A Real-World Framework to Evaluate Cross-Layer
Protocols for Wireless Multihop Networks

Yves Igor Jerschow

Bjérn Scheuermann

Christian Lochert Martin Mauve

Institute of Computer Science
Heinrich Heine University Disseldorf
Dusseldorf, Germany
yves.jerschow@uni-duesseldorf.de
{scheuermann, lochert, mauve}@cs.uni-duesseldorf.de

ABSTRACT

The MAC layer implementation of today’s commodity 802.11 wire-
less network devices cannot easily be changed. But many cross-
layer protocols for MANETS rely on a modified MAC layer. There-
fore it is hard to test such protocols in real world environments. We
propose to use a sensor network platform, the ESB sensor nodes,
for this purpose. We present a software framework to make cross-
layer protocol implementations and methodical experimentation
feasible. The framework consists of software tools and modules for
many frequently occurring tasks. It provides an extended link layer
that increases the flexibility for protocol implementations on higher
layers and it enables multihop communication on the ESB nodes by
a network layer with static routing. An experimenter is supported
by mechanisms to deploy routing tables, to gather network topol-
ogy information and to obtain packet logs from all network nodes.
We also give some experimentation results from an implementation
of a cross-layer protocol using the framework.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Protocol verification; C.2.1 [Network
Architecture and Design]: Wireless communication; C.4 [Perfor-
mance of Systems]: Measurement techniques

General Terms

Experimentation, Measurements, Verification, Performance, Algo-
rithms

Keywords

wireless networks, ad hoc networks, experimentation, real-world
implementation, real-world protocol testing, cross-layer, framework

©ACM, 2006. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in

REALMAN’06, May 26, 2006, Florence, Italy.

1. INTRODUCTION

Given the well known limitations of network simulation, real ex-
periments should be a major building block of any MANET pro-
tocol evaluation. But the vast majority of the devices used for to-
day’s experimental MANET setups use IEEE 802.11 wireless LAN
adapters. For those a large part of the MAC functionality is real-
ized very close to the hardware, in the (proprietary) firmware. This
makes modifications to the MAC layer for real-world experiments
with cross-layer functionality nearly impossible, and this in turn
prevents many protocol designs from being verified in a real setup.

When looking for a way to overcome these difficulties we came
across the ESB sensor nodes (Figure 1). These relatively inex-
pensive devices were developed at the Freie Universitéit Berlin as
part of the ScatterWeb project [?]. They are intended to serve as
a testbed platform for wireless sensor networks. ESB nodes are
battery-powered and equipped with a collection of sensors and a
wireless interface. For the purposes of MANET protocol testing
however, their main advantage is the open firmware, which allows
modifications to every part of the software, down to the manipula-
tion of each single bit transmitted on the wireless medium. More-
over, the modifications can all be made in a clearly structured code
base. In short, the hardware platform and the tools provided al-
low the implementation of all kinds of changes to backoff mecha-
nisms, cross-layer callbacks and other interaction mechanisms on
the MAC layer and above. Of course, there are other sensor net-
work platforms with similar features, and our approach could be
transferred to those.

However, there is a problem with MANET protocol testing on
sensor nodes: even in a small experimental setup with only a cou-
ple of nodes it is hard to gather the desired performance data, or
even just to observe the protocol behavior. For example, no log-
ging facility is available.

To overcome these problems and to enable the testing of cross-
layer MANET protocols on the ESB sensor nodes, we have de-
veloped a MANET protocol testing framework for the ESB plat-
form. It allows to set up experiments and to gather the result data.
Thereby the ESB sensor network platform is transformed into a
cross-layer testbed platform for MANET protocols.

Of course the non-802.11 compatible physical layer of the ESB
nodes does not allow for a direct performance comparison to, €. g.,
802.11-based networks. But its basic properties are similar to most
wireless interfaces: a single-channel transceiver and a CSMA/CA
MAC are used, carrier sensing is not possible while transmitting.
As in many other sensor network platforms, an RFM TR1001 ra-
dio [?] is used that works at a fixed data rate of 19.2 KBit/s in the
868 MHz band. Thus, the ESB nodes have a lot in common with



Figure 1: An ESB sensor node.

other wireless devices. And although the absolute numbers are dif-
ferent, the most important step is to show that a protocol exhibits
the desired general behavior in a wireless multihop network. The
results can then guide further protocol refinements, or can moti-
vate the much larger effort necessary to bring a certain modification
closer to wireless interfaces with higher data rates.

As mentioned before, our work is based on the stock ESB firm-
ware. We augmented it with a number of new features. For ex-
ample, they comprise a network layer for multihop communication
and some tools to support the experimenter. In addition to these
completely new components, we have modified the link layer in
order to increase its flexibility.

The remainder of this paper is structured as follows. In section 2
we will first review some related work. We will then describe our
framework and the algorithms used to realize it in the resource effi-
cient way required by the resource constrained hardware platform.
How the ESB sensor nodes are programmed and controlled when
experiments are conducted is described in section 3. Some modi-
fications make the standard ESB link layer more flexible in order
to support heterogeneous protocol demands. They are presented
in section 4. Since for our own experiments we need only static
routing, we have not implemented a fully fledged MANET rout-
ing protocol. Instead, our framework comprises a module for static
routing that allows for user-defined routing tables. It is described
in section 5. New routing tables can be deployed automatically in
the network using a mechanism detailed in section 6. Also an au-
tomated discovery of the network topology is provided; this can
support both routing table creation and verification of experimen-
tal setups. The corresponding mechanism is described in section 7.
Finally, a last module of our framework, covered in section 8, pro-
vides a logging facility. The packets received, sent and overheard
in all the nodes can be logged. This is necessary for a well-founded
result analysis. In section 9 we show some experimental results
obtained with our testbed and compare them to corresponding sim-
ulations; thereby we demonstrate the practical feasibility of our ap-
proach. We then conclude our paper in section 10.

2. RELATED WORK

In [?] Bernasconi et al. describe a hardware architecture they
have developed in order to be able to perform real world experi-
ments with their modified MAC backoff scheme. Such a tailored
hardware design obviously provides a high degree of flexibility.
However, their tailored hardware is not widely available, and can

thus not easily be used by other researchers who intend to perform
real world experiments with their protocols. Since the hardware
platform is not standardized it is hard to reproduce experimental
results or to make direct comparisons to possible implementations
of other approaches. The ESB sensor nodes in contrast are com-
mercially available and can be ordered at a reasonable price in
larger quantities. Additionally, the nodes are small, autonomous,
and battery-powered. Hence the deployment of the nodes for an
experiment is quite simple because neither a power supply nor a
connection to a PC is required.

In [?] Heissenbiittel et al. describe a real world implementation
of a geographic routing protocol. They also encountered the diffi-
culty that the MAC protocol cannot be changed to meet the needs
of the proposed MAC layer. This would have been possible on a
sensor-network based testbed.

There is some literature describing experiments with alternative
MAC protocols for sensor networks, e.g. in [?,?]. We, in con-
trast, look primarily at protocols for MANETSs or Wireless Mesh
networks. In those networks, the applications and their require-
ments are very different. We just use the sensor nodes as a testbed
platform.

The ESB sensor nodes are used in various sensor network test-
beds with applications that are specific to sensor networks. Exam-
ples of this work are [?,?,?].

In [?] Dunkels et al. present a prototype sensor networking plat-
form using the ESB nodes with the Contiki OS [?]. The key fea-
tures of their platform are an energy aware MAC layer and a TCP/IP
protocol stack with sensor network specific extensions. It would
have been an option to base our framework on Contiki instead of
the standard ESB firmware. However, their approach provides a lot
of sensor network specific functionality and is thus relatively com-
plex. We therefore decided not to use Contiki as a basis, in order to
make protocol implementations as straightforward as possible and
to limit the amount of code to a minimum.

One of the central mechanisms in our framework is a topology
exploration algorithm, which we use for the preparation of experi-
ments, the verification of experimental setups and the automated
generation of routing tables. The discovery of the current net-
work topology is also a central element in other areas, especially in
proactive wireless routing protocols like TBRPF [?] or OLSR [?].
However, the focus is different there since in the case of routing
the topology information is disseminated in the background, trad-
ing off up-to-dateness against network load. The intention is to
achieve a fast dissemination of topology information in the whole
network with minimum effort. In contrast, for our purposes a fast
and reliable collection of the complete topology information at one
central point is necessary.

In [?] Deb et al. describe a topology discovery algorithm for sen-
sor networks. Their algorithm is meant to be used for network
management purposes like network state retrieval and as a basis
for the setup of efficient data dissemination and aggregation paths.
In their approach, only an approximation of the network topology
is collected. However, our topology discovery algorithm is in some
aspects similar to their “Aggregated Response” algorithm used for
comparison purposes in the same paper. “Aggregated Response”
explores the topology in parallel, using a flooding strategy. This
can cause unintended interference effects like packet collisions due
to the shared medium and thus lead to missed links if discovery
packets collide. Our topology exploration algorithm serializes the
topology discovery and thus eliminates interference effects within
the network.



3. PROGRAMMING AND CONTROLLING
THE ESB NODES

The base firmware and our protocol modules are written in C.
The respective cross-compiler and debugging tools are freely avail-
able for several platforms [?]. Thus, no deeper assembler program-
ming skills are required, and various protocols can be implemented
really straightforward. The compiled binary module can be trans-
ferred to the nodes using a JTAG interface, which is connected to a
parallel or USB port. This interface is also used for online debug-
ging.

The nodes are operated via a terminal program. At least one
node must hence stay attached to the serial port of a desktop com-
puter. The others can be then controlled remotely. The user queries
the nodes’ state or configures various parameters by typing termi-
nal commands. There are some predefined commands built into the
standard ESB firmware, many more were added by us. For exam-
ple, it is easily possible to display the routing table, to send a packet
to a remote node or to set some timeout parameter in all nodes si-
multaneously by broadcasting the respective command. Since the
nodes can be switched into a verbose mode, all the network activ-
ities can be monitored by following the debug messages displayed
on the terminal. This makes debugging a lot easier.

The helper applications for the routing table transfer, logging and
topology services also exchange data with the nodes over the serial
interface.

4. LINK LAYER EXTENSIONS

The standard link layer in the ESB firmware allows the reliable
single-hop transmission of data packets. Link layer acknowledg-
ments and Automatic Repeat Requests (ARQ) are used for this
purpose. This turned out to be a good foundation for our work.
But since many protocols require more or different functionality,
we extended the basic link layer functionality.

The ESB nodes allow for an adjustment of the transmission sig-
nal strength in 100 steps. In our framework, the signal strength
can—upon demand—be individually adjusted for every single
packet. The information on the signal strength to be used is stored
with the packet in the queue. Adjusting the signal strength is essen-
tial, e. g., for topology control mechanisms. In addition to that, the
modification of the signal strength has also been proposed in other
contexts, for example to salvage packets if a link layer connection
has just broken with normal signal strength [?].

Some protocols do not require link layer acknowledgments. Ex-
amples are passive acknowledgment approaches, as proposed, e. g.,
for the DSR routing protocol [?]. The number of retransmissions
might also differ from packet to packet. To handle this with max-
imum flexibility, a way is provided to determine the use of link
layer reliability mechanisms on a per-packet basis as well as a way
to work with an individual number of ARQ packet retransmission
attempts.

The link layer frame format used by our framework is shown in
Figure 2. From the viewpoint of a cross-layer protocol developer
this format is not to be understood as fixed, but rather as the basis
for further, protocol-specific adaptions.

The format does not contain a field for the specification of the
transmission power or the ARQ retry count to be used. Instead,
this information is stored in the network layer packet header. This
is because these values can optionally be predefined for the whole
route by the original sender of a multihop transmission. If they
were stored in the link layer header they would be lost after the
first hop. It is of course also possible to use cross-layer protocol
feedback to set or alter these values independently at each hop.

Figure 2: Link layer packet.

Figure 3: Network layer packet.

S. STATIC ROUTING

The main focus of our current work is on MAC/transport layer
interactions. Therefore we were looking for a way to eliminate
routing protocol effects from our experiments. The intention is
to be able to distinguish routing protocol influences from inherent
MAC and transport layer issues. Our solution to this challenge is
to use a static topology with static routing. To support this on the
ESB platform, a static multihop routing module—including an ap-
propriate handling of routing tables—is required. This is a valuable
testbed function for anyone seeking to distinguish routing effects
from other, e. g., shared medium related, effects.

The static routing tables for a given experimental scenario can be
easily crafted by writing a routing configuration file for the network
in a simple, text-based syntax. For each node and destination ad-
dress, the corresponding next hop is defined. Destination addresses
with the same next hop may be aggregated to keep the configuration
file concise. A default gateway can be specified for each node. A
helper application parses the routing configuration file and transfers
the routing tables to the nodes.

Given some network topology—either manually defined or auto-
matically discovered—the optimal routing tables can also be com-
puted automatically by another helper application, using the Dijk-
stra algorithm.

To economize on the very limited main memory the static routing
table is stored in the flash memory of the node besides the firmware
code. Unlike the also available EEPROM chip, the flash memory
allows fast and direct access by means of a pointer.

Figure 3 shows the network layer packet format. Again, this
is only to be understood as a basis for further, protocol-specific
adaptions. The 16 Bit ID allows to identify each datagram when
evaluating log files. The service flags byte carries the requests for
special datagram handling that have been mentioned before, like
modifications of the used signal strength, the number of link layer
retransmissions or prioritized packet handling.

6. DISTRIBUTION OF ROUTING TABLES

In order for the static routing module to work, each node needs
to know its routing table. Since these tables are likely to change
often from experiment to experiment—depending on the network
topologies used—deploying a new set of routing tables to the nodes
is a common task. To ease this task, a mechanism has been imple-
mented that uses the routes given in the set of routing tables them-
selves to supply each node with its routing table in an efficient way.

With this mechanism we intend to provide a means to distribute
routing tables while leaving the nodes in-place and without visit-
ing each node individually. The only prerequisites that need to be
fulfilled to make this work are that the network is connected, and
that the routing tables that are to be deployed are valid, i.e., that



they contain working routes. These routes are used to distribute the
routing table information in the network.

In our framework, one node—the so-called master node—is con-
nected to a desktop computer and serves as the source for the rout-
ing table distribution. The routing tables are read from a file on the
desktop computer, where they are stored in an easy-to-read, text-
based format. A special tool reads this file and transfers the routing
tables in a compressed format to the master node.

The routing paths from this master node to all other nodes form
a tree. This routing tree is used to distribute the routing tables.
Along each edge of the tree the routing tables for all nodes in the
specific subtree are transmitted via reliable unicast, packed together
in one routing table package. Each node in the tree that receives
such a package extracts its own table. The information contained
therein can then be used to pass the other tables further on towards
the tree’s leaves. Therefore all routing tables finally reach their
respective nodes. This is schematically depicted in Figure 4.

One important benefit of this scheme is that it is not necessary
to have any routing information available in the nodes prior to the
distribution of the tables. It is also not necessary to use any routing
protocol in order to achieve the intended distribution—to have a
set of valid routing tables available at the master node is sufficient,
because it can be utilized for its own distribution.

If optimal routes are used for the routing in the experiment, the
distribution paths will also be optimal. Thus the distribution is
achieved with minimal effort. Assume that the routing tables define
hop-count minimal routes. Then the tree used for distribution is the
minimum hop-count routing tree with the master node as a source.
Thus all the routing tables will be distributed along the minimum
hop-count path to their respective destination node. Note that this
property does not depend on this particular notion of optimality; it
would also hold for any other (sensible) definition of “optimal”.

However, it is possible that experiments will be conducted where
intentionally bad or non-existing links are used, or where the net-
work is intentionally partitioned by leaving out working links. For
these special cases it is also possible to define specific deployment
paths in the routing tables. This additional information is not used
for the routing—it is not even stored in the nodes—but for the de-
ployment of the routing tables. Therefore links that are intention-
ally left unused in the experiment can nevertheless be used for rout-
ing table deployment.

Figure 4: Routing table distribution in an example network
topology.

7. TOPOLOGY EXPLORATION

When an experiment with wireless communication devices is set
up it is usually hard, but necessary to verify that the actual topology
matches the intended one. The topology exploration module of our
framework makes this verification easier. It is able to gather topol-
ogy information from the network and deliver it to the user. The
topology information can also be used to generate routing tables
in the format required for the routing table distribution tool from
section 6, either to be used directly or as a basis for a user-defined
routing.

The topology exploration algorithm takes care to report the topol-
ogy of the network as accurately as possible. In particular, the ex-
ploration of the topology is serialized. This has the advantage that
the probability of lost packets due to collisions and thus of links re-
maining undetected is minimized. In the proposed algorithm there
is always exactly one node performing a neighbor search. Flood-
ing the network, where many collisions can occur and thus many
packets are lost, is explicitly avoided.

A token-based depth-first search strategy is employed by the
topology exploration algorithm. A master node is connected to the
user’s desktop PC and starts the topology exploration process. This
node first uses a repeated broadcast ping request to find its neigh-
bors. All nodes that hear such a broadcast reply with a pong packet
after a random backoff period, to minimize packet collisions. The
searching node keeps track of the answering neighbors and builds
its neighbor table. The number of ping replies successfully received
from each neighbor is also stored and can be used as a metric for
the link quality.

The master node then generates a token. After the generation
of the neighbor table the node passes this token on to one of its
neighbors. Then it waits until it returns from this neighbor, and
passes it on to the next one, and so on. A node receiving the token
for the first time performs a neighbor search as described above and
then passes the token on to its neighbors in turn, one after the other.
The token passing is implemented reliably using ARQ.

When the token returns from the last neighbor on the list, it is
handed back to the node it originally came from. In this case, the
neighbor table of the current node plus all the neighbor tables that
have potentially been received by this node from its neighbors are
attached. If a node that has already performed a neighbor search
receives the token again, it is immediately sent back, without any
neighbor tables being attached. Likewise, if the table of a neighbor
node is already known, the token does not need to be passed to this
neighbor.

The algorithm ensures that every node performs a neighbor dis-
covery exactly once, and that all the neighbor tables eventually ar-
rive at the master node. From there they are transferred to the desk-
top computer and can be processed further, for example to draw
a topology graph of the network or for the generation of routing
tables. Algorithm 1 is a pseudocode version of the algorithm.

The described version of the algorithm supports only bidirec-
tional links. It can easily be extended to detect also unidirectional
links. Every node can build a list of nodes from which ping requests
have been received. After the token has returned to the master node,
these lists are collected. This could, for example, be accomplished
by letting the token traverse the network a second time, without a
new neighbor search, but just collecting the lists of received ping
requests. If a node A has received ping requests from another node
B, but does not appear in B’s neighbor list, then there exists a uni-
directional link from B to A. We have not yet implemented this
extension, because we use only bidirectional links for the routing
and therefore do not necessarily need data on unidirectional links.



. 1) < receive token
: N < neighbor search
L—{N}
: for all n € N\ {t] .received_from} do
if no table of n in L then
pass token to n
repeat
tp < receive token
if #,.received_from # n then
return token to #,.received_from
end if
until #;.received_from =n
L +— LUr,.attached_tables
end if
: end for
: return token plus L to #1.received_from
: loop
t « receive token
return token to ¢.received_from
: end loop

SOVORXAPUE LD =

O S G G UV Y
SPYRIINHELD 2

Algorithm 1: Topology exploration.

8. THE LOGGING SERVICE

When experiments with mobile ad-hoc network protocols are
conducted, it is not only necessary to enable an easy implemen-
tation of the protocols that are to be tested, and it is also not suf-
ficient to support the experiment itself. In addition it is important
to enable the collection of the result data in a form that can be un-
derstood easily, processed automatically, and stored permanently
for future reference. While the logging of network events is quite
straightforward on more powerful hardware, there is no default log-
ging service on the ESB sensor nodes. Logging for the ESB nodes
is a challenging task especially because of the limited resources:
there is only very limited storage space available for log entries.

We have developed a full-featured logging mechanism that al-
lows a cross-layer recording of packet traces. Immediately before a
packet reception and transmission, as close as possible to the physi-
cal layer, the time stamp of the event is recorded. This ensures max-
imum time stamp accuracy. Furthermore, selected header fields
from the different protocol layers are contained in the log entries,
e. g., the sender and receiver on the link layer or the source, desti-
nation, hop counter, and the datagram ID on the network layer. The
logging service can be configured to record incoming, outgoing and
even overheard foreign packets (promiscuous mode). When mon-
itoring outgoing packets with the reliable data transfer at the link
layer enabled, the log record is extended by two entries which are
not part of any header: the number of retransmissions and a boolean
value indicating whether the packet was finally acknowledged by
the receiver or not. This log provides plenty of information for
protocol analysis, debugging and performance evaluation.

The log records are written to the 64 KB EEPROM chip. It is the
largest storage device available and is not occupied by the system
during normal operation. But of course, 64 KB of traces per node is
still very limited. To account for this, the storage space for each log
entry is calculated bitwise, considering the dimension of the sensor
testbed and the time gap during which the network traffic shall be
logged. The utilized nodes are enumerated continuously from 1
to n and these numbers are used at the link and network layer for
addressing. In a testbed consisting of n nodes only [log(n+1)]
bits are needed to represent an address instead of the 16 bits used
in the protocol headers.

The nodes’ clock offers a resolution of 1 ms and represents the
time and date in a 32 bit integer. However, instead of wasting valu-
able storage space, it is sufficient to count the number of millisec-
onds passed since the activation of the logging service. A logging
time span (i. e., an experiment duration) of one hour requires to re-
serve only 12 bits for a time stamp. Considering the measures to
economize on space, the EEPROM can hold several thousand log
records enabling a detailed analysis of complex scenarios.

To easily compare the different log records monitored by the
nodes participating in the experiment setup synchronous time
stamps are extremely helpful. Therefore, the nodes’ clocks are ini-
tially synchronized: the master node is defined to be the reference
time source. It synchronizes the other nodes to its clock by broad-
casting its current time. The experimentally measured time gap for
sending and processing the synchronization packet is eliminated.

Writing to the EEPROM is a blocking operation. If it is used
inconsiderately, it might bar the node from sending or receiving
packets for up to a couple of milliseconds. It is important to take
care that the flushing of the trace data does not change the behavior
of the node too much, because this could tamper the results of the
experiment. In order to minimize the delays incurred by the logging
service, we utilize an appropriately sized logging buffer in main
memory. When this buffer is full, it is flushed to the EEPROM in
a manner that allows the interrupt-driven physical layer to continue
receiving or transmitting data.

After the experiment, a helper application transfers the log data
to a desktop computer and creates a logfile. The format of this file is
text-based, and it is thus much easier both to read and to parse (e. g.,
for performance analysis) than the compressed bit-field format used
in the EEPROM of the ESB nodes.

9. EXPERIMENTS

We have done an implementation of a MANET cross-layer con-
gestion control protocol currently under development, using the
framework described in this paper. Here we present some of the
obtained results. We do this to show the practical feasibility of our
approach. Thus the details of the protocol itself are of subordinate
importance, and we will not cover them in depth here.

We used a bidirectional chain topology for the experiments. It
exists one sender at each end of the chain transmitting data to the
respective other end of the chain. The chain has been set up by con-
figuring the (static) routing tables appropriately. Figure 5 compares
the end-to-end throughput obtained using a 802.11-like packet for-
warding mechanism and our own in-network congestion control
protocol (named CXCC). The left chart shows ns-2 simulation re-
sults from a 5-hop chain, the right chart testbed results from an
equivalent setup. Both charts show how the throughput develops
with increasing network load. In both cases the throughput with
the 802.11-like packet forwarding drops immediately after a cer-
tain load threshold is exceeded, while CXCC'’s throughput remains
stable.

The implementation of the CXCC protocol—requiring signifi-
cant modifications to the common layering and in particular MAC
and transport layer interaction—was possible with moderate ef-
fort. On a quantitative level the results of the ns-2 simulations and
the real world experiments were dramatically different. This was
hardly surprising given the vastly different radio layers. However,
much more importantly, on a qualitative level both simulation and
real-world experiments displayed a similar overall behavior. We
view this as a confirmation that our approach of using the ESB sen-
sor nodes as a basis for real-world cross-layer experiments is both
valid and practicable.



(a) Ns-2 simulation results.

(b) ESB testbed results.

Figure 5: Comparison of simulation results and ESB testbed results of a cross-layer protocol.

10. CONCLUSION

In this paper we have presented a software framework on the
basis of the ESB sensor network platform. This framework allows
for the easy implementation and evaluation of cross-layer MANET
protocols, including those with a modified MAC layer. In general,
it is not possible to implement all the changes required by these
protocols on a testbed based on IEEE 802.11 hardware. In contrast
on our ESB-based testbed platform it is possible to realize nearly
all kinds of modifications, and to evaluate protocol designs in small
to medium-sized setups with reasonable effort.

We have described the functionality of our framework, extending
the basic ESB platform. Our enhanced link layer allows for a reli-
able and unreliable single-hop packet transmission. A resource effi-
cient logging facility makes debugging easier and is indispensable
for the collection, documentation and evaluation of experimental
results.

In addition to these low-layer extensions, a static routing agent
provides multihop connectivity and therefore a means to test trans-
port layer protocols in static networks, eliminating routing protocol
influences. Convenient tools allow for an easy creation and de-
ployment of routing tables, including an automatic exploration of a
set-up topology.

Our framework has successfully been used to test a cross-layer
transport protocol. In these experiments the proposed solution has
proven its practical feasibility as well as the intended flexibility—
the discussed cross-layer protocol requires major modifications to
the way MAC protocols commonly interact with the higher layers,
and an implementation on 802.11-based hardware would not have
been possible. Based on this experience we believe that the dis-
cussed testing approach is of interest for many researchers, and can
often serve as a basis for experimental verification of simulative
results, where otherwise it is hardly possible to realize an imple-
mentation on today’s wireless devices.

11. REFERENCES

[1] R. Bernasconi, R. Bruno, I. Defilippis, S. Giordano, and A. Puiatti.
Experiments with an enhanced MAC architecture for multi-hop
wireless networks. In Proceedings of REALMAN 2005, July 2005.

[2] T.Clausen and P. Jacquet. Optimized Link State Routing Protocol
(OLSR). RFC 3626, 2003.

[3] The Contiki Operating System. http://www.sics.se/ adam/contiki.

[4] B. Deb, S. Bhatnagar, and B. Nath. A Topology Discovery Algorithm
for Sensor Networks with Applications to Network Management. In

[5

[t}

[6

=

[7

—

(8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

Proceedings of the IEEE CAS Workshop on Wireless
Communications and Networking, September 2002.

A. Dunkels, L. M. Feeney, B. Gronvall, and T. Voigt. An integrated
approach to developing sensor network solutions. In Proceedings of
the Second International Workshop on Sensor and Actor Network
Protocols and Applications, August 2004.

Freie Universitit Berlin, Computer Systems Telematics. ScatterWeb
Project. http://www.inf .fu-berlin.de/inst/ag-tech/scatterweb_net.

M. Heissenbiittel, T. Braun, T. Roth, and T. Bernoulli. GNU/Linux
Implementation of a Position-based Routing Protocol. In
Proceedings of REALMAN 2005, July 2005.

D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc
wireless networks. In T. Imielinski and H. Korth, editors, Mobile
Computing, volume 353, chapter 5, pages 153—181. Kluwer
Academic Publishers, 1996.

F. Klemm, Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi. Improving
TCP Performance in Ad Hoc Networks using Signal Strength based
Link Management. Ad Hoc Networks, 3(2):175-191, 2005.

mspgcc — GCC toolchain for MSP430. http://mspgcc.sourceforge.net.
R. Ogier, F. Templin, and M. Lewis. Topology Dissemination Based
on Reverse-Path Forwarding (TBRPF). RFC 3684, 2004.

RFM TR1001 868.35 MHz Hybrid Transceiver Data Sheet.
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/
datasheets/TR1001.pdf.

J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt. ScatterWeb —
Low Power Sensor Nodes and Energy Aware Routing. In
Proceedings of the 38th Hawaii International Conference on System
Sciences (HICSS 2005), January 2005.

S. Schmidt, H. Krahn, S. Fischer, and D. Witjen. A Security
Architecture for Mobile Wireless Sensor Networks. In First
European Workshop on Security in Ad-Hoc and Sensor Networks
(ESAS 2004), August 2004.

T. van Dam and K. Langendoen. An adaptive energy-efficient mac
protocol for wireless sensor networks. In SenSys '03: Proceedings of
the 1st international conference on Embedded networked sensor
systems, pages 171-180, New York, NY, USA, 2003. ACM Press.

T. Voigt, H. Ritter, and J. Schiller. Solar-aware Routing in Wireless
Sensor Networks. In 9th International IEEE Symposium on
Computers and Communications (ISCC), July 2004.

W. Ye, J. S. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. In Proceedings of the IEEE
INFOCOM, 2002.



