
A fully distributed Multilayer Framework
for Opportunistic Networks
as an Android Application

Master Thesis
by

Andre Ippisch
born in

Düsseldorf

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

March 2015

Supervisor:
Jun.-Prof. Dr.-Ing. Kalman Graffi

Abstract

Nowadays we have a widespread adoption of feature-rich smartphones in society. These devices

feature powerful processors, high bandwidth communication possibilities and huge storage space.

However, some use cases are not supported today, for example the exchange of large files between

geographically close participants. The exchange of those files over services in the Internet or through

Bluetooth is limited due to bandwidth, scale and the data plans of the participants. The distribution of

such files among several users is time-consuming and complicated although all functions to make it

easy and cost-efficient are already available in current smartphones.

We present a Multilayer Framework for the Android operating system that uses the principle of Op-

portunistic Networking for local data exchange. Without user interaction the Opportunistic Network

is created and files and messages are transmitted and forwarded according to a hybrid routing scheme

composed of different routing principles in current literature. We use the functionality of Wi-Fi tether-

ing hotspots on Android smartphones to create WPA-encrypted Wi-Fi connections that offer security,

reliability and high transmission speed.

We developed two applications. One to manage the connection to other smartphones and to exchange

data as a transport layer and a second application for processing files to be encrypted and transmitted

over the created network. We used both symmetric and asymmetric cryptosystems to offer an end-to-

end encryption.

We evaluated several aspects of the applications’ functionality with an Android smartphone test bed.

We tested initial connectivity, routing, battery life, memory consumption, range, and transmission and

encryption speed.

We came to the conclusion that the network works in all tested environments but we can not make clear

statements about connection times and transmission speed because there are too many interference

factors. We showed that Android works not deterministically in many ways and that its network

functionality has many problems and bugs which makes it difficult to work with this features.

iii

Acknowledgements

I would like to thank all the people that supported me during this thesis, and beyond, especially my

girlfriend, but also my colleagues and my birds. Without you I probably would not have come this

far.

A basket full of Thank Yous goes out to my parents for the support over all the years.

Thanks to all the people that provide the world with their excellent work and develop the free and

open source software that I used to write this thesis.

And last but not least, surely not for the last time, a special thanks to my supervisor Jun.-Prof. Dr.-Ing.

Kalman Graffi for the opportunity, help and guidance.

v

Contents

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 1

1.3 Outline . 2

2 Fundamentals 5

2.1 The Android Operating System . 5

2.1.1 Basics . 5

2.1.2 Application Components . 6

2.1.3 Device Compatibility . 7

2.1.4 Permissions and Features . 7

2.1.5 Application Lifecycle . 7

2.1.6 Licensing . 8

2.1.7 SDK Software Development Kit . 10

2.1.8 Rooting . 11

2.2 Opportunistic Networks . 11

2.2.1 Addressing Nodes in Opportunistic Networks 12

2.2.2 Routing in Opportunistic Networks . 12

3 Demands and Design 17

3.1 Demands . 17

3.2 Design . 18

3.2.1 Networking . 18

3.2.2 Partition of Tasks and Responsibilities . 20

3.2.3 Runtime . 20

3.2.4 Routing in our Network . 21

vii

Contents

4 Implementation 29

4.1 Development . 29

4.2 Structure . 30

4.3 Toolkit Library . 31

4.3.1 Packet definition . 32

4.3.2 Security . 32

4.4 opptain Network Application . 34

4.4.1 Wi-Fi Connection Manager . 35

4.4.2 API . 37

4.4.3 Exchange of Data . 37

4.4.4 Stage System . 39

4.4.5 Client-Server-Decision-Mechanism . 40

4.4.6 Database . 42

4.4.7 Routing Manager . 42

4.4.8 Timer . 44

4.4.9 Notification System . 44

4.4.10 Settings . 44

4.4.11 Bus-based Property Change Listener . 44

4.5 FileShipping Application . 45

4.5.1 PacketActivity . 46

4.5.2 SettingsActivity . 46

4.5.3 QRCodeShowActivity . 46

4.5.4 QRCodeScanActivity . 47

4.5.5 OutgoingPacketActivity . 47

4.6 Installation . 48

5 Evaluation 51

5.1 Connectivity . 51

5.2 Battery Life and Memory Usage . 52

5.2.1 Battery Life . 53

5.2.2 Memory Usage . 55

5.3 Transmission Range . 56

5.3.1 Outside tests . 56

5.3.2 Inside tests . 57

5.4 Determinism . 58

5.5 Simultaneous use of opptain and other functions . 59

5.6 Transmission Speed . 60

5.7 Encryption and Decryption Speed . 61

5.8 Routing . 62

viii

Contents

5.8.1 Exchange of Meeting Summaries . 62

5.8.2 Routing of Packets with MeetingSummaries 64

5.8.3 Routing with Attributes . 66

6 Conclusion and Future Work 69

6.1 Conclusion . 69

6.2 Future Work . 70

Bibliography 73

ix

List of Figures

2.1 The lifecycle of an Android application . 9

3.1 Scenario for MeetingSummary exchange . 24

4.1 Application icons . 31

4.2 Exchange of data between smartphones . 38

4.3 Exchange of data between applications . 39

4.4 FileShipping application interaction . 45

4.5 Android icons . 47

5.1 Battery and available Memory . 54

5.2 Range Evaluation Outside . 57

5.3 Range Evaluation Inside . 58

5.4 Determinism . 60

5.5 Encryption and Decryption time test . 63

5.6 Prerouting Connections . 64

xi

List of Tables

2.1 Permissions used in the applications . 8

2.2 Android version distribution in March 2015 . 10

2.3 List of considered routing schemes . 15

3.1 Protocol Stack . 19

3.2 Routing schemes considered for routing based on the additional information 23

3.3 Prerouting Connections . 24

3.4 Prerouting Actions . 25

3.5 Prerouting Meetings and MeetingSummaries (A-C) 25

3.6 Prerouting Meetings and MeetingSummaries (D-E) 26

4.1 Definition of the Packet . 32

5.1 All Android devices for testing . 52

5.2 Testing devices with kernel, baseband and build information 53

5.3 Results . 53

5.4 Testing devices with CPU information . 63

xiii

List of Listings

2.1 Apache License, Version 2.0, boilerplate notice . 9

3.1 Connection between devices . 23

4.1 Methods for opening and closing a tethering hotspot 36

4.2 Methods for connecting to and disconnecting from an access point 37

4.3 Client-Server-Decision-Mechanism . 41

5.1 Exception . 55

xv

Chapter 1

Introduction

1.1 Motivation

Nowadays we have a widespread adoption of feature-rich smartphones in society. These devices

feature powerful processors, high bandwidth communication possibilities and huge storage space.

However, some use cases are not supported nowadays, for example the exchange of large files between

geographically close participants. The exchange of those files over services in the Internet or through

Bluetooth is limited due to bandwidth, scale and the data plans of the participants. The distribution of

such files among several users is time-consuming and complicated although all functions to make it

easy and cost-efficient are already available in current smartphones.

The simple case of plain comfort is not the only motivation for a framework that allows offline ex-

change of files. Several circumstances can exist in which Internet connectivity is not given. These

are, for example, areas without a well-developed mobile network, buildings without reception or an

intentionally caused lack of Internet connectivity as happened at the Hong Kong protests in 2014.

While there are several attempts to solve the described problem, as seen in 1.2, we declare our own

demands which we present in 3.1. We thereby give a motivation in the form of requirements that are

nowadays not available in this form and this combination.

1.2 Related Work

The experimental Request For Comments 5050 [SB07] specifies a so called Bundle Protocol that was

developed for exchanging messages in Delay Tolerant Networks. The protocol does not specify an

underlying transport layer and is therefore defined in broad terms which results in design decisions

1

Chapter 1 Introduction

that conclude in an overhead of at least one eighth of the size of the transmitting files.

Morgenroth, Schildt and Wolf present an implementation of the bundle protocol on Android de-

vices [MSW12]. Some aspects of the work are similar as the authors used routing protocols that

form the basis of our routing scheme in Section 3.2.4. However we concentrated more on our own

routing scheme as a hybrid version of different protocols and used a simple protocol that keeps the

transmitted data low.

Trifunovic, Kurant, Hummel and Legendre presented an article about opportunistic networking on

smartphones [TKHL15] while this thesis was written. They use similar concepts for connections but

use given routing schemes from current literature instead of combining them.

Conti, Delmastro, Minutiello and Paris looked into transmitting files in opportunistic networks through

Wi-Fi Direct [CDMP13]. In Section 3.2.1 we will discuss why Wi-Fi Direct is not useful for our de-

mands.

1.3 Outline

In this chapter we gave the motivation for implementing an Android application for Opportunistic

Networks and looked at attempts of other authors. The rest of the thesis is organised as follows:

In Chapter 2 we look at the basics regarding the Android operating system and the fundamentals

of Opportunistic Networks. We give an introduction in Android in Section 2.1 in which we list all

components for the development of an Android application. In Section 2.2 we look at Opportunistic

Networks, how they are defined, what their purpose is and in which way we use them for our thesis.

In Chapter 3 we explain the demands for the Android application in Section 3.1 and discuss how to

accomplish the demands with a design proposal which is given in Section 3.2.

In Chapter 4 the implementation components are given and explained. Section 4.1 gives an overview

of the environment in which we implemented the applications. Section 4.2 lists the components of

our framework which are explained in detail in the Sections 4.3, 4.4 and 4.5. In Section 4.6 we clarify

the installation of the applications.

In Chapter 5 we present the results of several tests conducted with our opptain network application and

with our FileShipping application. Different aspects are tested and evaluated. At first the fundamental

ability to open and connect to hotspots is tested. In addition we test the battery life and memory usage

for an ongoing usage of the opptain network application. Transmission tests inside and outside are

2

1.3 Outline

evaluated and we ensure that the opptain application does not interfere with other functions of smart-

phones. Speed tests are conducted and analysed regarding the transmission and the encryption as well

the decryption of files. Finally we test the routing mechanisms of our opptain network application.

That includes the creation and exchange of MeetingSummaries, the routing of Packets by means of

the MeetingSummaries and the routing with the help of Attributes.

In Chapter 6 we deliver a conclusion of this thesis and the developed results with regard to the demands

we expressed at the beginning. We describe how the opptain network application fulfilled our goals

and how the FileShipping application provides the proof of work. In addition we present possibilities

to extend our work in the future. Aspects which can be looked at in this context are, among others, a

longer battery life, higher safety and a more targeted data transmission.

3

Chapter 2

Fundamentals

In this chapter the fundamentals for the further developments of this thesis are explained. We will look

at the basics of Android and the Software Development Kit provided by Google Inc in Section 2.1 and

explain Opportunistic Networking in Section 2.2 in respect to the network structure and the routing

possibilities.

2.1 The Android Operating System

In this section we introduce the Android operating system, look at its structure and features and present

the components of an Android application. We extend and update Krauthoff’s [Kra12] summary of

Android’s architecture and fundamentals and the lifecycle of an application, look at the components,

compatibility and permissions of Android and give information about Android’s and our licensing. At

last we take a look at the rooting of an Android device.

2.1.1 Basics

Android is an operating system developed by Google for mobile devices. It is open source software

and is built on top of the Linux kernel [Mel15] for the purpose that many hardware devices can run

Android because it can be adapted easily by the manufacturers. The Linux kernel, a 3.x kernel from

the Jelly Bean release upwards, includes important features that are essential for a comfortable, fast

and secure functionality of an Android smartphone. The most important ones are:

• Driver Model: Easy to use environment for developing drivers to run applications on the An-

droid operating system.

5

Chapter 2 Fundamentals

• Security: Linux kernel manages the security of the system and of the applications which run as

Linux processes.

• File system management: Linux kernel manages the data storage and file system.

• Memory and process management: Linux kernel allocates and deallocates memory and re-

sources for applications, processes and the file system.

• Network: Linux kernel manages all network communication.

Android does not use the Vanilla Linux Kernel but a modified one since it runs on mobile devices and

needs additional drivers, e.g. for 3G or SIM card. Additional Android kernel features include binders

for inter-process communication, logger functionality and wake locks to keep the system awake.

2.1.2 Application Components

The following components are fundamental for the development of an Android application [Goo15c].

• Activities: An Activity is a user interface that typically comes with a single screen. An Activity

serves as an entry point when the user starts the application, called a launcher Activity, and can

display any kind of information for the user.

• Fragments: A Fragment is a user interface that can be integrated in any Activity. Several Frag-

ments can be contained in one Activity and the Fragments can be exchanged at runtime and be

reused by different Activities.

• Services: A Service represents a background process without a user interface for operations

that exceed the users interaction with the application. With the help of an AIDL interface it is

possible to exchange data between applications directly through a Service.

• Broadcast Receivers: A Broadcast Receiver can react to messages that are transmitted through

the system.

• Intents: An Intent is an abstract operation that can be performed. It is used to start Activities,

Services and can be received by Broadcast Receivers. To receive certain Intents an Intent Filter

can be declared by an application.

• Content Providers: A Content Provider is a persistent data storage that can be shared among the

system.

6

2.1 The Android Operating System

2.1.3 Device Compatibility

Android runs on several types of devices such as phones and tablets but also watches and televi-

sions [Goo15e]. Android developers can provide feature requirements and Android platform version

restriction to limit the devices that can install the application based on implemented features of the

application and available functionality of the operating system.

2.1.4 Permissions and Features

Android applications are provided with a unique system identity and run in virtual machines called

Dalvik VM. Each application runs as a Linux process in a sandbox environment to isolate it from

other applications. A developer has to declare permissions [Goo15h] that allow the application to

share resources and data with other applications and the system. Another declaration a developer can

announce for the application is the usage of features. A declared feature describes which technology

a device needs to have to be able to install the application. Those features can be hardware-based like

a Wi-Fi module or software-based like SIP or VOIP services.

Our applications use the System permissions seen in 2.1. Some of the permissions imply the use

of features, in our applications those are the WIFI_STATE permission that implies the presence of

a Wi-Fi module, the ACCESS_FINE_LOCATION permission that implies a GPS module and the

CAMERA permission that requires a camera module. Instead of just relying on implied feature usage

we declared the features explicitly.

The word “Internet” might be misleading in this context. The INTERNET permission grants usage of

sockets in common and does not necessary imply that a developer uses access to the Internet.

If a developer wants to allow other applications to use its Services or other resources like Content

Providers the developer can declare self created permissions that other applications can use.

2.1.5 Application Lifecycle

The lifecycle of an Android application 2.1 depends in most cases on the lifecycle of the applications

Activities [Goo15a] which is described in [Kra12]. However this is the case for most applications that

focus on user interaction and short life processes. Such an application is started by the user and is

stopped when the user closes it. The closing, i.e. shutting down the application can be executed by

the user explicitly or by the system if memory resources are needed.

7

Chapter 2 Fundamentals

Permission (Implied Feature) Necessary for Application
ACCESS_WIFI_STATE (Wi-Fi) accessing Wi-Fi connectivity opptain
CHANGE_WIFI_STATE (Wi-Fi) changing Wi-Fi connectivity opptain
ACCESS_NETWORK_STATE accessing networks in common opptain
CHANGE_NETWORK_STATE changing networks in common opptain

INTERNET creating sockets opptain
ACCESS_COURSE_LOCATION (Location) location updates over networks opptain

ACCESS_FINE_LOCATION (Location) location updates over all sources opptain
WAKE_LOCK keeping the CPU alive opptain

WRITE_EXTERNAL_STORAGE writing to external storage opptain, FileShipping
READ_CONTACTS reading contact information FileShipping
WRITE_CONTACTS changing contact information FileShipping
CAMERA (Camera) accessing camera FileShipping

Table 2.1: Permissions used in the applications

Also there are applications that are bound to a background Service [Goo15g] to allow further use of

the device. One example is a music player application that does not stop playing music while the user

opens another application or turns the screen off. The background Service does not need to be long

running, a Service can also be used if the user does not need to see a visible reaction to a performed

task. The same way a part of one application can be executed by another application with the help

of a Service. It should be mentioned that the system prevents shutting down applications that run a

background Service as long as the option for a simultaneous notification is set.

2.1.6 Licensing

Android software is mostly licensed with the Apache 2.0 license, some parts are licensed differently,

the Linux kernel patches, for example, are licensed with the GPLv2 license [Goo15f].

Our framework is licensed with the Apache License, Version 2.0. As required, all our code starts with

a comment including the boilerplate notice seen in Listing 2.1. The License can be found at [The15].

8

2.1 The Android Operating System

Figure 2.1: The lifecycle of an Android application.
Based on the figures of [Goo15a] and [Goo15g] by Google Inc. and adapted with permis-
sion of the given CC BY 2.5 license [Cre15]

Listing 2.1: Apache License, Version 2.0, boilerplate notice

Copyright 2015 Andre Ippisch

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

9

Chapter 2 Fundamentals

Version Codename API Distribution
2.2.x Froyo 8 0.4%
2.3.x Gingerbread 9-10 6.9%
3.x Honeycomb 11-13 < 0.1%

4.0.x Ice Cream Sandwich 14-15 5.9%
4.1.x - 4.3.x Jelly Bean 16-18 42.6%

4.4.x KitKat 19 40.9%
4.4W Wear 20 < 0.1%
5.0.x Lollipop 21 3.3%

Table 2.2: Android version distribution in March 2015

2.1.7 SDK Software Development Kit

The Android Software Development Kit (SDK) is an archive that contains basic tools for developing

and testing applications for Android. The SDK is released without an Android platform and third-

party libraries. An Android platform is a system image for a particular processor architecture that is

used to compile applications against specific Android versions. At least one Android platform has to

be installed to develop applications.

Platform Versions

Google Inc. provides updates for Android frequently and has released many platform versions for

the operating system. Since the manufacturers use their own build of Android platforms they have

to provide updates themselves which does not necessarily happen fast or at all. All devices that

were used for developing were released by Google Inc. with a non-modified Android version. At

the beginning of this thesis KitKat was the latest version and was used as a platform version for

developing and compiling. All platform versions are backwards compatible except for new features

that were introduced in later versions and are forward compatible in the form that all applications

compiled with an older platform version will run on phones with a newer version. Exceptions are

illustrated in 2.1.7.

10

2.2 Opportunistic Networks

Application Programming Interface

The Android platforms that are distributed by the SDK contain only a subset of functionality that

is actually available on Android devices and used by the system itself. Many parts of Android that

concern network connectivity have a larger set of functions available and those functions are not

released through the official Application Programming Interface (API).

Since our framework needs to change major connectivity states, like opening a tethering hotspot or

connecting to a network that was previously unknown, we decided to build our own platform version

based on the KitKat release from the official framework in the Nexus smartphones 5.1. All function-

ality we use was available from Jelly Bean on and the latest platform Lollipop still provides all used

functions. There is no guarantee that those functions will be available in later versions of Android.

Our framework should run on all devices from Jelly Bean on that support Hotspot Tethering and

whose manufacturers did not disable these functions on purpose. In March 2015 nearly 87% of all

Android devices run at least with Jelly Bean as seen as in Table 2.2 which is taken from the Android

dashboards [Goo15d].

2.1.8 Rooting

Rooting is a process that enables Android to run with raised permissions by installing a Linux su-

peruser application. It allows the user to read and alter any file on Android’s file system. Legality

and conservation of warranty of rooting an Android device are different in any country. Rooting is

in principle possible for all devices that are supported by drivers that are normally distributed by a

rooting community. Because rooted devices can read all files and therefore all private application data

it is not possible to secure data inside the application.

2.2 Opportunistic Networks

Opportunistic Networks (OppNets) are mobile ad hoc networks (MANETs) in which “unpredictable

and unstable topologies, prolonged disconnections, and partitions can occur frequently” [WDAV13].

They are a subset of Delay (or Disruption) Tolerant Networks (DTNs) [Fal03] in which “commu-

nication opportunities (contacts) are intermittent, so an end-to-end path between the source and the

destination may never exist” [HLT08].

In the following sections different aspects of OppNets will be illustrated. One aspect is the addressing

11

Chapter 2 Fundamentals

and identification of nodes which will be looked at in Section 2.2.1. Furthermore an important point

is the routing in OppNets which will be described in Section 2.2.2. We will show the differences to

the routing in MANETs and, based on this, name and explain different routing protocols which can

be used in the given context.

2.2.1 Addressing Nodes in Opportunistic Networks

In this section we want to discuss how we can address peers in Opportunistic Networks.

We assume that for the assignment of a unique identification there is no server we can access, neither

local or through the Internet. On Android devices there are a few possibilities for unique identification

that are provided by the device itself. Each device has an International Mobile Equipment Identity

(IMEI) and MAC addresses for several network adapters. Since the IMEI can be used to block a

mobile device for network communications by mobile providers after, for example, theft of the device,

it is a sensitive number that should not be used for the purpose of identification in a self-initialised

network. A MAC address is used for addressing a device on the data link layer. MAC addresses

are unique when delivered with the belonging network adapter because MAC address blocks are

distributed by the IEEE Registration Authority and manufacturers are allowed to give out unique

addresses.

We take the MAC address of the device’s Wi-Fi module as the main identification of the device.

The MAC address is unique because there is no possibility to change the MAC address on unrooted

Android devices either on hardware or software side. The MAC address in which all 48 bits are set

to “1” (ff:ff:ff:ff:ff:ff) can be used to broadcast messages in the network with restriction to the used

routing scheme explained in the next section.

2.2.2 Routing in Opportunistic Networks

In Opportunistic Networks (OppNets) reliable routing is not possible because the contained nodes

are possibly never connected to each other at the same time. While with Mobile Ad-hoc Networks

(MANETs) a disconnect is considered rare, it is highly usual in OppNets. Also in MANETs data is

sent from one node to the next with the intention that the node is the intended receiver of the message

or will forward the message immediately. There are several routing protocols for MANETs that can

be used to perform reliable transmission of data from one point of the network to another one. In

contrast OppNets do not necessarily have to be completely connected networks. Routing protocols

that work in MANETs do not work in OppNets since the route might be non-existing at the time the

sender has found a route.

12

2.2 Opportunistic Networks

In current literature there can be found many various protocols which can be used for OppNets. These

can be divided into different categories. The most notable categories are the context free, the mobility

based, and the social context based. While the context free category deals with the distribution of

messages in general, in the mobility based category a context which allows a more targeted distribution

of messages is added. The aspect of aimed routing is improved in the social context based routing.

With regard to the question how different routing protocols, of which the before mentioned categories

consist, could be used in the given context, the most interesting ones are mentioned, explained and

categorised in the following. The further approach for the usage of these protocols is explained in

Section 3.2.4.

Context Free Routing

Context free routing is a principle in which peers have no information about other peers and their

context to deliver a message.

In the area of context free routing one scheme considered the most common is the flooding of the

network. Two derived principles are blind and controlled flooding. With blind flooding a peer sends

out a routing message to all connected peers and those do the same until everyone in the network

including the receiver got the message.

A well known routing principle that derives from flooding is Dynamic Source Routing which is used in

MANETs. All peers that receive a copy of the message add their identification to the message before

forwarding it which results in the message’s addressee knowing the path that the message took on its

way through the network. The receiver can now send an answer to the sender on the path found with

the query message. The sender now can use the path to send the data over the path to the destination.

This principle does not work in OppNets since the route that is found when the routing message has

reached the destination may be not existing anymore at the time the answer message is arriving.

Instead of sending a route message the sender can just send the data packet instead. It would reach

the destination as well as all other peers in the network.

To limit the flooding of the message a hop counter or a Time-To-Live can be declared to stop the

network of overflooding. Vahdat and Becker proposed Epidemic Routing [VB+00] for mobile devices

that uses Time-To-Live for expiration of messages. When two devices connect to each other they

compare messages they have in their waiting list and exchange the ones they do not have in common.

The message gets delivered when one peer with a copy of the message connects with the destination.

13

Chapter 2 Fundamentals

Another controlled flooding algorithm is Spray and Wait [SPR05] by Spyropoulos, Psounis and

Raghavendra. Only the sender can create copies of the original message and distributes them to peers

that are connected, this is called the Spray phase. The receivers of the copied messages, however, are

not allowed to copy the message but only forward the single copy they got to the destination, called

the Wait phase, so that only a constant number of copies exists in the network. Time-To-Live is used

in this protocol, too, for the expiration of the message. Spray and Focus [SPR08] is an extension of

the Spray and Wait protocol in which the peers that received the copy of the message are allowed to

forward, but not copy, the message to a peer after not having been able to deliver the message to the

receiver, the Wait phase is replaced by the Focus phase. The owner of one copy of the message will

only forward the message to a peer that has a high utility to deliver the message to the destination.

With Seek and Focus [SPR08] there is another aspect of the Spray and Focus routing that allows the

owner of the message to forward the message randomly to other peers until one is found that has a

high utility to deliver the message.

Mobility Based Routing

Mobility based routing is a principle in which the mobility and connectivity patterns are shared among

peers to enable a targeted delivery of messages.

In PRoPHET (Probabilistic Routing Protocol using History of Encounters and Transitivity) [LDS04]

by Lindgren, Doria and Schelén, a peer is sending the messages according to a delivery probability

that is calculated by using the History of Encounters and Transitivity, a list of meetings with other

peers that everyone collects and shares with others. A peer forwards a message only to another peer

if that one has a higher delivery probability value.

A similar example of mobility based routing is the Meeting and Visits, short MV, protocol [BBL05]

by Burns, Brock and Levine. Not only the meetings with other peers are collected and shared among

connected devices but also visits to geographical locations. Like in PRoPHET this information is used

for routing messages to peers that have a higher delivery probability.

Social Context Based Routing

Social context based protocols use not only the mobility information of the peer to route through

the network but also the social aspects of the peers. Routing protocols can be used with additional

context information to predict the delivery probability not only by mobility information but also by

other values that are given by the context of the peer. One used principle is that social activities and

14

2.2 Opportunistic Networks

Name Author context Description
Epidemic Routing [VB+00] Vahdat et al. context-free blind flooding

Spray and Wait [SPR05] Spyropoulos et al. context-free controlled flooding
Spray and Focus [SPR08] Spyropoulos et al. context-free controlled targeting
Seek and Focus [SPR08] Spyropoulos et al. context-free controlled targeting

PRoPHET [LDS04] Lindgren et al. context-aware probabilistic targeting
HiBOp [BCJP07] Boldrini et al. context-aware probabilistic targeting

MV [BBL05] Burns et al. context-aware probabilistic targeting

Table 2.3: List of considered routing schemes that can be used for Opportunistic Networks on Android
devices

also geographical structures motivate the mobility of people, which are considered a target area in the

field of social context based routing.

HiBOp (History Based Routing Protocol) [BCJP07] by Boldrini, Conti, Iacopini and Passarella uses a

node profile to describe the peer. The node profile, called Identity Table, consists of personal informa-

tion like name and email, residence, workplace, profession and hobbies. The peers share their Identity

Table among other peers and use it not only to describe a current context but also for calculating habits

of the peer. Current context and predicted habits are used for calculating delivery probabilities.

Chapter Conclusion

In this chapter the fundamentals for this thesis have been explained. In Section 2.1 we looked at

the Android operating system which is an open source software developed by Google for mobile

devices.

In this context the basics in 2.1.1 as well as the Application Components in 2.1.2 were looked at. In

Section 2.1.3 the broad spectrum of Device Compatibility was discussed which is one important factor

for the overall decision to use Android as the operating system for the applications developed in this

thesis. This will be explained in greater detail in Chapter 3.1.

In Section 2.1.4 we looked at the topic of Permissions and Features. In this context it was explained

that a developer needs to permit other applications and the system to share resources and data. In

addition it was explained how a developer can define which technology a device is obliged to have to

be able to install the application and it was described which conditions were imposed for the usage of

our application.

Furthermore the Application Lifecycle in 2.1.5 which deals with the possibilities to shut down an

15

Chapter 2 Fundamentals

application or keep it running as well as the Licensing in 2.1.6 were discussed.

In Section 2.1.7 it was explained that the Software Development Kit is an archive that contains ba-

sic tools for developing and testing applications for Android. As it is released without an Android

platform we discussed the topic of platform versions. In this thesis KitKat is used as the platform

version as it was the latest version at the beginning of this thesis. We explained further on, that the

official Application Programming Interface does not include all functionality that is actually available

on Android devices. Therefore the decision was made to build our own platform version based on the

KitKat release from the official framework in the Nexus smartphones.

All functionality we use was available from Jelly Bean on. As explained nearly 87% of all Android

devices run at least Jelly Bean so that a great coverage is reached. In Section 2.1.8 the principle of

Rooting was shortly explained.

In Section 2.2 we looked at the topic of Opportunistic Networks. After a brief definition of the term

we look at addressing and routing in OppNets.

In Section 2.2.1 we dealt with the question how the devices in an OppNet can be addressed unmistak-

ably. For this purpose the MAC address was chosen as it is unique and in contrast to the also unique

IMEI not to be considered sensitive information.

Section 2.2.2 focused on routing in OppNets. The main difference to routing in MANETs was pointed

out which is the fact that in an OppNet a disconnect is highly usual and a route is likely to be non-

existing at the time the sender has found that route. Considering this it was made clear that routing

protocols for MANETs do not work for OppNets and that routing protocols which could be used for

OppNets should be looked at in detail. The most important ones in view of the developments in this

thesis were mentioned and described.

In this context known protocols were divided into different categories which are the context free

category, the mobility based category and the social context based category. Whereas in the context

free routing the devices do not have any information about other peers in context free and mobility

based routing such information is collected and exchanged and can be used to reach a more targeted

distribution of data.

In the next chapter we will declare demands and use the fundamentals of this chapter to design the

concept of our framework.

16

Chapter 3

Demands and Design

In this chapter we first want to point out the objective of this thesis in Section 3.1. In this context the

various fundamental requirements are mentioned and explained in detail. Thereby the basis is built for

the decisions concerning the design which are then explained in Section 3.2. In this section different

aspects are looked at in particular. These are Networking, Partition of Tasks and Responsibilities,

Runtime and Routing in our Network.

3.1 Demands

The idea behind this master thesis is to create a use case for Opportunistic Networks (OppNets)

that can be established today with available resources and that does not entirely depend on future

development. The main requirement for a working OppNet is a certain, not widespread, distribution

of peers, whereby a widespread distribution helps the network to work faster and more stable. To

achieve this distribution, as a node we chose smartphones as they are widespread and bound to a

person, staying and moving always with them and therefore are one big OppNet already. Android is a

perfect environment for the development of such a system as it is the by far most widespread operating

system for smartphones. In the year 2014 Android reached a market share of 81.5% [IDC15] and

shipped, with over one billion units, more smartphones than the next five great sellers combined.

The task was to build an Android application that uses OppNet mechanisms to transfer any kind of

data between Android devices wirelessly. The application should work without an Internet connection

and transfer the data fast and securely.

To ensure the before mentioned widespread distribution of the application there should be a high cost-

benefit-ratio for the user. There should be a wide possible spectrum of use cases for the network. The

users should be able to use the network for their own tasks like sending messages or transferring any

17

Chapter 3 Demands and Design

kind of files.

Furthermore, the user of the application should be minimally bothered in her routine using the device.

Both by running the application in the background and by giving her the possibility to temporarily

disable the application’s network connection to get access to other Wi-Fi networks. Also there should

be no necessity for user interaction when it comes to connecting devices and exchanging data.

For delivering data to devices, especially those that are not directly connected, a routing scheme

must be implemented that suits the given prerequisites and makes full use of all aspects of modern

smartphones. For that we have to evaluate routing protocols in current literature and choose either

the most promising one or combine advantages of several routing protocol to develop a new routing

scheme.

To accomplish a marketable solution not only we have to design the network application that repre-

sents the OppNet but also a use case to provide a proof of work. We realised this in the form of a

filesharing application that can be used with the network. A filesharing application covers several of

the mentioned aspects. We can present a functional routing algorithm, the exchange of files with fast

and secure transfer and that user interaction is not necessary to fulfil most of the tasks.

To provide access to the network for other applications, both self implemented and third party owned,

an Application Programming Interface (API) is necessary to connect the applications.

3.2 Design

In this section we give design proposals for the demands declared in the previous section. Different

aspects are looked at in particular. These are Networking, Partition of Tasks and Responsibilities,

Runtime and Routing in our Network.

3.2.1 Networking

The main task of the application is to connect with other devices that run the same application. To

maintain this connection we have to choose a wireless technology. There are many possibilities to

transfer data from one Android device to another but if we take a look at the implemented ad hoc

standards that Android offers we see that they do not fulfil our demands 3.1.

• Wi-Fi Direct is a standard that uses IEEE 802.11 (Wi-Fi) technology which was developed

to connect devices directly without a need for an access point. Androids Wi-Fi Peer-to-Peer

18

3.2 Design

ISO/OSI Our model Device A Device B Device C
Application Application API app API app
Application Transport network app network app network app
Transport Transport TCP TCP TCP
Transport Transport IP IP IP
Transport Transport 802.11 MAC 802.11 MAC 802.11 MAC
Transport Transport 802.11 PHY 802.11 PHY 802.11 PHY

Table 3.1: Protocol stack including the network application as part of our model’s transport layer and
an arbitrary API application for network usage

which is derived from Wi-Fi Direct has no API to accept connection requests programmatically,

therefore the user would have to accept each link manually and it would not be possible to

automate the process.

• Bluetooth is a standard to connect devices over a short range. The Bluetooth implementation

can only provide a connection if the devices have been previously paired by the device owners

and the user has to accept the pairing manually.

• Near Field Communication is a standard for small data transmission that requires an even closer

distance between the devices. Additionally, only a low bandwidth can be reached.

Another approach that is not in the field of Peer-To-Peer communication is the possibility to enable a

Wi-Fi tethering hotspot on Android devices. It serves as an access point to other devices which can

connect to the access point. The functions to programmatically enable a hotspot are not available in

the official API but are implemented in Android’s source code from Jelly Bean on 2.1.7. Advantages

are long range transmission and the use of the TCP protocol for reliability.

We will use Wi-Fi as the connection technology by creating a tethering hotspot on one device and

connecting to it from another device. For security reason the connection will be WPA-encrypted. One

major problem is that the passphrase has to be pre-shared and saved on the device. This approach

however makes the passphrase visible to all users of rooted devices 2.1.8 and the network vulnerable.

Therefore we can use the encryption to prevent spontaneous attacks only. In addition non-participants

that automatically connect to non-encrypted Wi-Fi networks are prevented from connecting to our

network. We will use the term “tethering hotspot” for the access point that an Android device can

open while the general term “access point” not necessarily refers to an Android hotspot.

19

Chapter 3 Demands and Design

3.2.2 Partition of Tasks and Responsibilities

One of the goals from Section 3.1 was to use the connection for a variety of tasks like transferring

files or using it for a chat program. Therefore the application should concentrate on transferring

plain data between devices and let other applications built on the network application to perform

higher tasks. We designed the network application to act as the network layer and offer an API to let

other applications serve as the layer that builds upon the network layer. The network application only

manages the connection and transmits the data. Like an IP packet or a TCP segment we have to offer a

similar datagram structure for our network application. Additionally the communication between the

applications for the handover of this datagram is offered by an interface that third party applications

can implement against.

Table 3.1 shows the protocol stack in which network and API application are divided into two sep-

arate layers with regard to our model. As seen for Device B the API application is unnecessary for

forwarding the data to the next device.

The principle of the partition of tasks and responsibilities is one of Android’s policies, too. That

means that there should not be any functionality in an application that can be achieved by another

application that already implements this feature. For example a browser application that downloads a

PDF document is not meant to open that file but should be able to delegate the task of opening the file

to an application that displays documents.

Following that principle we will not, for example, implement a file explorer functionality inside of our

filesharing application but instead rely on file explorer applications that give the user the possibility to

simply choose a file so that our filesharing application only has to manage the additional information

necessary to transfer this file.

3.2.3 Runtime

For the requirement that the network application should run in the background Android offers the

Service class that represents a long running process that runs without a graphical user interface (GUI)

in the background of an application. A Service can be started by an Activity with the intention to run

a task and stop itself after finishing. On the other hand a Service can run a long running task that

does not stop by itself. One or more Activities that want to use and communicate with the Service can

bind it which starts the Service if it was not running before. The Service stops when the last Activity

unbinds. We can use this Service class to run the Wi-Fi functionality that connects with other devices

and therefore sets up the Opportunistic Network. The Activity that binds the Service offers the GUI to

start and stop the Service. We show a Notification in the Notification Bar to make the user aware of

20

3.2 Design

the running Service and to have a quick entry point back to the Activity to stop the Service if wished

for.

3.2.4 Routing in our Network

Smartphones are predestined for working as nodes in OppNets since they are powerful devices that

come with all necessary hardware and software installed to use current literature routing protocols.

They feature powerful processors, high bandwidth communication possibilities and huge storage

space, they are equipped for tracking time and location, like GPS and cell tower localisation. Since

most smartphone users tend to be in social communities, usually software is installed that can be used

for gathering information for social context.

The before mentioned possibilities were the basis for the selection of routing protocols in chap-

ter 2.2.2. The routing protocols which benefit from the possibilities were chosen. They are used

in an hybrid form to enable the routing in our mobile network.

The protocols of Section 2.2.2 have been chosen because they can all be used and combined to a

protocol for our application. For the purpose of spreading messages in general we use a hybrid of spray

and wait, spray and focus and seek and focus. For the purpose of calculating delivery probabilities we

use the frequency of Meetings, locations of those Meetings and additional social context Attributes.

All with a Time-To-Live that is required to remove messages when they are expired.

The basis for the usage of this routing protocol is to keep a record of the Meetings. This does not

represent a problem for the devices as they are able to save forwarded messages and data packets and

to store information about other devices. When two devices connect they exchange an information

set. The information set contains all information that is necessary for the routing algorithms.

The History of Encounters and Transitivity of PRoPHET and the Meetings principle of HiBOp are

combined to our form of Meetings and Meeting Summaries.

Meetings A Meeting consists of the MAC address of the two connected devices and the time when,

and optionally the place where, it happened.

Meeting Summaries When at least two Meetings between two devices exist, a Meeting Summary is

created that does not contain all Meetings but a summary of those Meetings in the form of the amount

and frequency of the Meetings as well as an optional area where those Meetings happened.

21

Chapter 3 Demands and Design

The Dijsktra Algorithm is used to calculate if there is a potential path between the connected device

and each Packet receiver. The potential path is based on the Meeting Summaries and the frequency of

Meetings. The Meeting Summary can be seen as an edge in the Dijkstra graph with the two connected

devices as nodes and the frequency as edge weight.

In addition to the information when and how often Meetings take place information about the place of

the Meeting and the social context of the devices respectively their owners can be saved and used to

allow targeted distribution of Packets and to calculate probabilities. This aspect of the routing process

was realised in a simplified manner which is presented in Chapter 4. Many further possibilities to use

and evaluate these information are imaginable. This is illustrated in the Future Work in Chapter 6.2.

Additional Information

Additional information that is used for routing, according to the MV, PRoPHET and HiBOp routing

schemes are

• GPS and/or area information where the broadcast or receiver should go to, reduced to one GPS

position.

• HiBOp’s Identity Table, reduced to one field, called Attribute that the user can set herself.

For a real life scenario the calculation of the weight is calculated by the amount and frequency of

Meetings, in our small world example the weights are set to the same value which means that the

existence of a path in the Dijkstra algorithm is sufficient enough for choosing the connected device as

a next hop for the Packet.

For every combination of addressing methods (Receiver or Broadcast) and additional information

(GPS and/or Attribute) there is a suitable routing scheme combination. Table 3.2 shows the desired

action for each combination.

Saving Meetings, Visits and Attributes

When two devices connect, each device saves the details of that Meeting in its list of Meetings. The

details of the Meeting are the time, and the place as GPS coordinates. Each device then calculates a

MeetingSummary which describes the frequency of the Meetings amongst other things and saves it in

a list of Meeting Summaries. The MeetingSummary is only created if at least two Meetings between

theses devices occurred thus preventing that random Meetings have relevance for the routing. The list

22

3.2 Design

Addressing GPS Attribute Routing Scheme(s)
Receiver no no MV, PRoPHET
Receiver yes no MV, PRoPHET
Receiver no yes MV, PRoPHET and HiBOp
Receiver yes yes MV, PRoPHET and HiBOp
Broadcast no no Epidemic Routing with Hop-Counter
Broadcast yes no Spray and Focus
Broadcast no yes Spray and Focus
Broadcast yes yes Spray and Focus

Table 3.2: Routing schemes considered for routing based on the additional information

of MeetingSummaries is shared with the connected device and can be used to calculate the relevance

of the connected device for routing the Packets. The same way a list of Attributes is collected and

shared between the devices.

Only MeetingSummaries that have been created by devices connected directly are stored on the device,

by that only a two hop neighbourhood is saved on the device, but a three hop neighbourhood can be

used for calculating the delivery probability.

Listing 3.1: Connection between devices

1 onConnect(listOfMeetingSummariesFromOtherDevice, attributeFromOtherDevice)
2 calculate listOfOwnMeetingSummaries with listOfMeetings
3 send listOfOwnMeetingSummaries and own attribute to other device, invoke onHandshake method on that device
4 invoke onHandshake(listOfMeetingSummariesFromOtherDevice, attributeFromOtherDevice) on this device
5 end function
6
7 onHandshake(listOfMeetingSummariesFromOtherDevice, attributeFromOtherDevice)
8 save meeting in listOfMeetings
9 merge listOfAllMeetingSummaries with listOfMeetingSummariesFromOtherDevice

10 add attributeFromOtherDevice to own listOfAttributes
11 remove expired entries from listOfAllMeetingSummaries
12 for each packet in listOfPackets
13 calculate with listOfAllMeetingSummaries the delivery probability for connected device
14 if probability is high enough
15 send packet to connected device
16 end if
17 end for
18 end function

Based on Figure 3.1 and Table 3.3 the process of exchanging MeetingSummaries is explained step-

wise. The setting consists of five devices in a line with three devices staying at one place and two

23

Chapter 3 Demands and Design

Figure 3.1: Scenario for MeetingSummary exchange

Round
1 AB C D- E
2 A B- C DE
3 A BC -D E
4 A -B CD E
5 AB C D- E
6 A B- C DE
7 A BC -D E
8 A -B CD E
9 AB C D- E
10 A B- C DE

Table 3.3: Prerouting Connections for each round. XY represents a connection between device X and
Y, -X stands for X moving towards the left side, X- stands for X moving towards the right
side, X alone stands for a device not being connected in this round

devices moving between them. To accomplish a state, in which each device has all MeetingSum-

maries it can get, ten rounds are necessary for our example. Table 3.4 shows all creations and ex-

changes of MeetingSummaries in and between the rounds and Tables 3.5 and 3.6 show all Meetings

and MeetingSummaries after each round.

Meetings are given in the form XY where X is the device that created the Meeting and Y is the

connected device. MeetingSummaries are given in the form XYZ where X is the device that created

the MeetingSummary, Y is the device to which there was a frequent connection and Z is the device the

MeetingSummary was obtained from. If the MeetingSummary was not obtained from another device

Z is equal to X.

Prior to the first round no device has neither a Meeting nor a MeetingSummary yet. In the first round

devices A and B connect to each other thus creating a Meeting itself and not exchanging any Meet-

24

3.2 Design

Round Action
1 -

2 -

3 -

4 -

5 -

- A creates ABA

- B creates BAB

6 -

- D creates DED

- E creates EDE

7 C gets BAB

- B creates BCB

- C creates CBC

8 C gets DED

8 D gets CBC

8 D gets BAC

- C creates CDC

- D creates DCD

- D deletes BAC

9 A gets BCB

- -

10 E gets DCD

10 E gets CBD

- E deletes CBD

Table 3.4: Prerouting Actions for and after each round. A row labelled with a number represents the
actions during a round, a hyphen stands for an action after a round.

Round A (M) A (MS) B (M) B (MS) C (M) C (MS)
1 AB - BA - - -

2 AB - BA - - -

3 AB - BA,BC - CB -

4 AB - BA,BC - CB,CD -

5 AB,AB ABA BA,BC,BA BAB CB,CD -

6 AB,AB ABA BA,BC,BA BAB CB,CD -

7 AB,AB ABA BA,BC,BA,BC BAB,BCB CB,CD,CB CBC,BAB

8 AB,AB ABA BA,BC,BA,BC BAB,BCB CB,CD,CB,CD CBC,BAB,CDC,DED

9 AB,AB,AB ABA,BCB BA,BC,BA,BC,BA BAB,BCB CB,CD,CB,CD CBC,BAB,CDC,DED

10 AB,AB,AB ABA,BCB BA,BC,BA,BC,BA BAB,BCB CB,CD,CB,CD CBC,BAB,CDC,DED

Table 3.5: Prerouting Meetings (M) and MeetingSummaries (MS) after each round for devices A-C

ingSummaries because they do not have created some before. In the second, third and fourth round

devices D and E, B and C, and C and D respectively, connect to each other likewise. In round five

25

Chapter 3 Demands and Design

Round D (M) D (MS) E (M) E (MS)
1 - - - -

2 DE - ED -

3 DE - ED -

4 DE,DC - ED -

5 DE,DC - ED -

6 DE,DC,DE DED ED,ED EDE

7 DE,DC,DE DED ED,ED EDE

8 DE,DC,DE,DC DED,DCD,CBC ED,ED EDE

9 DE,DC,DE,DC DED,DCD,CBC ED,ED EDE

10 DE,DC,DE,DC,DE DED,DCD,CBC ED,ED,ED EDE,DCD

Table 3.6: Prerouting Meetings (M) and MeetingSummaries (MS) after each round for devices D-E

devices A and B meet for the second time. While there are still no MeetingSummaries to exchange,

after having connected both devices create MeetingSummaries ABA and BAB. Devices D and E do

the same in round six. In round seven devices B and C meet and C gets the MeetingSummary BAB

that documents the frequent Meetings between B and A. After the connection devices B and C as

well have connected twice and create the MeetingSummaries BCB and CBC. In round eight devices

C and D connect and exchange MeetingSummaries. C gets MeetingSummary DED from device D and

D gets MeetingSummaries CBC and BAB from device C. Of these two MeetingSummaries CBC is

kept because it involves the previously connected device C but BAB gets deleted because it exceeds

the two hop neighbourhood. In the following rounds the creation of Meetings and MeetingSummaries

as well as the exchange of MeetingSummaries happens according to the same principle. In the tenth

round there are no more MeetingSummaries that are created anew or exchanged for the first time but

only updated versions of the previous ones.

Chapter Conclusion

In this chapter the demands and idea behind this thesis as well as the design decisions have been

explained.

In Section 3.1 we focused on the fundamental demands for the developed applications. The main

task was to built a application as a use case for OppNets with today available resources. The more

widespread distributed a OppNet is the better and faster it works. To achieve this the following

demands were expressed. The application should be available for many users and a high cost-benefit-

ratio for the user should be reached. Therefore the application is to be developed for Android devices

and it should be possible to use it to securely and quickly send any kind of data without limiting

other functions of the devices. Another important task to realise a working OppNet was to develop a

26

3.2 Design

suitable routing scheme that makes full use of the possibilities modern smartphones offer. To deliver

a proof of work a filesharing application is to be developed. To allow this filesharing application and

other applications to access the network an API is necessary.

In Section 3.2 important decisions concerning the design of the application were explained. In Sec-

tion 3.2.1 we discussed different available wireless technologies regarding the networking of our ap-

plication and justified the decision to use Wi-Fi as the connection technology to build our OppNet

upon as Android devices offer the possibility to enable Wi-Fi tethering hotspots as access points to

which other devices then can connect. Also the matter of security was illustrated.

The basic concept of the partition of tasks and responsibilities was explained in Section 3.2.2. It means

that an application should not offer any functionality another applications already provides. This is

a fundamental policy of Android. Therefore it was described how this concept was adopted in our

application.

The solution to ensure that the network application runs as long as needed is described in Section 3.2.3.

A Service class offered by Android is used that represents a long running Service which can be bind

by Activities which want to use it or communicate with it.

The important topic of routing in our network was dealt with in Section 3.2.4. It is illustrated why

smartphones are predestined for working as nodes in OppNets and how the protocols of Section 2.2.2

are combined to our routing scheme. In addition we showed how the principles of PRoPHET and

HiBOp are used to develop our form of Meetings and MeetingSummaries which represent the basic

for our routing scheme. The routing scheme is explained stepwise and in detail with the help of an

example.

In the next chapter we will implement these design proposals in different applications.

27

Chapter 4

Implementation

In Chapter 3 we discussed the demands and the design of our framework. In this chapter we want to

present the implementation of the framework. Section 4.1 gives an overview of the environment in

which we implemented the applications. Section 4.2 lists the components of our framework which

are explained in detail in the Sections 4.3, 4.4 and 4.5. In Section 4.6 we clarify the installation of the

applications.

4.1 Development

For the development of the framework we used Eclipse, an open source Integrated Development

Environment (IDE) combined with the Android Development Tools (ADT) plugin provided by Google

Inc. At the start of the thesis there was the option to use Android Studio, the official IDE developed

by Google Inc., but it was only available in a beta version and the SDK was integrated which made

it problematic to compile against our own Android platform version. During the development of the

framework a stable version of Android Studio was released but we stayed with the familiar Eclipse

IDE. Eclipse and the ADT were always used in the most current version, Eclipse at last in the Luna

version 4.4.1 and the ADT at last in version 23.0.4. The SDK was used in its latest version as well,

the last version of the Android SDK tools was 24.0.2, the latest SDK Platform-tools version was 21

and the latest SDK Build-tools version was 21.1.2. We compiled, as mentioned in 2.1.7, against the

self-built KitKat platform version.

We tested the framework with test devices that are described in 5.1 and used the JUnit framework for

testing java classes that had no Graphical User Interface (GUI). We could not test the application with

the device emulator that comes with the development tools because there is no possibility to emulate

a tethering hotspot in it.

29

Chapter 4 Implementation

Android is using the Dalvik Virtual Machine which is based on the Java technology developed by Sun

Microsystems and Java is the programming language used for developing the applications. Android

includes only a subset of all Java classes and leaves processor-intensive ones out.

Android comes with a built-in logging system called LogCat that allows developers of applications

to save information about the application. LogCat allows the developer to filter logs by many criteria

and divides logs by application and Java classes. However LogCat does not come with the functions

to save logs permanently on the device which is required for testing the application properly over a

longer time. We decided to use logback and slf4j as alternative logging library whereby logback is

based on the log4j logging library and adapted to be used on Android and slf4j is a logging facade that

can be used with logback, Android’s LogCat and other logging frameworks. All logs are both saved

on the device and piped to LogCat by which no functionality is lost. logback is dual-licensed under

the EPL v1.0 [Ecl15] and the LGPL 2.1 [Fre15], sjf4j under the MIT [Ope15] license.

To integrate communication within the application we use the Otto event bus that enables event driven

correspondence between classes without referencing each other.

For providing QR-Code functionality we use the ZXing library that allows to be integrated in every

application and performs all actions necessary to scan or show QR- and barcodes.

We use the Apache Commons Lang Library for Serializable functions that help us to send data from

one device to another.

Otto, ZXing and the Apache Commons library are open source and licensed under the Apache License,

Version 2.0 [The15].

4.2 Structure

We provide the framework in the form of a Toolkit that contains all necessities to provide the network,

manage the connections between devices and make usage of the network by providing additional

information and functions that every third party application needs for basic functionality or for security

purposes.

The Toolkit consists of the following three components:

• Library: The library contains all API information and optional classes for encryption and de-

cryption.

30

4.3 Toolkit Library

(a) Icon of the opptain network application (b) Icon of the FileShipping application

Figure 4.1: Icons for the opptain network and FileShipping application

• opptain application: The opptain network application for providing and managing the Oppor-

tunistic Network.

• FileShipping application: The toolkit provides a sample filesharing application as a use case for

the opptain network application.

Figure 4.1 shows the icons of the two applications. The library has no own icon since it is not installed

as an application on the device. In the following Sections we will take a closer look at the library and

the applications.

4.3 Toolkit Library

The Toolkit Library is a collection of necessary API information for interaction with the opptain

network application and optional helping classes for encryption, decryption, hashing and information

gathering. The API defines the Packet class which is used as a header for transmission data exchanged

on the network layer and for interaction between the applications. The library also contains several

classes that have been shared across the opptain network and the FileShipping application, and were

therefore put into the library and can also be used by third party applications.

One important element of our network applications is the security aspect. We will look at security

in common and at the classes that offer encryption and decryption to secure all data from users that

are not supposed to read it and from potential attackers. While we decided to do transmission on

the network layer without end to end encryption we recommend encryption for sensible data on the

next layer, the application layer, hence for all applications that use the opptain network. To encourage

encryption we developed all necessary classes that all third party developers can easily use to encrypt

and decrypt any data with symmetric and asymmetric encryption and put them into the library. The

FileShipping application described in Section 4.5 uses these classes to encrypt transmitted files.

31

Chapter 4 Implementation

Field Name Datatype Description
_ID long used for database unique identification

packetId String hash to identify the packet
sender String MAC address of the sender

receiver String MAC address of the receiver, null if broadcast
receiverAttribute String attribute to represent the HiBOp Identiy Table

targetAreaLat String latitude for Meeting and Visits routing
targetAreaLng String longitude for Meeting and Visits routing

expiration long time to live in milliseconds since 1970
obtained String MAC address of device from which the packet was received

obtainedList list of Strings MAC address on the path from sender to current device
appId String identification of API application

message String field for ascii data
data array of bytes field for byte data

pathToFile String path to the file that contains main byte data
nameOfFile String original name of file
startOfFile long first byte of file to be transmitted
sizeOfFile long size of bytes to be transmitted
hashOfFile String SHA1 hash of file

created long point of time when Packet was created

Table 4.1: Definition of the Packet

4.3.1 Packet definition

The Packet class consists of the fields seen in Table 4.1. The fields _ID, packetID and created are

used for identification of the Packet in different scenarios, the fields sender, receiver, obtained, ob-

tainedList and appId are used for addressing the Packet, the fields receiverAttribute, targetAreaLat,

targetAreaLng, expiration, obtained and obtainedList are used for routing in the network and the

fields appId, message, data, pathToFile, nameOfFile, startOfFile, sizeOfFile and hashOfFile contain

the user data and additional data.

All outgoing Packets are sent to the network application for transport and all Packets the network

application is receiving are forwarded to the application that created it, identified by the field appId.

If the application is installed on the device it will receive information about the incoming Packet.

4.3.2 Security

There are two different forms of protection we have to discuss. First there is the protection of the

Wi-Fi network that we open by creating a mobile hotspot. Second, we need to protect the data from

32

4.3 Toolkit Library

people that are allowed to receive but not allowed to read the data.

Protection of the Wi-Fi Network

If we want to protect a Wi-Fi network we nowadays use one of the two Wi-Fi Protected Access

(WPA) protocols. In our environment, in which for example two devices want to connect to each

other while never having met before, a pre-shared key has to be used to protect the Wi-Fi network with

WPA since a global authentication server is not available in the scenario of Opportunistic Networks.

This key has to be the same for all devices and therefore it has to be saved on each device when

installing the application. Since a rooted Android device 2.1.8 can read all data this password can

not be protected from potential attackers. Nevertheless WPA protects the application and the device

from being connected to by non-participants that automatically connect to non-secured Wi-Fi access

points.

Protection of Transmitted Data

The network application itself does not offer any kind of encryption to fulfil the concept of Partition

of Tasks And Responsibility, explained in Section 3.2.2. Third party applications can decide if they

want to implement an encryption method themselves or use the toolkit library that offers two kinds of

cryptography, symmetric and asymmetric. Additionally all third party applications must react to the

random number generator problem on Android devices.

Symmetric Cryptography Within the toolkit library we offer symmetric block cipher in the form of

the Advanced Encryption Standard [oST01]. We use cipher-block chaining (CBC) mode, described in

[EMST78] and [Dwo01], because it has the optimal ratio between speed and safety, which is secured

by random and therefore unpredictable initialisation vectors, and PKCS#5 padding [Kal00]. The

secret key, with the highest possible key length of 256 bit, that is used for encrypting and decrypting

the data is hashed with the PBKDF2 function and the HMAC-SHA-1 message authentication scheme

described in [Kal00] and [KBC97].

The process of encrypting a file with the AES cryptosystem of the opptain library is as follows. First

we have to generate a salt and an initialisation vector (IV) and use the passphrase that the user entered

to created a salted hash. With the salted hash and the IV the file is encrypted with AES. The file is

sent along with salt and IV to the destination. At the destination salt and the newly entered passphrase

are used again to create the same salted hash as on the sender’s side to decrypt the file with the salted

hash and the IV.

33

Chapter 4 Implementation

Asymmetric Cryptography Further we offer the RSA cryptosystem [JK03] for asymmetric cryp-

tography. We use the electronic codebook (ECB) mode, since it is the only one that Android is

offering, and PKCS#1 padding [JK03]. While the ECB mode is insecure when encrypting blocks

with repeating byte sequences we can safely use it since our RSA cryptosystem only encrypts and

decrypts randomly generated keys.

The process of encrypting a file with RSA is more complicated but serves another purpose. While with

symmetric cryptography we do not have to exchange a secret before the process of file transmission,

with asymmetric encryption we have to create pre-shared keys to be able to encrypt the data on the

senders side and to decrypt the data at the destination. The public and private keys should be stored

securely on the device. Instead of using a passphrase to encrypt the data, a random secret session

key is generated and AES is used to encrypt the data. Then the public key of the receiver is used to

encrypt the session key and the encrypted session key and the IV that was used for AES are sent to

the destination. There the encrypted session key can be decrypted with the private key of the receiver

and with session key and IV the data can be decrypted, too.

Random Number Generator After the compromise of a bitcoin transaction [Goo15b] the Android

developer blog printed a quick fix for the random number generator that every application that gen-

erates random numbers should run at start. The quick fix is built into the toolkit applications and is

available in the toolkit library for other applications. It is not known if Android fixed the problem in

the system itself whereby making the quick fix obsolete.

Protection of Local Data

Local data is protected by Android. All data that belongs to an application can only be read and written

by the application itself as long as no explicit permissions for other applications are set. As mentioned

before the rooting of an Android device can give other applications nevertheless the possibility to read

and write data that was secured without rooting.

4.4 opptain Network Application

The opptain network application is the core of the framework. It manages the network connections

and represents the layer directly on top of the transport layer. All management functions are executed

by a Service that can be started and stopped by the user in the main Activity. The Activity binds to

the Service by sending an Intent to the system that starts the Service and connects it with the Activity.

34

4.4 opptain Network Application

A Notification appears in the notification bar that is required to remind the user of a Service running

in the background. In the notification bar a click on the Notification opens the main Activity of the

application for the user to stop the Service if wished.

The Service is a complex system of components that are used to initialise and manage connections,

both for inter-device and inter-application connections, for filehandling and several other aspects that

are listed in the following sections.

4.4.1 Wi-Fi Connection Manager

The WifiConnectionManager is a wrapper class that controls all connectivity over Wi-Fi. It can open

tethering hotspots if the function is available on the device, scan for and connect to Wi-Fi access

points and request Wi-Fi state information. It holds a WifiManager object that holds all functions for

connectivity and a WifiStateHelper object that holds all Wi-Fi state functionality. The WifiStateHelper

for example has methods for reading and evaluating the arp table because the WifiManager has limited

informative content regarding Wi-Fi connection information.

Creating a Tethering Hotspot With our application two devices can connect if one device opens a

Wi-Fi tethering hotspot and another device connects to this hotspot. Creating a tethering hotspot on an

Android device is only intended for the operating system and the functions to start and stop the hotspot

are hidden from the official API. As mentioned in 2.1.7 we use our own platform version to compile

the application and on the device all functions are now available. Listing 4.1 shows how a hotspot

is started. The tethering hotspot is created by specifying a WifiConfiguration and to start the hotspot

with the now available function setWifiApEnabled with the configuration object and the boolean value

enabled set to true. The function returns a boolean value that concludes the operations success. A

failing value is an indication of lack of tethering functionality on the device. The WifiConfiguration

needs to be filled with the SSID of the hotspot to create, and with a passphrase to secure the WPA-

encrypted connection. We use Open System authentication that is required for WPA. The operating

system requires the Wi-Fi functions to be disabled before a hotspot can be started. The SSID is

a concatenation of the SSID-prefix “P2PHOTSPOT-” and the MAC address of the device for the

identification of the hotspot. The passphrase is used just for obscurity reasons as explained in 3.2.

The function setWifiApEnabled can close the hotspot too by setting the enabled parameter to false.

35

Chapter 4 Implementation

Listing 4.1: Methods for opening and closing a tethering hotspot

private WifiManager mWifiManager;

private static final String PASSWORD_OBSCURITY = "jfk4qfjc4m94t8c4t8";

public boolean openHotspot(String hotspotName) {

mWifiManager.setWifiEnabled(false); // Wi-Fi has to be disabled for opening hotspot

WifiConfiguration wifiConfiguration = new WifiConfiguration();

wifiConfiguration.SSID = hotspotName;

wifiConfiguration.preSharedKey = PASSWORD_OBSCURITY;

wifiConfiguration.allowedAuthAlgorithms.set(WifiConfiguration.AuthAlgorithm.OPEN);

wifiConfiguration.allowedKeyManagement.set(WifiConfiguration.KeyMgmt.WPA_PSK);

boolean enabled = true;

return mWifiManager.setWifiApEnabled(wifiConfiguration, enabled);

}

public boolean closeHotspot() {

boolean enabled = false;

WifiConfiguration wifiConfiguration = null;

return mWifiManager.setWifiApEnabled(wifiConfiguration, enabled);

}

Connection to Access Points The WifiConnectionManager can scan for Wi-Fi networks in range

and return results about all networks with all necessary information for connecting to it. After the ap-

plication scanned for access points it sorts out all tethering hotspots and chooses up to one hotspot for

connecting according to 4.4.5. Listing 4.2 shows how the connection to the hotspot is established. The

SSID and BSSID are according to the scanned information, all protection settings and the passphrase

are identical to the ones on the hotspot creating side of the connection. In contrast to the function that

enables a tethering hotspot the connect function returns directly and provides a result in form of an

action listener callback.

36

4.4 opptain Network Application

Listing 4.2: Methods for connecting to and disconnecting from an access point

private WifiManager mWifiManager;

private static final String PASSWORD_OBSCURITY = "jfk4qfjc4m94t8c4t8";

public void connectToAccessPoint(final String accessPointName, final String bssid) {

WifiConfiguration wifiConfiguration = new WifiConfiguration();

wifiConfiguration.SSID = "\"" + accessPointName + "\""; // quotation marks are

necessary

wifiConfiguration.BSSID = bssid;

wifiConfiguration.preSharedKey = "\"" + PASSWORD_OBSCURITY + "\"";

wifiConfiguration.allowedAuthAlgorithms.set(WifiConfiguration.AuthAlgorithm.OPEN);

wifiConfiguration.allowedKeyManagement.set(WifiConfiguration.KeyMgmt.WPA_PSK);

ActionListener actionListener = ...; // action listener for results

mWifiManager.connect(wifiConfiguration, actionListener);

}

public void disconnectFromAccessPoint() {

mWifiManager.disconnect();

}

4.4.2 API

An API is provided for other applications to use the network provided by the network application.

Like an IP packet or a TCP segment we offer a datagram structure for our network application that

allows third party applications to have an interface for the data they want to send and receive. The

structure of this Packet is given by the Toolkit Library described in Section 4.3 and the Packet can be

exchanged between the applications through inter-process communication by using Intents.

A Packet can hold a reference to a file on the file system for transmission to another device. Therefore

all byte data that has to be exchanged can be stored in a file to forward the data from the API applica-

tion to the network application. A FileManager is used for opening streams to the files, for renaming

and for creating files when receiving them over other devices.

4.4.3 Exchange of Data

When two devices connect to each other there is one device that acts as Server and one that acts as

Client. The Server device opens a Socket and waits for incoming connections. The Client connects

to this Socket. The only difference between Server and Client after they are connected is that the

Client starts transmitting a Handshake packet to which the Server replies with its own Handshake

packet. After the receiving of the Handshake packet both devices start transmitting all packets that

37

Chapter 4 Implementation

Figure 4.2: Exchange of data between smartphones according to the given protocol

the NetworkRoutingManager calculated for transmission.

The Dispatcher thread queues all objects that are ready for transmission and all objects that have

been received by the opposite. While the queue is processed the Dispatcher thread sends appropriate

objects like ACK or FIN packets to the other device. If both devices have received the FIN packet

they close the Sockets and the device that is Client disconnects.

Figure 4.2 illustrates the sequence of exchanged packets between two devices. The sequence is defined

by a protocol. For clearness it only shows the traffic initiated by the PacketsSyn of the Client. The

Client has two Packets that are suitable for the Server. The Client sends a PacketSyn with the IDs of

the two Packets. The Server receives it, looks up in its Database which of these Packets are needed

and sends back a PacketsAck that now only contains the ID of the one Packet that is needed. The

Client receives the PacketsAck and sends the Packet to the Server. Because the Packet contains a file a

FileBegin and the bytes of the file are sent back to back to the Server. Thereafter a PacketEnd is sent

to signal the end of the Packet. The Server processes the received Packet in an appropriate way and

sends a PacketAck back to the Client. After the Client sent its last Packet a PacketsFin is sent to signal

that the Client has sent all data. The Server receives the PacketsFin and checks if all its data is sent,

too. If all data is processed the connection is terminated. In the given example the PacketSyn contains

two files that are considered for transmission however the Server only has need for one of those and

the PacketAck gives the Client the information which Packet to send.

Only if a device has received all PacketAcks, which concludes that the opposite has received all Pack-

ets, and the PacketsFin, and itself has sent back all PacketAcks to the opposite, the connection can be

terminated.

38

4.4 opptain Network Application

Figure 4.3: Exchange of data between applications

Incoming and outgoing data is handled by several work threads that are created when devices con-

nect to each other. When a device is in the Server stage or when a device in Client stage connects to

a hotspot a DispatcherThread is started along with an IncomingWorkThread and an OutgoingWork-

Thread for incoming and outgoing data respectively.

Figure 4.3 shows how the flow of data is processed in the network application. Both Server and Client

get the received data inside the IncomingWorkThread and process them through the DispatcherThread.

According to the received Protocol part either a answer is sent to the connected device or the main

thread that is labelled as “Server” or “Client” is notified of the incoming protocol packet. The ap-

propriate answer is calculated with the help of the RoutingManager and the Database and sent to the

OutogingWorkThread for transmission to the other device. At the same time several Client devices

can be connected to a Server device.

4.4.4 Stage System

The Android operating system does not offer functionality for peer to peer connections. Therefore the

network application uses a sequence of stages to offer a possibility to let user devices connect to each

other. The devices are either in a hotspot (or Server) mode or a peer (or Client) mode. The application

resides always in one of the following three stages.

Init stage In Init stage the network application scans in its immediate vicinity for available hotspots.

Then the Client-Server-Decision-Mechanism is used to determine if the Client stage or the Server

stage is the next one.

Client stage In Client stage the network application connects to the hotspot that was found in Init

stage. After connecting there is exchange of data with the other device according to Section 4.4.3.

39

Chapter 4 Implementation

After the connection was successful or an error occurred while transmitting the connection is closed

and the application goes back to the Init stage.

Server stage In Server stage a hotspot is created by the network application to which other devices

can connect. After there is an incoming connection there is exchange of data with connected devices.

The hotspot is open for a span of time defined in the settings by the user. If there are other devices

still connected the Server will stay open and the countdown to the next decision is renewed, otherwise

the Server stage ends and the Init stage is started again.

4.4.5 Client-Server-Decision-Mechanism

To prevent a device from connecting to a device that was already connected before and to decide if

a device should act as Client or Server we developed the following mechanism. When two devices

connect they save the MAC address of the opposite along with the time of connection and mark the

connection as not yet successful. When the exchange of data was successful the devices mark the

connection like that, otherwise the connection will stay unsuccessful.

When a device is scanning its surroundings there are two possible scenarios that affect this mechanism.

First there is the possibility that no device in Server mode is in reach. The scanning device will change

into Server mode and act as a hotspot for other devices. Second, there could be one or more Server

mode devices in reach that the scanning device recognises. In this case the packets to be delivered

and the last connection with every peer is taken into consideration. If at least one of the peers is the

receiver for one or more packets the one with the most waiting packets is chosen as next Server to

connect to. If there are no peers that will get delivered directly by address but at least one of the last

connections was unsuccessful the one that was connected most recently is chosen as next Server to

connect to. If there are no unsuccessful last connections but at least one peer without any connection

the one that has the best signal strength is chosen as next Server to connect to. If all peers have been

connected before and successfully at last, the one that was connected least recently is considered as

next Server but only if the last connection is elapsed more than a certain threshold that the user can

choose in the settings.

Listing 4.3 shows pseudocode of the Client-Server-Decision-Mechanism that summarises the men-

tioned process.

40

4.4 opptain Network Application

Listing 4.3: Client-Server-Decision-Mechanism

1 function decide_client_server_mechanism()
2 get potential_server_list by scanning
3 create empty waiting_packets_list, unsuccessful_server_list, never_connected_server_list, server_list
4
5 if potential_server_list is empty then
6 start_server()
7 else
8 for peer in potential_server_list do
9 if peer is direct receiver of one or more packets then

10 add peer to waiting_packets_list
11 else if peer was unsuccessful last time then
12 add peer to unsuccessful_server_list
13 else if peer was never connected before then
14 add peer to never_connected_server_list
15 else
16 add peer to server_list
17 end if
18 end for
19
20 if waiting_packets_list is not empty then
21 sort waiting_packets_list by increasing amount of packets
22 start_client() with last of waiting_packets_list
23 else if unsuccessful_server_list is not empty then
24 sort unsuccessful_server_list by increasing time
25 start_client() with last of unsuccessful_server_list
26 else if never_connected_server_list is not empty then
27 sort never_connected_server_list by increasing signal strength
28 start_client() with last of never_connected_server_list
29 else
30 sort server_list by increasing time
31 get potential_server by choosing first of server_list
32
33 if potential_server was not connected recently then
34 start_client() with potential_server
35 else
36 start_server()
37 end if
38 end if
39 end if
40 end function

41

Chapter 4 Implementation

4.4.6 Database

All Android devices have access to a built-in SQLite Database that is used by the operating system

and can be used by any application. We use the Database to save all gathered information about

connections and all packets that are to be sent over the network. The following Database tables are

used.

Meeting Times In the MeetingTimes table we save which devices, identified by MAC address, we

exchanged data with. The data is at least one week old.

Meeting Places In the MeetingPlaces database we save GPS information for the meetings that are

saved in the MeetingTimes table if we could fetch a GPS location.

Attributes In the Attributes table we save the Attributes of the devices we connected with.

Meeting Summaries In the MeetingSummaries table we save the MeetingSummaries that are cre-

ated of the times, places and the Attributes of all saved connections.

Packet In the Packet table we save the Packets that arrived from other applications for transmitting

over the opptain network.

Packet Delivery In the PacketDelivery table we save the devices that received certain Packets.

Connections In the Connections table we save the SSIDs of the devices we connected to and if the

connection was successful. The table is used by the Client-Server-Decision-Mechanism described in

Section 4.4.5 for priority calculations.

4.4.7 Routing Manager

The NetworkRoutingManager consists of a connection to the Database, a Dijkstra module for calcu-

lating paths between sender and receiver of a Packet and the rules for routing in the network. Each

time the device connects to another one, all information about the connection are processed through

42

4.4 opptain Network Application

the NetworkRoutingManager. All new MeetingSummaries, connection times, success information

and Packet delivery information are inserted into the Database. When there is a new connection to a

device the NetworkRoutingManager retrieves all Packets from the Database and calculates those that

are relevant for the connected device. The calculation is done with the help of the rules that define

the opptain routing scheme and the Dijkstra module that is used for managing the local view of the

network.

The following rules for routing in the opptain network are defined, a Packet is either dropped, which

means, that it will not be considered for transmitting, or it will be considered. The list is divided into

negative and positive rules that are processed in the order shown below. Each Packet has to fulfil each

negative rule to be processed by the positive ones and if they are fulfilled by one positive rule, they

are considered for transmission. The final list of Packets will be transmitted, as a list of PacketIDs,

to the connected device and the connected device will answer with the PacketID list of Packets that it

has not already received before and hence should be transmitted.

The negative rules:

• If the Packet was already delivered to the connected device, the Packet is dropped.

• If the Packet was already delivered often enough due to the Spray and Wait routing scheme, the

Packet is dropped.

• If the Packet was already delivered often enough due to the Spray and Focus routing scheme,

the Packet is dropped.

• The Packet may have been routed through the connected device already, if so, the Packet is

dropped.

• Each Packet has an expiration time, a Time-To-Live. If the Packet is expired, the Packet is

dropped.

The positive rules:

• If the Packet is to be broadcast, it is considered.

• If the connected device is the receiver of the Packet, it is considered.

• If the connected device is part of a path to the receiver, according to the Dijkstra algorithm, it is

considered.

43

Chapter 4 Implementation

4.4.8 Timer

A Timer is used to give a workaround due to the fact that many callbacks are needed to determine in

which state, with regard to Wi-Fi connectivity, the Android operating system currently is. Because

the callbacks do not arrive at the moment the state is changed or are not given at all the Timer has to

be set at the beginning of several actions like the start of Init-, Server- or Client stage or connection

starts to periodically check for changes.

4.4.9 Notification System

To give the user the possibility to disable the networks application temporarily a sticky notification

stays in the notification bar. The user can navigate back to the application by pressing the notification

to stop the application.

4.4.10 Settings

A SettingsActivity is used to give the user the possibility to change some variables that are used for

connections and routing. In the development phase of the application it is not clear which timer

lengths and connection timeouts are best for routing. Therefore the possibility to change these values

was included into the settings. The user can set the Attribute that is used for the HiBOp routing scheme

in the Settings. Also there is a value to be set how many logging information should be stored on the

device.

4.4.11 Bus-based Property Change Listener

For refreshing classes, in which information has changed, through the application the Otto library is

used to provide a system that goes without connecting all classes with each other just for maintaining

information exchange. Although the Model-View-Controller pattern is applied, the Bus system is

used for listening and reacting to specific changes in the application.

44

4.5 FileShipping Application

Figure 4.4: The interaction of the FileShipping application with other applications

4.5 FileShipping Application

We present a usecase in the form of a filesharing application called FileShipping that is able to send

files to other devices and offers a distribution function with which other devices can request files. The

course of the FileShipping application in interaction with other applications on the device is illustrated

in Figure 4.4.

The FileShipping application contains five views in the form of Activities. The first Activity is the

PacketsActivity that is also the launcher Activity which means that the user can start this Activity by

pressing the FileShipping application icon, the second is the OutgoingPacketActivity that is created

when the application receives a “SEND” Intent, the third one is the SettingsActivity that can be started

by pressing the Settings item in the options menu of the PacketsActivity. There are also two Activities

provided by the ZXing Library to show and scan QR codes. Additionaly there is a IncomingPacket-

Service that is used as a entry point for Intents for incoming Packets, and for creating Notifications.

45

Chapter 4 Implementation

4.5.1 PacketActivity

The PacketActivity contains an ActionBar and a ContentView, the ActionBar shows the name of ap-

plication and Activity and shows the OptionsMenu, the ContentView shows the history of received

Packets. The OptionsMenu contains menu items for the following tasks:

• opening the Settings menu

• scanning QR codes and therefore saving MAC addresses and public keys

• showing an Activity to show the QR code with the own public key for others to scan

• clearing the history

If a new Packet is received by the application it will be shown in the history and a click on the item

fires a “SEND” Intent. The user can choose an application to open the received file. A long click on

the item opens a context menu that enables the user to remove the single item from the history. The

PacketActivity is the main Activity that is launched when the user clicks on the application icon or a

Notification that is created by the application.

4.5.2 SettingsActivity

The SettingsActivity is a wrapped PreferencesFragment which is a ListView that contains all prefer-

ences. The preferences of the application can be changed and are saved in the user directory of the

application so that only the application has access to them. In the development phase of the application

there are no active settings to change. As future work settings for file path choosing and preferences

for chunking of files are imaginable.

4.5.3 QRCodeShowActivity

The ZXing Library contains functionality to create, show and scan QR- and barcodes. We create a

QR code that represents MAC address and public key and show it to the user with a modified Activity

of the library.

46

4.5 FileShipping Application

(a) Share icon (b) Send icon

Figure 4.5: Share and Send icon

4.5.4 QRCodeScanActivity

We use the scan functionality of the ZXing Library to scan QR codes of other devices and save their

MAC addresses and public keys on the device. We modified the Activity of the ZXing Library to work

in portrait mode and to scan only QR codes.

4.5.5 OutgoingPacketActivity

Any Android application that implements the “SHARE” functionality represented by the icon shown

in Figure 4.5a can be used to send a “SEND” Intent to other activities. The user chooses a file, that

may be anything like picture or text document and presses the “SHARE” button. Now the user can

choose between applications that can receive the “SEND” Intent. The FileShipping application is one

those. The OutgoingPacketActivity is the Activity that receives the Intent and its view can be used

to edit the information that is necessary to send the file to other devices. The user can choose via

checkbox if the file should be sent as a broadcast or to a specific receiver. The receiver is identified

via MAC address. The user can choose the receiver MAC through a contact where the MAC address

is saved or type it in. The next option to choose is the encryption method if wanted. Via checkbox

the user can choose if he wants to have encryption at all. After enabling encryption the choices of

symmetric and asymmetric encryption is given. Symmetric encryption can always be chosen and has

to be concluded by entering a password. Asymmetric encryption is only available if a specific receiver

is chosen and a public key for this user is saved. Also additional information can be used to send the

file in the right direction by typing in target area coordinates or an attribute that represents the HiBOp

Identity Table. After the editing the user presses the “SEND” button shown in Figure 4.5b to send the

information as a PacketIntent to the system. The opptain application should be the only application to

receive this special kind of Intent whereas there should be no dialogue to chose the destination of the

Intent this time. The Activity disappears with the sending of the Intent.

The process of Alice sending a photo to her friend Bob over opptain could be like this for Alice and

Bob respectively:

47

Chapter 4 Implementation

Alice opens a gallery application and chooses a picture she would like to send to Bob. She presses

the “SHARE” button and chooses our FileShipping application. The OutgoingPacketActivity of the

FileShipping application opens and Alice chooses Bob as the receiver. Because she has saved Bob’s

public key beforehand she now can use public key encryption. Alice knows that Bob works at the

University of Duesseldorf, so she puts “HHU”, an acronym, in the attribute field. Now she clicks

on the “SEND” button and the editing Activity disappears. As long as opptain is running in the

background Alice has to do nothing more. The opptain application receives the Intent and starts a

background service to add the Packet to the list of Packets. opptain does not open any window for

this, Alice should see the Activity that she used for SHARING the file in front of her.

Some time later on Bobs device, the opptain application will receive the Packet that is supposed

to be delivered to Bob. After receiving the Packet, opptain will create an Intent to notify Bob’s

FileShipping application that a new Packet has arrived. Bob’s FileShipping application receives the

Intent that contains all necessary information to decrypt the file and starts a background service to

decrypt. A Notification appears in the notification bar. Bob clicks on the Notification or simply starts

the application which opens the PacketActivity that shows the received file on top of the history. Bob

can now click on the entry to choose a application to present the photo.

For Alice and Bob not visible, also Charlotte, David and Eve get in contact with the Packet. The

devices of Alice and Charlotte connect and while there are no meetings with Bob in Charlotte’s Meet-

ingSummaries there are entries about David and Eve that have the same attribute, “HHU”. The Packet

is transmitted from Alice’s device to Charlotte’s. Charlotte’s device is later connecting with David’s

and Eve’s. Since the last time Charlotte has connected with them there were several contacts with

Bob, so the MeetingSummaries of David and Eve forecast high delivery probability. The Packet is

sent to David’s and Eve’s device. While David will later connect with Bob and transmit the Packet,

Eve wants to have a look at the photo. However, because the photo is encrypted, she can not.

4.6 Installation

The API for managing tethering hotspots is available on Android devices from Jelly Bean on as

mentioned in Section 3.2.1. We therefore developed our applications to work only on devices that

Android version 4.1 or higher by setting the requirement attribute to this version.

For installation the applications are published and delivered as a compressed installation file called

opptain.apk and fileshipping.apk. Before publishing the applications have to be signed either in debug

mode while developing the application or in release mode when the application is to be distributed.

Since the application is not to be distributed in an application store or otherwise we stay in the devel-

48

4.6 Installation

opment phase and let the application be signed by the IDE we use for developing and debugging. The

application can be installed by opening the Eclipse IDE, importing the application folders and run the

application on an emulator or on a connected Android device. Running the application on an emulator

works but there will be no network functionality available. The Android device has to be configured

for debugging applications, the configuration process is different for each device and can be found in

the respective manual of the device.

As mentioned before Android is used by many manufacturers. We do not know if there are any

manufacturers that changed the hidden API of the Android platform and are thus not able to use the

hotspot functionality as expected by us.

Chapter Conclusion

In this chapter we documented the implementation of our applications. We started with an overview

of the development environment, in which we worked, in Section 4.1. We divided the tasks and

responsibilities of our framework into a library and two applications as seen as in Section 4.2.

The library is explained in Section 4.3 and offers the Packet definition that is part of the API that

connects the applications and is used for the transmission between devices, too. Also there are classes

for encryption and decryption in the library for third party applications to use.

The Opportunistic Network is provided by the opptain network application. The implementation

details were listed in Section 4.4. The network application manages the network and handles all

connections between devices and administrates the routing.

The FileShipping application was developed as a proof of work for the network application. The

details of this application were given in Section 4.5. The application enables filesharing for the user

over the network provided by the network application. Features of the application are transmission of

files, encrypted or not, and the distribution of files.

The Section 4.6 explains how the applications can be installed on test devices.

In the next chapter we will evaluate these applications with regard to several aspects.

49

Chapter 5

Evaluation

In the following chapter we show the results of our tests and evaluations of the developed applications.

We tested different aspects of the opptain network application and the FileShipping application. We

tested the ability to open and connect to hotspots as well as the behaviour while the applications are

running with regard to battery life and memory usage. Another interesting issue to evaluate was the

transmission range in which devices are able to connect and transmit data. Tests inside and outside

were conducted. In Section 5.4 we tested if there is a traceable correlation between the behaviour

of the opptain network application and different preconditions and settings. Further aspects tested

are the simultaneous use of the opptain network application with other functions of a smartphone,

the transmission speed and the encryption and decryption speed. In the last section the results of

testing our routing scheme are given. The creation of Meetings and MeetingSummaries as well as the

exchange of MeetingSummaries were tested. Also the routing of Packets with and without Attributes

which can be used to help the routing was evaluated.

We used the Android devices listed in Table 5.1 for testing the opptain network application and the

FileShipping application.

5.1 Connectivity

First we tested the opptain network application on all test devices to determine if the main functionality

i.e. the connectivity between devices can be established at all. The test devices include smartphones

and tablets with different Android versions in range from 4.3 to the newest 5.0.1 version, we tested

tablets with and without a GSM/UMTS/LTE module. Table 5.2 shows the test devices with additional

information regarding kernel, baseband version and build number.

The graphical user interface of the Android operating system on tablets without a GSM/UMTS or

51

Chapter 5 Evaluation

Alias Name Model Manufacturer Type Version

N08
7B, N1F

AE Galaxy Nexus GT-I9250 Samsung Smartphone 4.3

O66
3D, O05

F5 One A0001 OnePlus Smartphone 4.4.4

P1A
4E Google Nexus 4 LG E960 LG Smartphone 5.0.1

Q11
6E Google Nexus 7 ASUS-1A019A Asus Tablet 4.4.4

R08
CC Google Nexus 9 OP82100 HTC Tablet 5.0.1

S17
12, S60

75 Google Nexus 9 OP82200 HTC Tablet 5.0.1

Table 5.1: All Android devices for testing

LTE module does not allow to open a tethering hotspot because in the philosophy of Android there

is no need for a connection of devices over Wi-Fi if there is no possibility to forward mobile internet

connection. However the API of Android allows to open the hotspot programmatically. The connec-

tion functionality should be given on all devices regardless of the presence of GSM/UTMS or LTE

modules and therefore on all our test devices.

The test was successful for all smartphones and the Nexus 7 tablet that runs Android 4.4.4, both for

opening a tethering hotspot and connecting to one. However the analysis of the debugging logs showed

significant differences in the internal process of opening tethering hotspots and scanning for access

points on different devices. This takes its origin from different Android versions and manufacturers,

and results in different delays when opening a hotspot or connecting to an access point. On the Nexus

9 tablets there were mixed results. All tablets could successfully create a hotspot but tests over several

weeks showed inconsistent results concerning the connection to a hotspot. There was no correlation

between different operation system settings and the ability to connect to an access point and receiving

a callback regarding the connection.

Table 5.3 shows the results of the test. We give an example of a typical time span for opening a hotspot

or connecting to one and refer to Section 5.4 in which we show that even same devices have different

values for connection times.

5.2 Battery Life and Memory Usage

The battery life and memory usage of the device are important for the application’s ability to run in the

form we desire. We tested the battery life and memory usage on three different devices to determine

how long the device could run when the network service is enabled and if the memory usage stays

52

5.2 Battery Life and Memory Usage

Alias Kernel Baseband-Version Build-Number

N08
7B, N1F

AE 3.0.72-gfb3c9ac I9250XXLJ1 JWR66Y

O66
3D, O05

F5 3.4.0-cyanogenmod-gd8c0761 MPSS.DI.2.0.1.c7 KTU84Q

P1A
4E 3.4.0-perf-g16e203d M9615A-CEFWMAZM-2.0.1701.05 LRX22C

Q11
6E 3.4.0-g03485a6 (no baseband available) KTU84P

R08
CC 3.10.40-ga3846f1 (no baseband available) LRX22C

S17
12, S60

75 3.10.40-ga3846f1 0.07.30.1015_2_0047 LRX22C

Table 5.2: Testing devices with kernel, baseband and build information

Device GSM/UMTS Server Server time Client Client time

N08
7B yes yes 2.399 yes 2.542

N1F
AE yes yes 2.238 yes 2.228

O66
3D yes yes 12.113 yes 8.219

O05
F5 yes yes 2.526 yes 2.304

P1A
4E yes yes 12.390 yes 0.821

Q11
6E no yes 4.964 yes 5.097

R08
CC no yes 0.853 partial

S17
12 yes yes 0.848 partial

S60
75 yes yes 0.896 partial

Table 5.3: Results for testing connectivity functionality

constant over the time.

5.2.1 Battery Life

Since the application is mostly using Wi-Fi either when hosting a hotspot or searching for access

points nearby it is consuming much energy. The most energy consumption happens in the phase

in which the tethering hotspot is enabled. This is because hosting a hotspot means to send signals

out which takes more energy than receiving signals on the device itself. We tested the life span of the

device when the application is running without devices nearby hence always being in server mode and

having the hotspot enabled. There were no other applications running except for system applications

53

Chapter 5 Evaluation

(a) Battery and available Application Memory of device P1A
4E

(b) Battery and available Application Memory of device S17
12

Figure 5.1: Battery and available Memory

that run in the background all the time. Also there was no mobile data connection enabled and the

devices’ screen was turned off for almost the entire test. Only to check if the device was still running

without any problems the screen was turned on shortly.

Figure 5.1 shows the battery lives of the devices P1A
4E and S17

12. As expected the energy consumption

is a linear process. We can see that the older device P1A
4E that has been used for over two years daily

and has a weaker battery pack can live up to 22 hours under the before mentioned conditions. The

newer device S17
12 that has never been used before and has a stronger battery pack can live up to 47

hours. We ran the battery test several times on the N08
7B device, too, but the device always crashed

54

5.2 Battery Life and Memory Usage

after several hours due to a fatal exception in a system process as seen as in Listing 5.1. The logs

show that the class that handles tethering state changes raises the exception and is a error of the op-

erating system and not related to our application. The problem was probably fixed by the Android

developers since the newer devices, as seen in the Figure, run the application till the battery dies.

Listing 5.1: Exception

1 E/AndroidRuntime(11629): *** FATAL EXCEPTION IN SYSTEM PROCESS: NetworkStats

2 E/AndroidRuntime(11629): java.lang.RuntimeException: Error receiving broadcast Intent

[...]

3 E/AndroidRuntime(11629): at android.app.LoadedApk\$ReceiverDispatcher\$Args.run(

LoadedApk.java:773)

4 E/AndroidRuntime(11629): at android.os.Handler.handleCallback(Handler.java:730)

5 E/AndroidRuntime(11629): at android.os.Handler.dispatchMessage(Handler.java:92)

6 E/AndroidRuntime(11629): at android.os.Looper.loop(Looper.java:137)

7 E/AndroidRuntime(11629): at android.os.HandlerThread.run(HandlerThread.java:61)

Battery Life Consideration

If the device has unsuccessfully searched for hotspots and the user is not physically moving at this

time, the probability is high that other hotspots will come to the user rather than the user is going to

other devices. Therefore a moving device should concentrate more on hosting a hotspot and a resting

device should concentrate more on looking for hotspots. With consideration of those facts, motion

provided by GPS positions or accelerator data can be used to save battery.

5.2.2 Memory Usage

The network application is a powerful tool that has to keep much information in memory to work

properly. We ran the application several times through a memory usage analysing tool to look for po-

tential memory leaks. Although we did not find any leaks, we used the battery tests to simultaneously

monitor the memory as well.

Figure 5.1 also shows the memory usage of the devices P1A
4E and S17

12. On the device P1A
4E after the setup

of the application the available memory for the application decreases from 76% to 71.7% over the 22

hours. The test with device S17
12 however shows no decrease of memory usage over the 47 hours, the

available memory remains at 45% after the initial setup.

55

Chapter 5 Evaluation

5.3 Transmission Range

We tested the maximal range between devices to still be able to maintain a connection and exchange

the Handshake. We tested two different scenarios. In a building with obstacles and several other Wi-Fi

access points active nearby, and outside without obstacles between the two devices and with only a

few access points nearby.

5.3.1 Outside tests

The scenario outside without obstacles and with only a few access points can be considered as almost

ideal. In the test for this scenario we documented if a connection was successfully created. Also the

transfer time for the handshake was measured. Conducting the test great fluctuations of the maximal

range occurred depending on the models involved in the connection.

Figure 5.2 shows the connection time span for the different combinations of test devices. In the case

the connection was unsuccessful the measurement was repeated to ensure that it was not an one-time

error but that the range was the actual reason for the unsuccessful connection.

The tested Nexus devices showed a significantly higher range than the tested OnePlus devices. Testing

the connection between the two Nexus devices a maximal range of 40 meters was reached. On the

contrary the two OnePlus devices did not create a connection successfully above 10 meters. In addition

both the range of a Nexus device as a server and the range of a Nexus device as a client were higher.

This was shown in the tests between different models. In the test where a Nexus device operated

as a server a range of 15 meters was reached whereas the test with a Nexus device as a client only

succeeded up to a range of 5 meters.

The maximal range difference between different devices may take their origin in the choice of manu-

facturers that keep the transmission range low to save energy and therefore battery because the typical

use case for the tethering hotspot is still the forwarding of Internet connectivity which usually takes

only a range of a few meters.

With regard to the given test results the following statements can be made. First, a connection between

a device with a high range and one with a low range shows in total a low maximal transmission range

which results in a restricted mobility of the connected devices. Second, only when two devices with

a high range connect a certain mobility is given. Also it can be assumed that the probability of two

high range devices connecting is low. Therefore in most cases a low transmission range and mobility

is given.

56

5.3 Transmission Range

Figure 5.2: Connection duration outside without obstacles with regard to distance

5.3.2 Inside tests

The scenario inside with obstacles and with several other access points active nearby is the non-ideal

one. In this test we documented if the connection was successfully created and how long it took

to transfer a five megabyte sized file between two devices. By that we can draw conclusions about

transmission range and also transmission speed which we will discuss in Section 5.6. We chose to

take the two Nexus devices for the test since those showed the best test results regarding range and

connectivity.

Figure 5.3 shows the transfer time depending on range and amount of walls between the two test

devices. The connection was successful for the shown ranges and amounts of walls. The transmission

tests within a range of 20 meters and two walls were unsuccessful. We tested each of the cases at

least three times to see if the results are constant. In each case the transmission of the five megabyte

sized file completed when the connection was successful except for one 20 meter test in which the

connection was established once but did not conclude successfully with the transmission of the file.

57

Chapter 5 Evaluation

Figure 5.3: Transmission duration inside with obstacles with regard to distance and amount of walls

In this scenario, too, we see that a higher range between two devices results in higher connection and

transmission times. The additional obstacle aspect shows that walls between the two devices interfere

with the transmission, too. Compared to the test of the two Nexus devices outside, the test that was

conducted in a building showed that the maximal range to connect to each other decreased from 40

meters to 15 meters.

This shows that the transmission of files is successful for scenarios in which the two devices are

separated either by small distance but walls in between which represents adjacent rooms or even

adjacent houses, or by long distances and less obstacles in between.

5.4 Determinism

In the progress of implementing and testing the opptain network application there have been several

cases in which the two Samsung Nexus devices behaved differently though being the same model with

58

5.5 Simultaneous use of opptain and other functions

same Android version and settings and having the same application version installed.

We examined this occurrence under test conditions with several devices. Even after resetting these

devices with the Android own factory reset method and starting the application under the same con-

ditions there are major behavioural differences between the background processes of the device. One

of those results in different starting times for tethering hotspots. Between the moment the Init stage

starts and the launching of the tethering hotspot there are up to three Wi-Fi related actions that the

device has to execute:

1. enabling Wi-Fi because Wi-Fi has to be on to scan for access points

2. scanning for access points

3. disabling Wi-Fi because Wi-Fi has to be off to launch the tethering hotspot

We tested the span of time between the Init stage start and the tethering hotspot launch both for the

case that Wi-Fi was disabled and enabled before. In the first case all three steps mentioned before

had to be executed, in the second case only the last two. The time spans for all cases are shown in

Figure 5.4.

As we can see the time spans vary significantly both on the same device and on two devices, that

are the same model, each under the same preconditions. From the procedure explained above we can

assume that the case in which Wi-Fi was already enabled before the process of the launching would

be faster, however in the tests conducted no clear coherence of this kind occurred.

5.5 Simultaneous use of opptain and other functions

As we pointed out in Section 3.1 it is important that the user of our applications is minimally bothered

in her routine. For verification that we fulfilled this demand a short test of the application while using

other functions of the smartphone is necessary.

First we tested the behaviour of our application during phone calls. There was no interference as

a phone call could be made and received without any problems while the application connected to

hotspots in the surroundings and opened a hotspot itself. We tested different cases. In one the opptain

application was running on both the devices participating in the phone call. In the other case one de-

vice running the opptain application made a call to another device not running the opptain application.

However other devices with an active opptain application were in the surroundings. In both tests no

interference was found.

59

Chapter 5 Evaluation

Figure 5.4: Determinism test.
Each mark represents the time of span between the Init stage start and the tethering hotspot
launch on several devices both with disabled and enabled Wi-Fi

In a second test other applications were used while running the opptain application. In these test no

interference was determined, either. The opptain application was able to host hotspots and to connect

to other access points without any problems.

5.6 Transmission Speed

The transmission speed between two devices is a factor that has to be evaluated to give a hint about

how fast devices can exchange data.

Since the devices connect over Wi-Fi we do not use a loss-free connection. TCP sockets are used for

maintaining the connection which guarantees that data which is written on the socket on one device is

read on the other device as long as the connection does not break.

We transmitted a fixed sized file between two devices in several different ranges to determine the

transmission speed according to distance and obstacles. We chose the file size of five megabyte which

represents a high quality photo on a modern smartphone for the test and used the scenario from before

60

5.7 Encryption and Decryption Speed

where the devices are in a building in which other access points are nearby.

Figure 5.3 shows the time that the five megabyte file needed to be transferred from one device to

another according to the given combinations of distance and amount of walls. We see that the trans-

mission takes longer when higher distance and more walls are between the two devices. This is

because the TCP layer has to repeat the transmission of TCP segments on the lossful channel. The

transmission speed ranges from 11.75 Mbit per second at a distance of one meter to 0.7 Mbit per

second at a distance of 15 meters and two walls between the devices.

The overall transmission speed ranges from 0.7 Mbit to 11.75 Mbit per second. Only when devices

are directly next to each other the transmission reaches a speed that is suitable for the transmission of

large data in our scenarios. While Wi-Fi is considered the fastest approach to transmit data on Android

devices, there is also the fact to be considered that many Wi-Fi access points next to the devices can

interfere with the connection and therefore slow down the transmission speed.

5.7 Encryption and Decryption Speed

With the opptain library we offer symmetric and asymmetric encryption for all third party applications

that use the opptain network and use the encryption system in our FileShipping application. We tested

how fast different devices can encrypt and decrypt different sized files. We used one device of each

model we had for testing and used a 5MB and a 100MB file. Table 5.4 shows the test devices with

additional information regarding CPU and memory.

Figure 5.5 shows the time that is needed to encrypt and decrypt the files with the AES and RSA

cryptosystems. For the test all necessary functions for encrypting and decrypting are included in the

test. The exact functions that are called in the process of encrypting and decrypting are listed in

Section 4.3.2. We can see that older devices like the Galaxy Nexus need more time to encrypt and

decrypt than the newer devices like the Google Nexus 9. The Google Nexus 9 device has a better

processor and is therefore faster when encrypting files.

We also see that RSA is faster than AES though RSA uses AES to encrypt the file and then additionally

encrypts the randomly generated key. This is due to the retrieving of the secret key for encrypting and

decrypting that is only randomly generated in RSA which does not cost time and the salted hash

function that has to create a key from a passphrase for the symmetric encryption. The receiver gets

the salt and will enter the passphrase again, so the secret key has to be generated again on the receiving

side. Therefore the symmetric decryption takes longer than the asymmetric decryption as well.

The symmetric encryption of an 5MB file takes between 231.9 and 1136 milliseconds on average de-

61

Chapter 5 Evaluation

pending on the device with a standard deviation between 52.8 and 461 milliseconds. The asymmetric

encryption takes between 96.1 and 964.4 milliseconds on average with a deviation between 8.1 and

164 milliseconds.

The symmetric decryption of the encrypted 5MB file takes between 200.5 and 1074.9 on average

depending on the device, the standard deviation is between 69.3 and 477.2 milliseconds. The asym-

metric decryption takes between 96 and 976.5 milliseconds with a deviation between 13.4 and 310.5

milliseconds.

We repeated the procedure with a 100MB file to see the relation between a smaller and a larger file.

The time needed is not linear in the whole because the time for preparation of the keys, salts and IVs

takes much time. After subtracting the preparation time from the whole time, the factor 20 is given

and the encrypting and decrypting is linear to the file size.

The time for encrypting files is not as relevant for the FileShipping application as the value for decrypt-

ing because files get encrypted if the user chooses encryption when packing a file for transmission.

When the user clicks the send button the encryption runs in the background and the user can go on

using her phone. When the encryption has finished the Packet is sent to the opptain network appli-

cation without the user noticing and is ready for transmission. The decryption of asymmetric files is

done when the packet is received, once the file is decrypted the user gets the notification that a new

file is delivered. Only in the case where the file was encrypted symmetrically the user has to enter the

passphrase. This is done when the user clicks on the file the first time in the list of received packets

because he is not forced to enter the passphrase the moment the packet arrives. So this would be the

only one of the four cases where the user has actually to wait for the decryption of the packet to use

the decrypted file.

These values actually would allow us to encrypt and decrypt byte data on the fly shortly before trans-

mitting them instead of encrypting and decrypting them separately before and after the transmission

process. Especially on the sending device the additional hard drive space that is used to save both the

original and the encrypted version of a file can be reduced.

5.8 Routing

5.8.1 Exchange of Meeting Summaries

As explained in Section 3.2.4 the exchange of MeetingSummaries between devices is the condition

for target-oriented routing in our network. In the next Section we tested in the setting proposed in

62

5.8 Routing

Alias CPU Memory

N08
7B, N1F

AE 1.2 GHz dual-core ARM 1 GB

O66
3D, O05

F5 2.5 GHz quad-core Krait 3 GB

P1A
4E 1.5 GHz quad-core Krait 2 GB

Q11
6E 1.51 GHz quad-core Krait 2 GB

R08
CC, S17

12, S60
75 2.3 GHz dual-core Denver 2 GB

Table 5.4: Testing devices with CPU information

Figure 5.5: Encryption and Decryption time test

Figure 3.1 if the process operates as in theory.

63

Chapter 5 Evaluation

Figure 5.6: Prerouting Connections

We also used the devices N08
7B, N1F

AE , O66
3D and O05

F5 as and started the test with a reset version of the

opptain network application. All applications were started simultaneously and were stopped when

all MeetingSummaries were exchanged. Figure 5.6 shows in which round the devices connected and

exchanged MeetingSummary lists. In round 20 all MeetingSummaries were exchanged.

5.8.2 Routing of Packets with MeetingSummaries

We used the setting proposed in Figure 3.1 to see if the routing protocol works. We used the devices

N08
7B, N1F

AE , O66
3D, P1A

4E and Q11
6E as devices A to E. In the following scenario we only use the Meeting-

Summaries and no additional information for routing, also we look at the case that only devices with a

non-zero delivery probability are used for forwarding in the Spray phase. We tested if a device knows

when connected to another device if a packet should be transmitted or not. There are several cases to

cover.

64

5.8 Routing

We start with the cases in which A has a Packet for another device.

• When A has a Packet for B and B is connected then B gets the Packet because B is the destina-

tion.

• When A has a Packet for C and B is connected then B gets the Packet because the stored

MeetingSummary BCB covers a path to C.

• When A has a Packet for D and B is connected then B gets the Packet because the temporary

MeetingSummary CDB covers a path to D.

• When A has a Packet for E and B is connected then B does not get the Packet because there is

no MeetingSummary that indicates a path to E.

Now B has a Packet for another device. We do not show some cases that are already covered by

analogous A cases.

• When B has a Packet for A and A is connected then A gets the Packet because A is the destina-

tion.

• When B has a Packet for C, D or E and A is connected then A does not get the Packet because

there is no MeetingSummary that indicates a path to the destination.

• When B has a Packet for C, D or E and C is connected then C gets the Packet because C is the

destination or can forward the Packet.

• All Packets from the A cases that have been transmitted to B for the purpose of forwarding are

forwarded to C.

Packets that C wants to transmit to the other four devices will be routed to the destination because the

four MeetingSummaries that C holds have enough information for finding a path to the receiver.

With this list all cases that can be accomplished by the routing based on exchange of MeetingSum-

maries are covered.

Expanding the Neighbourhood

The maximal amount of MeetingSummaries on a device when all devices are arranged in a line and

each device has at most two neighbours is 4, the minimal amount is 1, both when the devices have

65

Chapter 5 Evaluation

connected at least twice. When n devices are not connected in a line but all with each other, the

amount of MeetingSummaries on each device will be

(n−1)+(n−1)(n−2) = n2 −2n+1

after they have connected often enough.

Taking this into consideration we can determine a minimal and maximal number of MeetingSum-

maries stored on the device. A MeetingSummary currently has a size of about 150 bytes and in this

scenario with 5 devices that are connected in a line we have at most a size of 600 bytes on device C

that has collected four MeetingSummaries. In a scenario in which all devices connect to each other we

can get a size of 1350 bytes on each device since there are nine MeetingSummaries saved on each de-

vice. Since today’s devices have a large storage space we can increase the multi-hop-neighbourhood

by saving and exchanging MeetingSummaries that cover more than a two-hop-neighbourhood. The

storing scheme in the form of a database could be changed to compress the MeetingSummaries more

and therefore save storage space.

Also the MeetingSummaries can be stored and exchanged based on their significance. That means that

for example MeetingSummaries that indicate the frequent and periodic meeting of two devices can be

exchanged and stored over more hops than a MeetingSummary that in fact indicates regularity but not

frequency.

5.8.3 Routing with Attributes

We tested how Attributes can help with the routing. In the setting from before it was not possible for

A to send a Packet to E because the MeetingSummaries do not indicate a path between A and E. When

B, C, D, and E share the same Attribute and A has marked the Packet with this Attribute then A routes

the Packet to B. In this example it would be sufficient if only B and E shared the same Attribute. When

the Attribute is part of the MeetingSummary and is exchanged over the same amount of hops, only D

and E had to share the same Attribute to give A the possibility to route a Packet to E.

Chapter Conclusion

In this chapter we presented the results of the different tests we conducted for the developed opptain

network application as well as for the FileShipping application.

At first we tested the general ability of our test devices to open and connect to a hotspot. For all tested

66

5.8 Routing

smartphones and the Nexus 7 tablets the tests were successful. Also the tested Nexus 9 tablets were

able to open hotspots without problems. However they showed inconsistent results with the regard to

the ability to connect to access points in the surroundings.

In a further test the battery life and memory usage during a lasting activity of the opptain network

application were tested. With regard to the battery life a expected linear descent was observed. The

tests of memory usage showed the expected results, too, as there was only a slight or no decrease in

the different tests.

In Section 5.3 the results of our transmission range tests are given. In inside and outside tests we tested

the maximal range within a connection between devices could be built and data could be transmitted.

The results showed great fluctuations for the different manufacturers of our test devices. The Nexus

devices showed significantly higher ranges.

While implementing our opptain network application great differences in the behaviour regarding the

time needed to launch a tethering hotspot occurred. Therefore we decided to examine this aspect in

tests which as well showed great fluctuations also for devices which are the same model and were

tested under the same conditions.

We successfully tested if the opptain network application can be used simultaneously with other func-

tions of a smartphones like making or receiving a phone call or using other applications.

Also tests of the speed with which data can be exchanged between devices were conducted depending

on the distances between the devices.

The important aspect of encryption and decryption speed was tested as well. We tested the speed for

different devices and different sized files.

In Section 5.8 the results of extensive tests of the routing of the opptain network application are

given. We successfully tested the creation of Meetings and MeetingSummaries and the exchange of

MeetingSummaries within a three-hop-neighbourhood. In addition we tested the routing of Packets

which functioned according to our routing protocol. The routing with attributes was tested as well as

they represent a possibility for a more targeted routing.

67

Chapter 6

Conclusion and Future Work

In this chapter we will discuss to which extend the goals of this thesis have been fulfilled and which

possibilities exist to extend this work. We summarise our achievements in Section 6.1 and look at

possible future work in Section 6.2.

6.1 Conclusion

In this thesis we developed and implemented an Android application that uses Opportunistic Networks

for transmitting data from one device to another regardless of being connected directly or over a multi-

hop time-independent neighbourhood. We designed a new routing scheme based on several other

routing protocols from current literature that have been tested mostly in a simulated environment

rather than on real conditions. The new routing scheme takes all aspects of modern smartphones into

consideration and is therefore a good choice for an application that uses opportunistic routing.

We designed the network application based on the demands for this work and fulfilled all of them.

The network application runs in the background and does not disturb the user while running. The

user still has the ability to run other applications, can make and receive phone calls, and can use the

mobile data network, hence is connected to the Internet almost all the time. The only limitation, the

absence of Wi-Fi connectivity while running the network application, can be lifted by easily pausing

the network application.

The network application can be used by other applications for Opportunistic Network connectivity.

We gave a proof of work by implementing another Android application that can be used to send and

receive files. This application is equipped with functions that fulfil several further demands on the

framework. We implemented both a symmetric and asymmetric encryption for files whereby the sym-

metric encryption makes use of a passphrase and is therefore useful for spontaneous file transmissions.

69

Chapter 6 Conclusion and Future Work

The asymmetric encryption uses public and private keys to encrypt files that are scheduled for a long

range transmission and will be transmitted to different devices on the path to the destination. Also a

principle of filesharing was developed that uses a distribution list and a file request system to retrieve

files without the owner of the file interacting with the requesting user.

We tested the network and FileShipping applications together in several environments to ensure that

they operate as desired. We came to the conclusion that the network works in all tested environments

but we can not make clear statements about connection times and transmission speed because there

are too many interference factors. We showed that Android works not deterministically in many ways

and that its network functionality has many problems and bugs which makes it difficult to work with

this features. Over the course of this thesis new problems occurred regularly regarding the behaviour

of Android.

We see that Android is a user oriented operating system that can be used to fulfil all aspects of ap-

plication development that is common nowadays but struggles with new functionality that is still

uncommon like peer to peer connectivity. We had to use a major workaround by using a Server-Client

structure to maintain a connection between two Android devices because Android does not offer func-

tionality to fully enable and maintain an ad-hoc network. The internal possibilities to query network

state information are limited and if they are given they often give false responses. We have shown that

these workarounds work in general but conclude in a solution that has to struggle with aspects like

connectivity issues and transmission speed loss.

6.2 Future Work

In this section we will show the possibilities which exist to enhance the functionalities of the appli-

cations implemented in this thesis. These possibilities comprise, among others, a longer battery life,

higher safety and a more targeted data transmission.

While working on the thesis we encountered several possibilities to improve the applications. Those

easy to realise were fulfilled while working on the implementation. Others were withheld for future

implementation and will be presented in the following.

It would be a great improvement if a connection was held open until all applications were able to react

to incoming packets. Up to now when to devices connect they exchange packets, disconnect and then

deliver the received packets to the respective API applications. In the case that, for example, a device

holds a certain file and then receives the related want-packet it is yet not able to directly send this

packet back.

70

6.2 Future Work

Another aspect of the connection between devices that could be looked at in future is that devices

should be given the ability to scan for access points several times in a row and to thereby determine

if a hotspot is moving or not. In this case the probability that the connection will last long and can be

maintained as long as needed is higher. The device should then prefer to connect to this not moving

hotspot.

In the small environment in which the applications were tested there was no need to implement an even

more thoughtful and elaborate probability calculation for meeting summaries as a packet normally

reaches its destination after only a few transmissions. Considering that, compromises regarding the

meeting summaries were made. The meeting summaries do not cover the full identity table the routing

protocol HiBOp proposes. Therefore routing probabilities cannot be judged and processed to the full

extent. The complete implementation of this would be a great improvement of the routing as it would

allow to calculate significant probabilities. A far more targeted routing is then possible.

In the same context it is to be mentioned that it was not possible to fully evaluate the location func-

tionality because Android uses mobile network connections as well as GPS to do location updates. A

further limitation in using the location functionality is that in buildings GPS information is not avail-

able. Despite these restrictions the location functionality offers an important possibility to improve

the routing. For example by collecting information about the locations an area in which connections

between devices take place frequently can be determined. In a use case this could be, for example, a

company building or a university.

Rooting the device could enable ad-hoc-networking but takes away possibility of big network since

no device could use the application then. But it is worth to take a look at.

Another aspect that could be worked on is the protection against spam which up to now is not realised.

Since devices always accept all Packets they are offered, they could fill up their device up to a point

where no storage space is available.

As always when an user oriented application is developed there are countless possibilities to alter and

extend the GUI of the application.

71

Bibliography

[BBL05] B. Burns, O. Brock, and B.N. Levine. Mv routing and capacity building in disruption

tolerant networks. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Com-

puter and Communications Societies. Proceedings IEEE, volume 1, pages 398–408 vol. 1,

March 2005.

[BCJP07] Chiara Boldrini, M. Conti, Jacopo Jacopini, and A. Passarella. Hibop: a history based

routing protocol for opportunistic networks. In World of Wireless, Mobile and Multimedia

Networks, 2007. WoWMoM 2007. IEEE International Symposium on a, pages 1–12, June

2007.

[CDMP13] Marco Conti, Franca Delmastro, Giovanni Minutiello, and Roberta Paris. Experimenting

opportunistic networks with wifi direct. In Wireless Days, pages 1–6. IEEE, 2013.

[Cre15] Creative Commons. Creative commons — attribution 2.5 generic — cc by 2.5. http://

creativecommons.org/licenses/by/2.5/, March 2015. Last checked: March

15th 2015.

[Dwo01] Morris Dworkin. Sp 800-38a. recommendation for block cipher modes of operation:

Methods and techniques. Technical report, Gaithersburg, MD, United States, 2001. Last

checked: March 15th 2015.

[Ecl15] Eclipse Foundation. Eclipse public license v1.0. http://www.eclipse.org/

legal/epl-v10.html, March 2015. Last checked: March 15th 2015.

[EMST78] W.F. Ehrsam, C.H.W. Meyer, J.L. Smith, and W.L. Tuchman. Message verification and

transmission error detection by block chaining, February 1978. Last checked: March 15th

2015.

[Fal03] Kevin Fall. A delay-tolerant network architecture for challenged internets. In Proceedings

of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for

73

http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html

Bibliography

Computer Communications, SIGCOMM ’03, pages 27–34, New York, NY, USA, 2003.

ACM.

[Fre15] Free Software Foundation, Inc. Gnu lesser general public license (lgpl), version 2.1.

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html, March

2015. Last checked: March 15th 2015.

[Goo15a] Google Inc. Activities | android developers. http://developer.android.com/

guide/components/activities.html, March 2015. Last checked: March 15th

2015.

[Goo15b] Google Inc. Android security vulnerability. https://bitcoin.org/en/alert/

2013-08-11-android, March 2015. Last checked: March 15th 2015.

[Goo15c] Google Inc. Application fundamentals | android developers. http://developer.

android.com/guide/components/fundamentals.html, March 2015. Last

checked: March 15th 2015.

[Goo15d] Google Inc. Dashboards | android developers. https://developer.android.

com/about/dashboards/, March 2015. Last checked: March 15th 2015.

[Goo15e] Google Inc. Device compatibility | android developers. http://developer.

android.com/guide/practices/compatibility.html, March 2015. Last

checked: March 15th 2015.

[Goo15f] Google Inc. Licenses | android developers. https://source.android.com/

source/licenses.html, March 2015. Last checked: March 15th 2015.

[Goo15g] Google Inc. Services | android developers. http://developer.android.com/

guide/components/services.html, March 2015. Last checked: March 15th

2015.

[Goo15h] Google Inc. System permissions | android developers. http://developer.

android.com/guide/topics/security/permissions.html, March 2015.

Last checked: March 15th 2015.

[HLT08] Chung-Ming Huang, Kun-chan Lan, and Chang-Zhou Tsai. A survey of opportunistic net-

works. In Advanced Information Networking and Applications - Workshops, 2008. AINAW

2008. 22nd International Conference on, pages 1672–1677, March 2008.

74

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
https://bitcoin.org/en/alert/2013-08-11-android
https://bitcoin.org/en/alert/2013-08-11-android
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
http://developer.android.com/guide/practices/compatibility.html
http://developer.android.com/guide/practices/compatibility.html
https://source.android.com/source/licenses.html
https://source.android.com/source/licenses.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

Bibliography

[IDC15] IDC. Android and ios squeeze the competition. http://www.idc.com/getdoc.

jsp?containerId=prUS25450615, March 2015. Last checked: March 15th 2015.

[JK03] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptog-

raphy Specifications Version 2.1. RFC 3447 (Informational), February 2003. Last checked:

March 15th 2015.

[Kal00] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898

(Informational), September 2000. Last checked: March 15th 2015.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authenti-

cation. RFC 2104 (Informational), February 1997. Last checked: March 15th 2015.

[Kra12] Tobias Krauthoff. Eine android app für alltägliche studieninformationen am beispiel der

heinrich-heine-universität düsseldorf. Master’s thesis, Heinrich-Heine-Universität Düssel-

dorf, August 2012.

[LDS04] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in intermittently

connected networks. In Petre Dini, Pascal Lorenz, and JoséNeuman de Souza, editors,

Service Assurance with Partial and Intermittent Resources, volume 3126 of Lecture Notes

in Computer Science, pages 239–254. Springer Berlin Heidelberg, 2004.

[Mel15] Mel Khamlichi. Why is android built on linux kernel? http://www.unixmen.com/

why-is-android-built-on-linux-kernel/, March 2015. Last checked:

March 15th 2015.

[MSW12] Johannes Morgenroth, Sebastian Schildt, and Lars Wolf. A bundle protocol implementa-

tion for android devices. In Proceedings of the 18th Annual International Conference on

Mobile Computing and Networking, Mobicom ’12, pages 443–446, New York, NY, USA,

2012. ACM.

[Ope15] Open Source Initiative. The mit license (mit). http://opensource.org/

licenses/MIT, March 2015. Last checked: March 15th 2015.

[oST01] US National Institute of Standards and Technology. Federal information processing

standards publication (FIPS 197). Advanced Encryption Standard (AES). http://

csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November

2001. Last checked: March 15th 2015.

75

http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://www.unixmen.com/why-is-android-built-on-linux-kernel/
http://www.unixmen.com/why-is-android-built-on-linux-kernel/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Bibliography

[SB07] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050 (Experimental),

November 2007.

[SPR05] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Spray and

wait: An efficient routing scheme for intermittently connected mobile networks. In Pro-

ceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, WDTN

’05, pages 252–259, New York, NY, USA, 2005. ACM.

[SPR08] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Efficient

routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM

Trans. Netw., 16(1):77–90, February 2008.

[The15] The Apache Software Foundation. Apache license, version 2.0. http://www.apache.

org/licenses/LICENSE-2.0, March 2015. Last checked: March 15th 2015.

[TKHL15] Sacha Trifunovic, Maciej Kurant, Karin Anna Hummel, and Franck Legendre. Wlan-

opp: Ad-hoc-less opportunistic networking on smartphones. Ad Hoc Networks, 25, Part

B(0):346 – 358, 2015. New Research Challenges in Mobile, Opportunistic and Delay-

Tolerant Networks Energy-Aware Data Centers: Architecture, Infrastructure, and Commu-

nication.

[VB+00] Amin Vahdat, David Becker, et al. Epidemic routing for partially connected ad hoc net-

works. Technical report, Technical Report CS-200006, Duke University, April 2000.

[WDAV13] I. Woungang, S.K. Dhurandher, A. Anpalagan, and A.V. Vasilakos. Routing in Oppor-

tunistic Networks. SpringerLink : Bücher. Springer, 2013.

76

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 16. März 2015 Andre Ippisch

77

Hier die Hülle

mit der CD/DVD einkleben

Diese CD enthält:

• eine pdf -Version der vorliegenden Masterarbeit

• die LATEX- und Grafik-Quelldateien der vorliegenden Masterarbeit samt aller verwendeten Skripte

• die Quelldateien der im Rahmen der Masterarbeit erstellten Android-Software

• die zur Auswertung verwendeten Logging-Dateien

• die Websites der verwendeten Internetquellen

	Titelseite
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Fundamentals
	2.1 The Android Operating System
	2.1.1 Basics
	2.1.2 Application Components
	2.1.3 Device Compatibility
	2.1.4 Permissions and Features
	2.1.5 Application Lifecycle
	2.1.6 Licensing
	2.1.7 SDK Software Development Kit
	2.1.8 Rooting

	2.2 Opportunistic Networks
	2.2.1 Addressing Nodes in Opportunistic Networks
	2.2.2 Routing in Opportunistic Networks

	3 Demands and Design
	3.1 Demands
	3.2 Design
	3.2.1 Networking
	3.2.2 Partition of Tasks and Responsibilities
	3.2.3 Runtime
	3.2.4 Routing in our Network

	4 Implementation
	4.1 Development
	4.2 Structure
	4.3 Toolkit Library
	4.3.1 Packet definition
	4.3.2 Security

	4.4 opptain Network Application
	4.4.1 Wi-Fi Connection Manager
	4.4.2 API
	4.4.3 Exchange of Data
	4.4.4 Stage System
	4.4.5 Client-Server-Decision-Mechanism
	4.4.6 Database
	4.4.7 Routing Manager
	4.4.8 Timer
	4.4.9 Notification System
	4.4.10 Settings
	4.4.11 Bus-based Property Change Listener

	4.5 FileShipping Application
	4.5.1 PacketActivity
	4.5.2 SettingsActivity
	4.5.3 QRCodeShowActivity
	4.5.4 QRCodeScanActivity
	4.5.5 OutgoingPacketActivity

	4.6 Installation

	5 Evaluation
	5.1 Connectivity
	5.2 Battery Life and Memory Usage
	5.2.1 Battery Life
	5.2.2 Memory Usage

	5.3 Transmission Range
	5.3.1 Outside tests
	5.3.2 Inside tests

	5.4 Determinism
	5.5 Simultaneous use of opptain and other functions
	5.6 Transmission Speed
	5.7 Encryption and Decryption Speed
	5.8 Routing
	5.8.1 Exchange of Meeting Summaries
	5.8.2 Routing of Packets with MeetingSummaries
	5.8.3 Routing with Attributes

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

