vista) and Linux (kernels 2.4 and 2.6) using Visual C++ 2005 and GNU GCC 4.x
respectively. Our CLL implementation consists of a platform independent core, which
interoperates with a tailored portability layer providing a consistent interface for OS
specific functionality. The responsibilities of the portability layer include crafting and
filtering raw Ethernet frames, configuring the network interface (ARP, IP, MTU), and
the interfaces for threads and timers.

To set up a filter handler for Ethernet frames in user-mode, we employ the packet
filtering framework WinpkFilter [21] on Windows. On Linux, we have implemented a
link layer filtering solution on our own. We unbind the real network adapter from the
IP stack, transparently replace it with a virtual one (a tap device), and set up a raw
PF_PACKET socket to send and receive Ethernet frames through the unbound real net-
work adapter. A maybe somewhat more efficient kernel-level implementation of CLL’s
packet processing engine would constitute a complex and error-prone task, especially
when targeting multiple platforms. We therefore leave it for future work. But despite the
overhead of additional context switches, our user-mode approach achieves good perfor-
mance, and is able to operate at wire-speed in 100 Mbit LANs. To support the large
number of cryptographic algorithms proposed for CLL, we employ the comprehensive
open source crypto library Botan [15].

Aiming to provide a real-world solution, we address in our implementation such
issues like persistent storage of SA configurations (to tolerate an OS reboot) and back-
ward compatibility. To support non-CLL capable devices like network printers or NAS
and to enable a step-by-step migration, CLL can be configured to communicate with
legacy hosts in the standard, insecure fashion. This is accomplished by providing the
CLL-enabled hosts with a list of the legacy IP/MAC address pairs. CLL then sets up
static ARP entries and thereby provides at least an unidirectional protection against
ARP spoofing.

Since the drivers of common Wi-Fi adapters exhibit an Ethernet-compatible inter-
face to the network stack, Wi-Fi networks can be secured by CLL as well.

Table 2. Performance of the ARP handshake.

action duration in ms
Ist ping A — B using CLL: ARP handshake 27.4
Ist ping A — B without CLL: usual ARP exchange 0.92
generating the private & public DH value (2048 bits) |host A: 26.3 host B: 44.1
deriving the master key with DH host A: 7.2 host B: 15.7
computing an RSA-1024 signature host A: 3.1 host B: 5.7

7.2 Performance Evaluation

We have conducted a performance evaluation with two hosts A and B, where A is a
laptop equipped with an AMD64 Turion 1.8 GHz CPU running Linux 2.6.20 (32-bit)
and B is a PC with an Intel Core 2 Duo E6400 2.13 GHz processor running Windows
XP SP-2. The presented results are averaged over multiple runs.

The first series of measurements, shown in Table 2, is devoted to the overhead of
the ARP handshake. For digital signatures both hosts use an RSA-1024 module. By
pinging the neighboring host with no previously established SA we measure the time
to perform the ARP handshake and the subsequent ICMP echo exchange. We compare
it to the delay of the first ping in an ordinary unsecured setup, including a plain ARP
message exchange.

Though it takes 30 times longer than a usual ARP exchange, the one-time delay
of 27.4 ms induced by the ARP handshake with CLL is negligibly short for practical
purposes. This low value is achieved due to an optimization in our implementation: we
precompute the Diffie-Hellman values in a background thread, and thus have them read-
ily available at the beginning of an ARP handshake. Otherwise the handshake would last
26.3+444.1 = 70.4 ms longer. The delay of 27.4 ms can be broken down by measuring
the computation time of the two dominating operations—the derivation of the master
key with Diffie-Hellman and the creation of an RSA signature?. Deriving the master key
is performed in parallel, thus taking max{7.2,15.7} = 15.7 ms, while signing is carried
out sequentially and requires 3.1 +5.7 = 8.8 ms. Summing this up yields 24.5 ms. The
remaining 2.9 ms are used for by the verification of the host certificates and handshake
signatures, and also include the network round-trip time (RTT).

In the second series of measurements, we analyze the TCP throughput (using the
tool ttcp [22]), the CPU load incurred at the sender and receiver, and the RTT between
two hosts already sharing an SA. The results are shown in Table 3. When comparing
the TCP throughput achievable with CLL to the result using a conventional, unsecured
protocol stack, we observe only a very small decrease in speed of approximately 2 %
without encryption and 3 % with encryption. It can be attributed quite exactly to the
overhead induced by the additional CLL headers and fields. Encryption and authentica-
tion of packets with CLL apparently has virtually no effect on the achievable data rate
in 100 Mbit LANs, which proves the feasibility of our approach.

3 Though host B’s CPU is faster than host A’s CPU, the public key operations are slowed down
by missing big integer assembler optimizations in Botan on Windows platforms.

Table 3. Performance of unicast transmissions in a 100 Mbit LAN.

action measured values
TCP throughput using CLL:

A —B: 11263KB/s 55/26% CPU (tx/rx)
B — A: 11312KB/s 22/60% CPU (tx/rx)
A —B: 11113KB/s 75/38 % CPU (tx/rx)
B— A: 11160KB/s 31/76% CPU (tx/rx)
A —B: 11522KB/s 45/17 % CPU (tx/rx)
B — A: 11519KB/s 10/44 % CPU (tx/rx)
RTT: 100 pings A — B using CLL |min: 0.287ms &: 0.377ms max: 0.501 ms o:0.046 ms
RTT: 100 pings A — B without CLL|min: 0.178 ms &: 0.198 ms max: 0.231ms o:0.012ms

e HMAC(MDS)

e Twofish/ HMAC(MDS)

TCP throughput without CLL

By comparing the CPU utilization with and without CLL being used, we assess the
induced additional CPU load. The overhead of piping the packets through the user-mode
and computing the HMAC turns out to be entirely admissible. Even when enabling
the block cipher, host A still has a quarter of its CPU time left for other tasks when
processing packets at full wire-speed. The faster host B runs with a CPU utilization
of only one third in the same situation. This machine obviously has the potential to
operate CLL even in a Gigabit LAN, and to achieve a throughput of at least some
hundred Mbit/s. Just like the TCP throughput, the RTT measured when running CLL in
the Twofish/ HMAC(MDY5) configuration is very satisfactory. On average it is 0.38 ms,
i.e., only twice the ordinary RTT without CLL. It should thus not represent a drawback
for any typical application scenario.

8 Conclusion

In this paper, we have introduced the Cryptographic Link Layer (CLL). CLL employs
public key cryptography to identify all hosts in the Ethernet LAN based on their IP/MAC
address pairs. It safeguards the packets transmitted between them against different
spoofing attacks and eavesdropping. Pairs of hosts willing to communicate first es-
tablish security associations by an extension of the ARP handshake. In the course of
this, the hosts authenticate each other, exchange cryptographic parameters, and nego-
tiate symmetric session keys to protect their following unicast packets with a message
authentication code and an optional cipher. Broadcast packets are also secured by CLL
using digital signatures. When IP addresses are to be configured dynamically, CLL ex-
tends DHCP to automatically issue host certificates with the leased IP address. In the
course of this, it also adds authentication to DHCP and safeguards it against various
attacks.

We have implemented CLL on both Windows and Linux without modifying the
existing protocol stack. Backward compatibility to ordinary, unsecured hosts can be
enabled to support a step-by-step migration and retain legacy devices. The evaluation
of CLL demonstrated the excellent performance of our protocol in a 100 Mbit Ethernet
LAN, where it achieved wire-speed throughput and short round-trip times.

References

(1]

(2]
(3]
(4]

(5]

(6]
(7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]
(21]
[22]

(23]
[24]

Hayriye Altunbasak, Sven Krasser, Henry Owen, Joachim Sokol, Jochen Grimminger, and
Hans-Peter Huth. Addressing the Weak Link Between Layer 2 and Layer 3 in the Internet
Architecture. In LCN ’04: Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks, pages 417-418, November 2004.

Antidote. http://antidote.sourceforge.net.

ArpWatch. http://ee.1bl.gov and http://freequaos.host.sk/arpwatch.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message Authentication Using Hash
Functions: the HMAC Construction. RSA CryptoBytes, 2(1), 1996.

D. Bruschi, A. Ornaghi, and E. Rosti. S-ARP: a Secure Address Resolution Protocol. In
ACSAC ’03: Proceedings of the 19th Annual Computer Security Applications Conference,
pages 66-74, December 2003.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. RFC
4346, April 2006.

R. Droms. Dynamic Host Configuration Protocol. RFC 2131, March 1997.

R. Droms and W. Arbaugh. Authentication for DHCP Messages. RFC 3118, June 2001.
Ettercap. http://ettercap.sourceforge.net.

Mohamed G. Gouda and Chin-Tser Huang. A secure address resolution protocol. Computer
Networks, 41(1):57-71, 2003.

IEEE 802.1AE. Media Access Control (MAC) Security. http://www.ieee802.0rg/1/
pages/802.1ae.html.

Yves Igor Jerschow. The CLL service & toolkit for Windows and Linux. http://www.
cn.uni-duesseldorf.de/projects/CLL.

S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301, December
2005.

Hugo Krawczyk. The Order of Encryption and Authentication for Protecting Commu-
nications (or: How Secure Is SSL?). In CRYPTO 2001: Proceedings of the 21st Annual
International Cryptology Conference, pages 310-331, August 2001.

Jack Lloyd. Botan Cryptographic Library. http://botan.randombit.net.

Wesam Lootah, William Enck, and Patrick McDaniel. TARP: Ticket-based Address Reso-
Iution Protocol. Computer Networks, 51(15):4322-4337, 2007.

David L. Mills. Network Time Protocol (Version 3) Specification, Implementation and
Analysis. RFC 1305, March 1992.

Massimiliano Montoro. Cain & Abel. http://www.oxid.it/cain.html.

Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. The TESLA Broadcast Authenti-
cation Protocol. RSA CryptoBytes, 5(2):2-13, 2002.

David C. Plummer. Ethernet Address Resolution Protocol: Or converting network protocol
addresses to 48.bit Ethernet address for transmission on Ethernet hardware. RFC 826,
November 1982.

NT Kernel Resources. WinpkFilter. http://www.ntkernel.com.

Test TCP (TTCP) - Benchmarking Tool for Measuring TCP and UDP Performance. http:
//www.pcausa.com/Utilities/pcattcp.htm.

Eric Vyncke and Christopher Paggen. LAN Switch Security. Cisco Press, 2007.

T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251,
January 2006.

