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Abstract

The widespread use of mobile phones introduces a lot of scenarios, where conventional network struc-
tures and routing protocols are not useful anymore. Examples are file sharing at conferences or con-
certs is one example of this. Therefore, the importance of opportunistic networks is growing as well
as the importance of Ad-Hoc networks. Opportunistic networks can be used in remote areas with no
internet access. Previous work about routing in opportunistic networks were used without knowledge
or local information of a peer. In this work, we look at multiple solutions. We decide to take a closer
look at the solutions, where a peer has to make a decision every time one wants to either forward a
message or not to send the message at all. This decision is based on a given or calculated probabil-
ity. In this work, we aim to optimize this probability. We look at three approaches. We implement,
validate and evaluate each of them. The first approach only looks for different probabilities of multi-
ple scenarios and saves the best sending probability in a routing table for each scenario. The second
approach uses simulated annealing to optimize a given mathematical structure. This mathematical
structure tries to use different local and global information to generate a good probability. The last
approach uses reinforcement learning to optimize the sending probability inside a simulation run. The
routing table is built during a simulation run. For evaluation, we look at different output metrics. We
see that the simulated annealing approach gives better results than the optimization approach. Though
the optimization approach is faster in terms of calculation. We notice that the major computational
complexity comes from generating the routing table. After we have generated the table, the both
approaches are equally fast. One may say that obtaining the better results is more important. The
reinforcement learning approach produces the best results. But it is the most computational com-
plex approach because during every simulation a new routing table is generated. In future work a
reinforcement learning based routing should be able to initialize the routing table, thus running the
algorithm will be computationally less complex than our algorithm. We compare all approaches of
this work to epidemic routing. Therefore, this work presents alternative solution for every case one
would use epidemic routing. This implies the approaches are possibly helpful for every routing algo-
rithm in opportunistic networks, like the use case of file sharing on events. This thesis is able to get

improvements in all of the three approaches compared to epidemic routing.
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Chapter 1.

Introduction

The widespread availability of mobile communication devices makes them an inseparable part of
our daily lives. The number of mobile phone users worldwide is approximately 3.3 billion, [LB93]]
and [Rud76]. This number is close to half of the world’s population. In the modern world, almost
every mobile phone is installed with communication interfaces and sensory equipment. Furthermore,
most of the modern automobiles are also equipped with Bluetooth, Wi-Fi, and numerous other com-

ponents.

Conventionally, centralized networks are used. There are base stations and connected peers. Thus,
every part of the network has its own routing protocol. For example, within a local area network
(LAN) every host can send messages directly to the destination after building a routing table. There
is no real decision to make when a host wants to send a message. The host can simply look up the

destination within the routing table.

However, there are scenarios where there are no base stations or fully connected graphs of networks.
Situations where such centralized networks are not fit include catastrophe scenarios [MP12], [SK12]],
or remote areas, like forests or oceans. There is simply no infrastructure to provide connectivity. Other

examples where other network architectures are beneficial are:

* Inthe era of self-driving cars, the importance of car-to-car communication is growing. However,
the car-to-car communication is not like the ordinary routing in local area networks. Each car
follows its own path, which means that for a car the appearance of a connection to another car

is random.

* The ’Internet of Things’ is expected to prepare elevated connectivity of systems, services, and
devices that use machine-to-machine communications. Additionally, *Internet of Things’ typ-
ically covers diversity of applications and protocols, [TT03]. For many fields of automation,

the interconnection of these devices is expected to be useful. Examples include applications
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like a smart grid or on a large scale, smart cities. Like in the previous example, we have
many devices with small or medium range wireless communication technologies that capture

the mass-market.

* Finally, an interesting case of science are mobile sensor networks, which are also called MANETS,
[Ipp15[l, or mobile Ad-Hoc networks. There are many examples, where scientists want to col-
lect information from different locations within a territory. For example, they want to detect
chemicals, motion or temperature. In conventional models these sensors are connected to a
base station. But in the case of mobile sensors and in combination with their limited commu-
nication range, sensors cannot always be connected to a base station. However, we can assume
that individual sensors periodically come into contact with each other through node mobility
and due to the limitation of the territory. MANETSs do not have to be opportunistic networks.
In general, MANETS have a static or clarified structure. Opportunistic networks are networks,
generally not structured. This means that the movement and position of peers are totally ran-
domized. Sensors usually stay at the same place or move around a place. This can, for example,

happen when a sensor is placed on a tree and the tree is shaken by the wind.

Ad-Hoc networks have one disadvantage: they use fully connected networks. In the given examples,
a completely crosslinked network is unlikely and thus conventional infrastructure can become cost-

ineffective. This is the reason for considering opportunistic networks.

Mobile communication devices are the key to the development of opportunistic mobile social networks
[Tan89]. In opportunistic communications, the key factor is human mobility. There could be delays
in message transfers when the movement has random factors, which means it is not calculable. What
are the main similarities of the mentioned examples and thus the basis for opportunistic networks? To

answer this question this thesis uses three assumptions for connectivity of the underlying network:

1. There is never a base station in range of any sender.

2. The sender does not know the best route to follow and where the receiver is currently located.

3. Through node mobility, pairs of hosts randomly and periodically come into communication

range of each other.

In opportunistic networks, a path from the source to the destination does not have to exist at the time
of sending. Networks have the characteristic that a peer can move randomly. Additionally, a peer can
have no connection some time. Thus the peer has no chance to route a message if he want to. He has
to wait until another peer comes into his connection range. This results in cases with no chance to

route a message from a peer to the destination of the message. Other peers have to wait for an existing



connection with this peer. A routing protocol has to hope’ the peers that contain the message meet

the destination at some point.

Figure shows an opportunistic network. A source S wishes to send a message to a destination
D. But from S to D no connected path exists. S transmits its message to its neighbor B, which is in
direct communication range. At a later point, as shown in fig. [[.1(b)] B comes within direct range of

D and sends the message to its destination.

(b) Some time later Node B comes in the transmission range

(a) The source node sends its message to its neighborhood .
of the receiver

Figure 1.1.: Example for an opportunistic network

As design issues for routing protocols we presuppose the uncertainty of the route. The sender has
imprecise knowledge regarding the location of the nodes throughout the system. Therefore, there
are two main issues. The first issue is to determine whether to transmit a message or not when a
host comes into the range of potential carrier. The second issue is to determine which host of the
neighborhood should send an appearing message. To solve the key issues this thesis compares three

different attempts.

Opportunistic networks seem to fit to a large topic of real world problems on the one hand, on the
other hand routing protocols have to find a routing path which exists probably only in future or never
as a full connected path. State of the art solutions are generally working in two completely different
routing ways. Regarding the first one, called epidemic routing, each peer gives everyone it meets all of
his messages from the buffer. It is clear that this process is not complex and generates large overhead.
This leads to the following question and the second method of routing protocols in opportunistic
networks: Which neighbor should a peer pass the message to in an ideal scenario without knowing
upcoming node constellation scenarios? One way to answer this question is to use historical data
to compute the probability of meeting the destination node in the future. The protocol PROPHET is
based on this idea, [LDS04].

The usage of local data and its improvement against epidemic routing in PRoPHET+ leads to the
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usage of global network information.

Since the routing using no information was able be improved by using local information, the strong

suspicion develops that further improvements can be achieved through the use of global information.

This work explores three ways to use global network information and make improvements over epi-

demic routing. Therefore algorithms are build for every approach. All of these approaches base on the

basic idea to use a sending probability. The sending probability is looked up in a routing table every

time a peer wants to send a message. A message is only being send if a random taken number is larger

than the sending probability. The following three routing designs are explored and implemented in

this work:

1. First, we evaluate and thus optimize the sending probability after every simulation run.

2. Second, we use simulated annealing and mathematical structures based on network attributes.

3. Finally, a machine learning algorithm is used to build a routing table, named reinforcement

learning.

Design criteria of this work are efficiency and effectiveness. In terms of effectiveness we discuss the

KIP of received messages by destination. For discussion of efficiency we will look at rate of forwarded

messages, hop count and dropping rate of a message.

/

[1l Introduction

[2] Background

[l Benchmarking

Ml Optimization Routing

[l Simulated Annealing Routing

[l Reinforcement Learning Routing

T

‘m Comparison and Conclusion

/

Figure 1.2.: Chapter of this thesis




This work is structured as shown in fig.[I.2] It starts by defining and explaining the problem in sec-
tion[2.1] After that, we look at the current scientific research results from related works in section 2.2}
In chapter [3| we discuss the evaluation environment. It contains all topics that are not part of later
discussion, however, they are still important for understanding the simulation and the corresponding
issues. In chapter[d] we try to find a good routing table using optimization based on global values such
as network size. This is the easiest way to find a routing table. We discuss the routing algorithm and
the evaluation of the found routing table as well. In chapter[5] we use simulated annealing to optimize
the weight of a structure that we define. The structures give suggestions whether the routing algorithm
should send a message or not. chapter[5] along with the simulated annealing algorithm itself, includes
the implementation and evaluation of the algorithm. Chapter[6]discuss the complex task of finding the
ideal routing table based on global information using reinforcement learning. The theoretical back-
ground of reinforcement learning, the routing algorithm and the evaluation of the found routing table
are also discussed in that chapter. Finally, in chapter[7jwe compare the presented approaches and give

a final recommendation on in which case which approach should be used.






Chapter 2.

Background

In this chapter, we define and explain the problem considered in this work. After this we look at related

work. Furthermore we discuss the used movement model and the used network architecture.

2.1. Problem definition

Opportunistic networks are based on assumptions. In terms of routing protocols, this means we as-
sume that the probability of the peer we gave a message to is high enough to meet the destination
of the message. In many scenarios, this assumption can be improved. Related works created routing
protocols and tested them for a few scenarios. In general, the routing protocols performed better in
one or two specific scenarios and generated worse values in other scenarios. Therefore, related works

created routing protocols that generate good values in one or a few scenarios.

There are two approaches. First, different routing protocols can be used depending on global or local
information at the time of sending. In order to implement this approach, characteristics generated

from a monitoring are used. The goal of this approach is:

Fer,xa,.ox0) # fxr) - fx) oo o)

where x1,x3,...,x5 are network attributes and n is the number of used information parts given by
the network. This means that the new routing protocol would not be a concatenation of old routing
protocols - instead, for each situation, the best case protocol to use should be found. The decision for

the best case protocol is based on individual knowledge.

According to the second approach, a protocol could use the best sending probability for different

network properties to make the decision whether or not to send a message. A message is only being
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send if a random taken number is larger than the sending probability. A routing table contains for
every possible network state a sending probability. A search problem can be defined: Find an optimal

routing table routingTable with sending probabilities such that
fittness(routingTable) = max{ fittnes(x)|x € Q}.

Here Q is the set of all routing tables and fittnes returns the achieved benchmark criteria of a simu-
lation run in mean. A benchmark criteria could be the forwarded messages to destination hosts. An
adaptive routing protocol results, which knows the best sending probability for the current network

state. The following approaches could be considered:

1. First, we evaluate the sending probability after every simulation run. We run multiple simula-
tions using different network properties and save the best probability for every network property.

This is done in chapter

2. Second, we use simulated annealing. We construct some structures, which should represent
different information about the network or peer. A weighted sum of these values gives the
sending probability for a specific moment in the network. Then search of an optimal weighting

using simulated annealing takes place. We look at this in chapter 5]

3. Finally, this thesis implements an approach, which evaluates the sending probability after every
routing step. For this purpose, a single simulation or slot of the simulation time is enough
for creating a routing table. The only disadvantage is that every simulation run needs a lot of

calculation time. This is done in chapter [6]

In all of this three solutions a search problem is defined: find the best sending probability for a network

state.

The both approaches are different. The first one considers the use of multiple routing protocols, while
the second approach uses a simple routing protocol based on a given probability to make the decision
whether or not to send a message. The goal of this approach is to find the optimum for the probability

based on the network state.

In this thesis, we focus on the second approach. We have decided to consider it because opportunistic
networks are based on randomness. It is simple to look at a probability based routing protocol and

optimize this probability. In future, both approaches could be compared.



2.2. Related Work

2.2. Related Work

There are many characteristics of routing protocols. One of the most important characteristics while
setting up a system is based on whether or not to create a replicate of a message. Routing protocols
that never replicate a message are considered forwarding-based, whereas protocols that do replicate

messages are considered replication-based.

This thesis studies the replication-based routing protocols. Epidemic routing and PROPHET+, [HLC10],
are represented in this category. They will be used to compare the adaptive routing protocol of this

work to already existing solutions.

In Epidemic routing the sender node replicates packets and forwards them to all nodes that come in
contact with it. The goals of Epidemic Routing are to minimize message latency, minimize the total
resources consumed in message delivery and to maximize the message delivery rate. In [VB'00]
it is shown that Epidemic Routing achieves eventual delivery of 100% of messages with reasonable
aggregate resource consumption in a number of interesting scenarios. On the other hand, epidemic
routing results in flooding the network with identical data. It also produces unnecessary buffer and
power overhead. The biggest disadvantage is the missing control over message dropping. In the
majority of scenarios, almost all peers have a full buffer. Thus, every sending of a message initiates a
dropping. Because epidemic routing sends a message whenever it is possible, this leads to a missing

control over message droppings.

In opportunistic networks, the chance of having a direct or indirect connection path from source node
to the destination is rare. Therefore, the PROPHET algorithm tries to detect potential intermediate
carriers. Forwarding data to couriers that rarely encounter the destination node will probably fail to
deliver the data. While PROHET only uses knowledge from historical meetings, PROPHET+ makes
use of a calculated predictability value. This value is calculated using the history of encounters be-
tween nodes, the remaining energy, the bandwidth of both peers and buffer to evaluate the packet

forwarding preference.

[LDS04] describes the original PROPHET protocol and evaluates if it’s able to deliver more mes-
sages than Epidemic Routing with a lower communication overhead. Usage of network information
improves the routing characteristics. Therefore, [HLC10|] initiates PROPHET+, a routing scheme for
opportunistic networks designed to maximize successful data delivery rate and minimize transmission
delay. It is based on local information. This means that information like buffer size, energy status
etc. is being used. [HLC10] has proved that PRoOPHET+ is able to achieve at least the performance of
PRoPHET. [Hol16] discusses and proves the logical conclusion that PROPHET+ also performs better

than Epidemic routing.



Chapter 2. Background

All of this related work used local information for routing. Local information includes such informa-
tion from the sending host as current empty buffer size or remaining energy of the host. In this work,

we consider routing protocols based on global information.

2.3. Ad-Hoc networks

Since we are considering opportunistic networks in this work, we have to take a look at the network
structure we are using for simulating. We use Ad-Hoc networks with full randomization of movement.

So, our opportunistic networks are simulated.

Ad-Hoc networks are radio networks that connect multiple hosts to a meshed network. In a meshed
network, every peer is at least connected to one other peer. Networks that build and configure them-
selves independently are special cases of Ad-Hoc networks. Ad-Hoc networks connect mobile devices
such as mobile phones and notebooks without fixed infrastructure such as wireless access points. Data
is passed from network nodes to network nodes until they have reached their receiver. Here the data
load is more distributed than in networks with a central access point. Rare resources such as energy,
computing power, and data rate call for effective network interconnection. Special routing procedures
ensure that the network constantly adapts when nodes move, join or fail. Opportunistic networks are
networks of wirelessly connected nodes. These nodes may either be mobile or fixed. Here we look
at opportunistic networks with mobile nodes. [FTH16] also looked at multi-hop device-to-device net-
works. Therefore, it presents possible solutions to interconnect different groups to create multi-hop
Ad-Hoc networks.

2.4. Random waypoint

In this work, we use the method of the random waypoint to simulate the movement of peers. The
random waypoint is a generalization of the random walk model. In the random walk model, a peer
makes a new decision after every step. This implies that the decision consists of points, which are
directly next to the actual position. The stochastic process S, of a random walk can be defined as

follows:

Sp=S0+Y Z ne Ny 2.1)

Here Z,7,,... is a sequence of stochastic independent random variables with values in {—1,0,1}2.

10
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So is set by the simulator and depends on the set seed.

The expectation E(S,) of S, is zero. In our models this means every peer has a home area. The mean
of all movements approaches zero as the number of movements increases. This follows by the finite

additive property of expectation:

An example of a random walk with two dimensions is shown in fig. 2.I] There are shown several

peers represented by different colours. The scaling represents the world map coordinates.

Random Walk Simulation
In Two Dimensions

-50
|

-100

-60 -40 -20 0 20

Figure 2.1.: Example for a movement of peers using random walk
Colors represent different hosts

The generalized model random waypoint is used in this work. It is a random model for the movement

of mobile users. Movement models give a calculation for the location, velocity, and acceleration

11
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change over time. This means that for the random movement model, the speed, destination, and
direction of each host are chosen randomly and independently of other peers. The movement of nodes
is managed by following steps:

1. For a fixed number of seconds every node begins with pausing.

2. The node then selects a random speed between 0 and some maximum speed and destination in

the simulation area.
3. The node moves to this destination.
4. Go back to step one until the simulation is finished.
For eq. (2.1 this means Z;,Z;,... is a sequence of stochastic independent random variables with

values in the set of World, defined in eq. (2.2). There first and second dimension refers to the two

dimensions of RZ.

World = {(x,y)|(x,y) € R}
and x is lower than maximum of first dimension of the worldmap (2.2)

and y lower than maximum of second dimension of the worldmap}.

In fig. we can look at an example of a moving host using a random waypoint.

P4

F3

PS5 P2

Figure 2.2.: Example for a movement of a peer using random waypoint

12
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2.5. Monitoring in peer to peer networks

We discussed the simulation environment and movement model we use. Next, we have to clarify how
we obtain the information on every host. In this work, we simulate opportunistic networks. We look
at simplified models and vary specific parameters in order to build routing tables. If we would use
real scenarios, we would not be able to build and compare routing tables for every scenario. Also, we
are able to bypass the monitoring of the necessary network attributes. In order to obtain the required
information, we use oracle-based optimization in this work. Here it means we use the analyzer in
PeerfactSim.KOM to obtain the global information on every host. In general network monitoring are
the supervision and regular control of networks, their services, and hardware. This means that we
obtain (global) knowledge on the system statistics. One differentiates between external and internal
monitoring. In the case of external monitoring, an additional monitoring device is connected to the
network, but not for internal monitoring. In this work, we consider internal monitoring because exter-
nal monitoring would be impractical in case of opportunistic networks. This would contradict to the
assumption that there is never a base station in range of any host. External monitoring would prepare
a device that can be used as a base station. A further characterization is made with the terms active
and passive. In the case of active monitoring, additional packets are sent to the network, while the
passive is only "monitored". In this work, we use passive monitoring. In future work, both methods

can be used.

2.6. Conclusion

In this chapter, we have looked at the problem definition, related work and some background informa-
tion. We introduced two approaches and decided to consider the second one in this thesis. Previous
work looked at routing protocols considering local information. The main difference between related
work and this work is the use of global information. Furthermore we looked at concepts to improve
the the understanding of this thesis. To simulate opportunistic networks we use Ad-Hoc networks and

a random movement model of the hosts.

13






Chapter 3.

Benchmarking

In the following chapter, we discuss the used simulation environment, permanent and variable param-

eters.

3.1. Benchmark environment

We use in our implementation the PeerfactSim.KOM, [peel7|], simulation framework.

On simulated networks, every node has its own state, including the current load, capacities, strategies
etc. Additionally a set of possible actions exist, which are triggered by workload or autonomously.
For incoming messages, there is a defined reaction. We look at the event-based simulator Peerfact-
Sim.KOM. In such cases, every event is scheduled for a time point and is only passed to the receiver
when the time is due. An event can initiate new events. In general, the event-based model initiates a

strict order for every event. This is more realistic, however, it is also more work to implement.

The simulator PeerfactSim.KOM was started in 2005 as an evaluation tool. The simulator was first
developed at the TU Darmstadt at the Multimedia Communications Lab (KOM) under the guidance
of Prof. Dr.-Ing. Ralf Steinmetz. It has been further extended and maintained at the University
of Paderborn (UPB) and the University of Diisseldorf (HHU). The Community Edition of the Peer-
factSim.KOM simulator has been initiated in July 2011 to support timely dissemination of scholarly
and technical work, which is created by the users of PeerfactSim.KOM. Now it is used and heavily

extended in the following P2P projects:

* DFG - research group 733 - QualP2P

» Improvement of the quality of Peer-to-Peer systems by systematically researching quality fea-

15
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PeerfactSim.KOM is a simulator for large scale distributed P2P systems aiming at the thorough eval-
uation of interdependencies in multi-layered P2P systems. It is an event-based simulator, written in

Java. Simulations up to 100 000 peers are possible. Its focus is on simulation of P2P systems in

tures and their independencies

various layers. (Compare to [peel7])

In this work, we look at the network layer. There are taken the routing decisions. The simulator works
by assigns a random point on the world map for every host. Then it defines the route for a host from
the current position to this point and computes all meetings with other hosts. The simulator creates an

event for every meeting. At the network layer following simple latency models are implemented:

In this work, we use the static latency model. Packet loss depends on the geographical positions.

The simulator has a layer structure based on the ISO/OSI model of communication networks. This

* Static latency

* Distance-based latency

structure is shown in fig. 3.1}
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3.2. Optimization parameter set

For evaluation, we take from 2 to 65 peers, which send messages over the entire time and map with a

size of a world of 65 for the x-axis and y-axis.

The buffer size is limited to 1900000 B. The message size is calculated by adding the payload size
and the ip header. In general this means a size of 600820 B bytes. Thus a peer can handle three

messages.

For creating messages, we use the following logic: every time a host gets a message and if he is the
final destination of the message, then he creates a new message. A message is not sent to the target if
the target already knows the message, which means that every time there is the amount of messages

in the network, then replications are excluded.

3.2. Optimization parameter set

In the following section, we discuss the attributes of a network simulated by PeerfactSim, which we

later use for our routing protocols.

* First, we take the number of neighbors to which we are able to send a given message.
* Second, we use the count of messages that are already forwarded for a given minute.
* We want to use the potential messages that currently exist in the network.

* We use the mean of messages that are send without forwarding to a destination.

* Finally, we use the count of messages that are already sent for a given minute.

The most complex attribute of that is the count of potential messages in the network for a given
minute. We take a closer look at it. The number is increased every time a connection is built between
two hosts. Then both hosts look at their buffer and the sum of the count of messages in the buffer from
both hosts is added to the number of potential messages. At this step, we additionally check which
message from the neighbor hosts the hosts already know. For example, host A connects to host B and
A has five messages at the buffer. But B knows already three of them. Then we add two to the number
of potential messages. Potential messages also mean which messages should be forwarded ideally
before the hosts are disconnected. Similarly, we subtract something if two hosts are disconnected,
since the potential messages of the both hosts are no longer relevant. A host counts the messages of
his buffer that have not been seen yet by the corresponding host. This count is subtracted from the

count of potential messages.
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If a host receives a message he counts the neighbors which have not seen this message yet. Then he
adds this number to the count of potential messages. Similarly, if a message is sent to a neighbor then
one is subtracted from the count. In cases when a message has to be dropped from a host then we

subtract one for every neighbor who has not seen this message yet.

3.3. Benchmark criteria

Before starting with evaluation, we discuss the considered metrics. For random movement, first,
we look at the count of forwarded messages to the destination with time in minutes on the x-axis.
Messages that are sent directly from the source node to the destination are excluded. In terms of
opportunistic networks, this metric is interesting because it can never be guaranteed that a message
always reaches its destination. After that, we look at the hop count per minute. This gives a feeling
how long a message exists. Delivering a message to its destination or dropping a message causes the
end of the process. In addition, we look at the count of dropped messages. Thus, we get a feeling
about how many messages there are at peers as well as when the peer itself does not forward the
message to its destination. But the message could still be important to the peer. In cases, when the
peer is part of a hop list of messages forwarded to its destination, a dropping is good. This is because
the message is already delivered and there are no more copies needed. Finally, we look at the count of
unfinished forwards. This is important when we examine movement models. For example, forwarding
is stopped, because the host moves too much far away. In random movement, they may still be moving

in the same direction.

3.4. Conclusion

In this chapter, we have discussed several basic topics that are required to understand this work. First,
we looked at the simulation framework PeerfactSim.KOM that we use. The ad-hoc network structure
and random movement model have already been implemented there. Therefore, we presuppose them
in the following chapters. We looked at the network attributes we use in this work. The corresponding
monitoring mechanism for obtaining these values has not been implemented in PeerfactSim.KOM
yet. Therefore, we implement an oracle based monitoring. The implementation can be found on the

attached CD and is not discussed in this work anymore.
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Optimization using global attributes

In this chapter, we discuss the optimization of sending probabilities. We define a sending probability
inside the routing algorithm and run the simulator for multiple probabilities. This way we are able to
take the best probability for a given scenario. We vary these scenarios by changing multiple simulation
attributes like TTL or network size. We remember that we want to find a better routing protocol than
epidemic routing. For this we try to use global information. In a global view of this work, optimization
using global information is the easiest way to build a routing table. We do not need to look closely
at the way the networks work. The routing table is built by varying all attributes and gives the best
probability to use for routing. We see in further chapters that it is also helpful to take a closer look at

structures and the way the network is working, like in chapter[5]

4.1. Routing protocol

For routing inside of the simulator, every host has his own routing layer. This routing layer calls a

routing function in three cases:

* For every minute of the simulation, the routing layer tries to send all the messages from the
host’s buffer to all of his neighbors. We set the interval of one minute in this work. For future

evaluations, this interval can be changed.

* For a new neighbor, the routing layer tries to send all the messages from the host’s buffer to all

of his neighbors. In general, the other neighbors have already received the messages.

* For a new message from the link layer or transport layer, the routing layer tries to send all the
messages from the host’s buffer to all of his neighbors. In general, the neighbors have already

received the previous messages.
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In the following section, we take a look at the routing function. The function is called for every
message separately. Parameters of the function are the message to send, the complete neighborhood
of the current host and the current host. First, we route the message to its final destination if it is in
the neighborhood. For this purpose, we are iterating over each host in the neighborhood checking
whether the neighbor has not seen the message yet and if the neighbor is the final destination. In case
the final destination is in the neighborhood, then there is nothing to do except sending the message

and forgetting about it.

Algorithm 1 Routing optimize delivery rate
Inputs
Message
Neighborhood
Actual Host
End
for all hosts in neighborhood do
if Check if the message was already routed to neighbor then
if The neighbor is the final destination then
Send message
Drop message at buffer of current host
return
end if
end if
end for
for all hosts in neighborhood do
if Check if the message was already routed to neighbor then
potentialNeighborhood — potentialNeighborhood + 1
end if
end for
for all potential hosts do
generate a random number
if Check if the number is higher than the given probability then
numberForwards = numberForwards + 1
end if
end for
for all numbers in range of 1 to potentialNeighborhood do
while Got a new neighbor, use list of already routed neighbors do
Fetch a random neighbor
end while
Add the neighbor to list of already routed neighbors
Send message to the neighbor
end for

Next, we obtain the number of neighbors, which are interested in receiving the message. This means

that we count the number of neighbors which have not seen the message yet.
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After that, we obtain the number of neighbors we send the message to. In order to achieve this, we
use the given probability, which we aim to optimize in this chapter. We iterate over the number of
potential neighbors and take a random number between 0 and 100. In case the number is higher than
the given probability, we do not increase the number of hosts we want to forward the message to.

Otherwise, we increase.

Next, we route the given routing package to random neighbors maximum up to the given number of
previous steps. We iterate over the given number of neighbors and take a random neighbor. We check
if we have already routed the message to this neighbor. In case we have, then we take another random
number. We repeat this until we get a new host. Thus, we are creating a list of hosts that have already
been selected randomly and those that have not seen the message yet. In case of failed forwarding, we
do not try this again. Then we add the new host to a list of already routed hosts. Finally, we send the

message to the neighbor.

A pseudocode of the described algorithm is given in section4.1] The principle of first in first out (FiFo)

is used as the buffer policy and time to live of messages (TTL) is used as the dropping policy.

4.2. Optimization

We take a short look at the way we perform the optimization. Our method consists of trying several
probabilities of multiple scenarios and finding the maximum. For running the large numbers of simu-
lations, we need a script. There we manipulate the XML-files. The different scenarios are composed
by varying the time to live of messages, size of the world map and number of hosts. For each of these
scenarios, we run additionally the epidemic routing protocol once. This gives us a comparison to the
found optimal. After this, we iterate over the probabilities we want to test. The steps which are used
for iterating can be looked up in section 4.2] The limits are taken with the criteria that the whole

simulation is done at least after two days.

In the following part, we discuss the optimization method. We have performed the optimization in R
and here discuss the logic and formulas. The created table, table [A.T] can be used as a routing table

and is attached. We describe its use later.

After running the simulation, we calculate the mean of received messages by their destination from a
forwarder for every simulation we ran. Next, we search for the highest mean of delivery rate depending
on the sending probability. In order to find the optimized sending probability and the corresponding
mean of delivery rate, we use the logic of eq. (4.I) and eq. (4.2). Here SP defines the sending proba-
bility, SR defines the matrix of simulation results and the parameter P defines the corresponding used
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Algorithm 2 Script for optimization of sending percentage

for ttl in range from 2 to 20, using steps of 4 do
for world size in range from 70 to 125, using steps of 10 do
for host number in range from 5 to 55, using steps of 10 do
Set ttl in config file
Set world size in config file
Set host number in config file
SIMULATOR(EpidemicRouting)
for percentage in range from 9 to 100, using steps of 10 do
Set percentage in config file
SIMULATOR(OptimizationRouting)
end for
end for
end for
end for

percentage in the simulation run. In the second equation, the mean delivery is defined by MD.

RoutingTable(SP) :=SR |i+ argmax ({SR[i+x|(P)})

x€{0,....9}

(SP) 4.1)

with i € {x|1 <x<251land x = 1 mod 10}

RoutingTable(MD) := SR |i+ argmax ({SR[i +x](P)})

x€{0,....9}

(MD) (4.2)

with i € {x|1 <x<251land x = 1 mod 10}

Here i iterates over all the simulation results. Because we run ten simulations to find the optimal
sending percentage, we add ten to i for every iteration over the time to live of a message, its size, and
the number of hosts. This results in a maximum of 2511 = 2501 + 10.

The resulting routing table is shown in table[A.TI] We notice that the optimization routing has a better
performance than epidemic routing in terms of delivery rate. We discuss the reason for this in the
evaluation section. In order to use the created routing table, a host in an opportunistic network has to

know the network attributes. In general, this could be done via a monitoring procedure. After a host
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has obtained all the values, he only has to look up the corresponding sending probability and use it as

discussed.

4.3. Validation and verification

Because this work is rich in programming, verification is an important point. In further chapters, it
will become of more importance. However, we perform some validations of optimization routing
as well. It is possible to validate the script by looking directly at what happens while running the

complete optimization. Every single simulation requires about one minute.

In fig. 4.1 we can look at all the sent messages of a five-minute simulation with five hosts in form of

a graph. All the messages that are sent from source to destination directly are excluded.

There are a lot of forwarding between host two and three. The hosts two and three are always either
the source or destination of a message. We take a closer look at one interesting message, which is
forwarded through several hosts. The message with source host four and destination host three is
forwarded the first time from host four to two. After this, host two forwards the message to host one.
Finally, host one forwards the message to its destination, which is host three. Because two forwards
the message also directly to three, we know that this connection is built some time later. Before a

message is forwarded to the neighbors, we check if the final destination is in range.

On the other hand, there are messages forwarded to a host, which will never be forwarded again
to another host or the destination. One example of this is the message with source host one and

destination two, which is forwarded from one to four.

Time is a critical key for validation. We look at table 41| for examples of time in our validation. In the
previous example, we were not able to look at the messages that were not sent. However, in this work,
they are important. For example, host five decides not to send the message with source host four and
destination four to host two during the third minute. During the fourth minute, every host repeats the
decision whether or not to send a message. In this case, host five decides to send the message (4,3)

to host two.

4.4. Evaluation

At this point of this work, we designed an easy to implement algorithm based on global information.

In the following section, we discuss differences between optimization routing and epidemic routing
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4.3)

Figure 4.1.: Example graph of send messages using a sending probability of 50%
Hosts represented by nodes

for the first case of table[.2] In this way we are able to proof that the design algorithm results in better

outcomes than epidemic routing. We start by looking at the metrics as discussed in section 3.3

For evaluation, we run simulations for several attributes and sending probabilities as discussed in
section section[d.2] Depending on these attributes we run the simulation for optimization routing and
epidemic routing. Thus, we are able to compare optimization routing and epidemic routing while
creating a table for every attribute. Later we compare the delivery rate of messages. This means we
count the messages forwarded from a host to their final destination. Thereby the sending host has to

be not equal to the original sender.

In the following part, we run the generated routing table and look at the outputs. For that we take a

short look at two cases, using the logic of eq. (4.3)) and eq. (#.4).
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Sended Minute Current Host — Receiver Message o
(Sender,Destination)
Not sended 3 3—1 (3,4)
Not sended 3 32 3.4
Not sended 3 3—1 (3,4)
Sended 3 13 (1,2)
Not sended 3 13 (1,2)
Not sended 3 13 3,4
Not sended 3 3—1 (3,4)
Not sended 3 5—4 4,3)
Not sended 3 52 4,3)
Not sended 3 2—5 3,4
Not sended 3 1-3 (3.4)
Not sended 3 1—2 (34
Not sended | 3 4—5 4,3)
Not sended 3 4—2 4,3)
Not sended 3 1—=2 (1,2)
Not sended 4 5—4 4,3)
Sended 4 52 4.,3)
Not sended 4 5—4 4,3)
Not sended 4 5—2 4,3)
Not sended 4 4—5 4,3)
Sended 4 4—2 4,3)

Table 4.1.: Example table of send messages using probability of 50%

Case htl size hosts percent | optimization | flooding
Equation 4.3) | 14 75 45 9 21.50 1.84
Equation (4.4) | 14 115 5 69 1.34 1.34

Table 4.2.: Two cases using optimization routing

case = Routingtable| argmax (Routingtable|x|(OptimizationRouting)
xe{l,...,125} “4.3)

— Routingtable|x|(EpidemicRouting))]

case = Routingtable| argmin (Routingtable|x|(OptimizationRouting)
xe{l,...,125} 4.4)

— Routingtable|x|(EpidemicRouting))]

In table table .2 we can look at the two results of eq. (4.3)) and eq. (4.4).
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Case | htl size hosts percent | optimization | flooding
Casel | 10 105 25 9 10 2.19

Table 4.3.: Random case of routing table using optimization routing

At next we take one random cases of the routing table and discuss it. The case is shown in table[4.3]

Every graph in the following part represents the changing over time on the horizontal axis like discuss

in chapter[d] The vertical axis represents the count/ sum of the respective attribute.

Hopcount

First, we compare the hop count.
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Figure 4.2.: Hopcount of Case 1, scale on y-axes vary,
arrow on right indicates direction of improvement

We notice that the values in the both graphs in fig. [#.2] are growing over time and remain high with
massive outliers. There is a difference in the vertical value range. The maximum value in epidemic
routing is at about 4900 and is reached after about 19 minutes. The maximum hop count of optimiza-
tion routing is about 520, which is taken after 10 minutes. The time required to reach the maximum
value is probably caused by a random outlier. But the massive difference on the y-axis is serious. All
in all, the hop counts from the graphs look similar in terms of structure, but there is a large difference
in the count. These graphics represent the sum of hop counts and are based on the count of forwarded

messages per minute. We look at it next.
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Figure 4.3.: Forwarded messages of Case 1, scale on y-axes vary,
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Forwarded messages

We are discussing the graphs from fig. which show the count of forwarded messages per minute.
Here too the structure of the graphs looks similar. The main difference is that optimized routing
forwards on average 140 messages per minute, while epidemic routing forwards on average 650 mes-
sages per minute. On both graphs, there are many outliers. Once again, the maximum values are
captured during different minutes, which is probably caused by the random outliers. We come again
to the conclusion that the both graphs look similar except the used range on the y-axis. This is due

to the reason that we are only sending with the probability of 19 percent in optimization routing, like
shown in eq. (4.5).

forwards = 650 messages - 19% = 123.5 4.5)

Dropping rate of messages

The dropping rate is shown in fig. 4.4] Here for the first time, the range of the counts is nearly the
same. Maximum value from optimization routing is 45 and the one from epidemic routing is 60.
There are once again many outliers on the both graphs. While optimization routing in the majority of
cases is around 30 and has some outliers at the beginning up to 45, epidemic routing mainly fluctuates
around value 55 and has some outliers below 43. All in all, optimization routing has fewer droppings

than epidemic routing.
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Figure 4.5.: Received messages at case 1, arrow on right indicates direction of improvement

Here we discuss the delivery rate. We can look at it in fig. B.5] The general impression is that opti-
mization routing delivers many more messages to a destination than epidemic routing. The maximum
amount of received messages per minute for optimization routing is 20 and for epidemic routing it is
7. The maximum value of epidemic routing is achieved once. Optimization routing is able to reach
its maximum value twice. During the first minute, epidemic routing delivers one more message to a

destination in comparison to optimization routing. After this epidemic routing is never able to deliver
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more messages. During minute 14, both protocols deliver the same number of messages. However,

graphs have many outliers.

All in all, optimization routing performs better than epidemic routing. We notice that optimization
routing sends fewer messages per minute, but forwards more messages to their destination. We com-
pare the total improvement of optimization. In eq. (4.6) and eq. (4.7) using the metric of delivery
rate to a destination we are able to look at the total number of cases, where optimization routing is
better than epidemic routing and vice versa. The number of forwarded messages is stored for an x
in Routingtable opmizationRouting[X] O Routingtable gyijomicrouing[*]- In numbers optimization routing
always has a higher delivery rate than epidemic routing . Here FM defines the metric for the count of

forwarded messages.

100
. FM . FM
Z 1R20 (RounngtableOptimizationRouting [x] - ROunngtableEpidemicRouting [X] ) =100 (46)
x=1
v FM FM
Z IRSO (R0utingtableOptimizationRouting [X] - R0utingtableEpidemicRouting [X] ) =0 (47)

x=1

Now we try to understand the improvements of delivery rate. Like in section {.4] the supposed reason
for the better performance of optimization is that messages are not sent directly. Thus, every single
host is less overloaded. If a message is not sent, the algorithm tries to send it again during the next
action of the host. In general, this means that all hosts do not lose many messages while routing. In
fig. we can look at the unfinished forwarded messages. We notice that epidemic routing forwards

more unfinished messages than optimization routing. The corresponding graph is shown in fig. 4.6

In order to prove this adoption, we need to know in how many cases optimization routing has fewer
unfinished messages. We calculate this in eq. (4.8) and eq. (4.9) if we save the count of unfinished
messages at the RoutingTable. Here UM defines the metric for the count of unfinished forwarded

messages.
& UM UM
Z IRZO (ROutlngtableOptimizationRouting [X] - ROutlngtableEpidemicRouting [X] ) =38 (48)
x=1
© UM UM
Z 1R§0 (ROutlngtableOptimizationRouting [x] - ROutlngtableEpidemicRouting [x] ) =92 (49)
x=1

Here it is clear that optimization routing sends fewer messages that are unfinished forwarded. In 92
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Epidemic routing
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Figure 4.6.: Unfinished messages at Case 1, scale on y-axes vary,
arrow on right indicates direction of improvement

cases epidemic routing has more unfinished forwarded messages than optimization routing.

Up to now, we have evaluated a single simulation run. In following we look at the variations between

1000 simulation runs for the network attributes of case one in table .2 using multiple seeds.

In fig. we can look at the boxplots of 1000 simulation runs using a logarithmic y-axis scaling. For
hop count, there is a small range of median. Also, the proposition between the lower/ upper quartile
and the maximum/ minimum looks symmetric. There are a few outliers above the maximum, however,
they are close to the maximum. The general range is about 500 +/- 50. The median of the count of
forwarded messages is about 210. We notice that the lower and upper quartiles are close to the median.
The maximum and minimum lie at the distance of about ten to the median. There are outliers above
and below the median, but again they are close to the maximum/minimum. The boxplot of dropped
messages looks like the most focused metric. Again, median and upper and lower quartiles are close
to each other and are around 40. The maximum and minimum values are at the distance of about
one from the median. There are outliers that are very close to the maximum and minimum. Finally,
there is the metric for messages received by the destination from the forwarder. The median is close
to the upper quartile and has a value of about ten. The lower quartile has value nine. Maximum and

minimum are about two points above or below the upper or lower quartiles. There are outliers next to
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Figure 4.7.: Evaluation of Optimization Routing for 1000 simulation runs using Case 1 in table

the maximum and minimum.

4.5. Conclusion

As discussed in beginning of this chapter, we tried to fiend an easy to implement routing protocol

which is better than epidemic routing. This performance increased should be raised by using global

information. All in all, we have seen that optimization routing performs better than epidemic routing

in terms of the maximizing delivery rate and reducing unfinished forwarded messages. We noticed that

optimization routing sends fewer messages per minute, but forwards more messages to a destination.

Thus, we know that optimization routing does not send more messages. Optimization routing is able

to generate a knowledge of the network and performs better with same resources. We have seen

that in every case optimization routing is able to deliver more messages and in 92 cases there are

more unfinished messages at epidemic routing. In terms of complexity, this means that the routing

algorithm is O(1). The routing table can be sorted, so a peer only has to look it up. But depending on
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the monitoring procedure additional messages are necessary. Their complexity is discussed in the in

chapter[3]

In global view of this work, we already reached our target. In next chapters we still try to improve the
performance using other algorithms. The algorithms still use global information, however, they are

more complex.
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Chapter 5.

Simulated annealing

In the previous chapter, we discussed an approach, in which global information is used. This infor-
mation is constant in one simulation run (chapter [d). In the following chapter, we discuss the second
approach: We want to use constant information in one simulation run and information of a peer or
network at the time of sending. Based on this information we build some mathematical structures
to make a decision. We optimize this decision and take a closer look at the way opportunistic net-
works work. Because the algorithm is complex, we run it only for one case. Thus, no routing table is

generated in this chapter.

5.1. Simulated annealing algorithm

The simulated annealing method is an optimization algorithm introduced by Kirkpatrick in 1983
[KGV"83] and by Cerny in 1985 [Cer85]. It is a heuristic optimization procedure. The procedure is
used to find an approximated solution for optimization problems and excludes listing all possibilities

or mathematical solutions due to their high complexity.

Given is the value range D, a fittness function f : R — R, an environment term U (x) and a termination

criterion. We are looking for an approximate solution of the global minimum of f over D.

We select a starting solution x € D. Next, we choose a monotonically decreasing sequence to zero
T;,t € N and a sequence N;,i € N which indicates how many steps the evaluation of the simulator

contains. We start witht =0 and i = 0.

If i < N; we select a neighbor y € D from the environment U (x), otherwise we seti = 1 and t =1+ 1

and search again for a neighbor.

We have following decisions:
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* Incase of f(y) < f(x) we setx =y and if f(y) < f(Xapprox) We Set Xgpprox =¥

* In case of f(y) > f(x) we set x =y using the probability exp (—%fﬂx))

Section [5.1| presents the simulated annealing heuristic as described above. It starts from a state x and
continues while the temp is greater than one. At every iteration, femp is multiplied by step = 1 — rate.
When we initialize femp at the value 10 and rate with le-3, then we have 2302 iterations. In the
process, a dimension is randomly chosen to be optimized. We have three dimensions. Next, a new
point is selected for the chosen dimension using the probability from above. Here the function f

executes a simulation run and returns the delivery rate of messages.

Algorithm 1 The simulated annealing pseudo code
Inputs
f
x
temp <— 10000
rate < le —03
End
step <— 1 —rate
n < length(x)
xbest < xcurr <— xnext <— x
ybest < ycurr < ynext < f(x)
for temp > 1 do
temp < temp - step
i + |RandomNumber(min = 0,max = n) |
xnext[i] < NormalDistribution(n = 1,mean = xcurrli|,sd = temp)
ynext < f(xnext)
accept +— exp(—(ynext — ycurr) /temp)
if ynext < ycurr||RandomNumber(n = 1) < accept then
XCUFT <— Xnext
ycurr < ynext
end if
if ynext < ybest then
xbest < xcurr
ybest <— ycurr
end if
end for
return xbest

In fig. [5.1] we can look at a graphic for which it might be helpful to use simulated annealing. If this
graphic is already generated, it is easy to go through all points on the x-axis. But in the case of
continuous functions and when the calculation for a given value is complex, then it might be more
reasonable to use simulated annealing. For example, in the shown graphic we start at zero. It is a local

maximum. For the majority of following iterations, we stay at zero. However, some random time
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later, we try the value 44 and notice it is better than zero. Then we move continuously to 45 and stay

there. After we have tried enough iterations we accept that this is the global maximum.
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Figure 5.1.: Example for a environment using simulated annealing finding global maximum

5.2. Implementation in PeerfactSim.KOM

The most important part of this section is to find a "good" structure for manipulating the decision

whether to send or not to send. We use the following three attributes of the network:

* Number of hosts at network.
» Potential messages in the network for sending at a given minute.

* Messages at network, which are already send at a given minute.
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Chapter 5. Simulated annealing

Now we come up with some formulas to create v;, v, and v3. Later we find an optimal weighting v,
vy and v3 for every w;, i € {1,2,3}. Every w; represents a structure mentioned above and returns a

probability for sending. Here, we describe the formulas:

w1 = 1/potMsgs (5.1)
MeanSendM
min CountMsgsWantToSend,M
CountHosts
Wy = (5.2)
MsgsWantToSend
min{ CountMsgsWantToSend, MeanSendMsgs — CountMsgsAlreadySend} (5.3)
w3 = .
3 MsgsWantToSend
The implementation in PeerfactSim.KOM returns the sending probability of eq. (5.4)).
sendingProbability = vy -wi 4+ vy -wy +Vv3 - w3 5.4

5.3. Validation

In this chapter, we take a closer look at the generated values using the formulas from eq. (5.1)), eq. (5.2)
and eq. (5.3). This is part of the validation and we are able to get a better feeling of what is happening.
Running the simulated annealing returns only a vector of the global maximum. In the following,
we try to print the relationship between Wy, W, and W3. For visualization, we use the programming
language R. We are using the function "peerfact(x)" defined in the previous chapter. We are able to
generate 3-dimensional plots. We print W; on the x- and W; on the y-axis with i, j € {1,2,3} and i # ;.

The third dimension for each combination is the mean of forwarded messages to a destination.

When we take a look at fig. [5.2] we notice that there are not so many changes for W; over time,
excluding the outliers. W; is represented on the y-axis and has some changes. It looks as if it reaches

the maximum at about 50 percent.

While study fig. [5.3] we notice that W, is not changing lot if we hold W3 on zero. But once Wj reaches

circa 40 percent we are able to notice strong deviations for W;. There the deliverability rate performes
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5.4. Evaluation

much more better while increasing W;. The meaning of this is the following one: If we give V] circa
fifty percent of the power to decide if we send a message to a neighbor wether not, we are able to
improve the results by increasing the power of V;. So it looks like there is a connection between W
and W3. In eq. (5.3) we are using the information about how much messages are already send at the

given minute. This information was not used in eq. (5.2).

While studying fig. [5.3] we notice that W is once again not changing much while setting W to zero.
But once W3 is around 40 percent we notice strong deviations for W;. The rate of delivery performs
much better when increasing W;. This has the following meaning: Giving V; about fifty percent of
the power to decide whether or not to send a message to a neighbor improves our results. Then we
can deduce that we are able to improve the results by increasing power of V;. It seems as if there is
a relationship between W; and Ws. In eq. we use the information about how many messages are

already sent at the given minute. This information was not used in eq. (5.2).

If we run simulated annealing using the parameter W, and Wj it looks additional like there could be a
connection between the both parameters. Here it looks like W, is able to increase the result if W3 has
circa 30 percent power. We notice that the connection here is another one than in fig.[5.3] On both

graphs there is a wall with maximums in direction of x-axis. But W, changed from y-axis to x-axis.

When we run simulated annealing using parameters W, and W3, then we notice that there could be a
connection between these two parameters as well. Here it seems as if W5 is able to improve the result
when W3 has about 30 percent the most power. We also notice that the connection is different from
the one in fig.[5.3] On both graphs, there is a maximum in direction of x-axis. But W, was changed

from y-axis to x-axis.

5.4. Evaluation

We designed in chapter ] a routing protocol based on global information which performed better
than epidemic routing. The global target of this work is finding routing protocols which performs
better than epidemic routing. Therefore we will do this again for the routing protocol designed in this
chapter. Later we compare the designed protocols to each other. In this section, we run the simulated

annealing algorithm. This takes some time and returns the following vector:

optima = (98.10185,52.69242,1.39716)

The mean of forwarded messages to destination is 5.5625, which we use later when looking at the

simulation outputs. We use the metrics as discussed in section[3.3]
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5.4. Evaluation

In the following part, we evaluate the simulated annealing routing. We focus on the scenario, which
is generated from the previous simulated annealing run. We supply the algorithm with the initial
vector (50,50,50). Since this algorithm is computationally intensive, this is the only run we try. For

evaluation, we compare the outputs of the optimization with outputs of epidemic routing.

Hopcount

First, we compare the hopcount. It is shown at fig.[5.3]

8

tCount
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(a) Hopcount of simulated annealing routing (b) Hopcount of epidemic routing
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Figure 5.5.: Hopcount comparing simulated annealing and epidemic routing, scale on y-axes vary,
arrow on right indicates direction of improvement

We notice that the hopcounts in both graphs in fig.[5.5|are growing over time and reach their maximum
after about 13 minutes. While the value of epidemic routing is constantly growing over time, it looks
as if simulated annealing is growing until the third minute up to value 20 and then fluctuates around
this value. It is also possible that the maximum at minute 13 is only randomly taken. There is a
significant difference in the value range of the vertical axis of the graphs. The maximum value of the
sums of the hopcounts for simulated annealing routing is 25, while for epidemic routing it is 4500. We
notice that the simulated annealing routing has way more outliers. Epidemic routing is also dropping
and growing, however, it does so over time. The outliers from simulated annealing are much more
spontaneous. All in all, the hopcount looks different. The smaller hopcount of simulated annealing
routing may indicate a higher rate of delivered messages to a destination or a higher dropping rate.
Both of these cases might be the reason for having fewer messages with long life time. The sum of

hopcounts depends on the count of sent messages per minute. We look at it next.
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Figure 5.6.: Forwarded messages comparing simulated annealing and epidemic routing,

Forwarded messages

Here we discuss fig. [5.6] The graphs once again look different. Simulated annealing routing has
more outliers than epidemic routing. We assume that this is caused by the smaller count of forwarded
messages from simulated annealing. The same outliers are then visible much better. The second
difference is that the simulated annealing routing sends 25 messages per minute. In contrast to this,
epidemic routing sends approximately 600 messages per minute. Like in optimization routing and
reinforcement learning, this could be due to the reason that not every message is sent directly. The

receiver is not overloaded and has more time to forward it. When a sender sends all of his messages

scale on y-axes vary, arrow on right indicates direction of improvement

directly, the receiver can only handle a few of them. But the sender marks it as already sent.

Dropping rate of messages
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Figure 5.7.: Dropped messages comparing simulated annealing and epidemic routing,
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The dropping rate, shown in fig. looks different. The only similarity is that the range is a little
bit closer than in the previous evaluations. However, while the dropping rate of simulated annealing
is growing over time and reaches its maximum during minute 15, epidemic routing is growing much
faster at the beginning up to value 60 and then remains around that value. The maximum value from
simulated annealing is 16, while the maximum value from epidemic routing is about 60. We notice

that simulated annealing has a higher rate of outliers, which might be caused by the smaller range.

Received messages at destination

A
C ) . .
i) Epidemic
= :
S routing
*qw'; Simulated
S annealing
- routing
o “ -
b o) =)
S £
2 >
S | 3
[ .
" 5
Q
O) o ) e
©
(7]
%)
Q
= o F T e

Figure 5.8.: Received messages comparing simulated annealing and epidemic routing,
arrow on right indicates direction of improvement

Finally, we discuss the delivery rate from fig. Our impression is that each time simulated anneal-
ing routing delivers more messages to the destination than epidemic routing. The maximum value of
received messages per minute for simulated annealing routing is 15. We have already discussed the

reason for sending more messages. For epidemic routing, the maximum value is two.
Up to now, we have evaluated a single simulation run. In the following section, we look at the

variations among 1000 simulation runs for the network attributes of case one from table 4.2 using

multiple seeds.
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Figure 5.9.: Evaluation of Simulated Annealing Routing for 1000 simulation runs

In fig. [5.9] we look at the boxplots of 1000 simulation runs using a logarithmic y-axis scaling. The
median of the hop count is around twelve. The lower quartile is around eleven and the minimum value
is around seven. Furthermore, the upper quartile is around 13 and the maximum value is around 17.
There are a few outliers above the maximum. The median for the count of forwarded messages is
approximately 17. We notice that the lower and upper quartiles are at the distance of one from the
median. The maximum and minimum values are about four points away from the median. There are
also outliers above and below the median, but they are close to the maximum and minimum values.
On the boxplot of dropped messages, median as well as upper and lower quartiles are close to each
other and are around value four. The maximum and minimum values are three points away from the
median. There are outliers that are close to the maximum and minimum. Finally, there is the metric of
messages received by destination from a forwarder. This boxplot looks like the most focused one. The
median has a value of four and is close to the upper and lower quartiles. The maximum and minimum
values are two points above and below the upper and lower quartiles respectively. There are outliers

next to the maximum and minimum values.
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5.5. Conclusion

In conclusion, the generated results are surprising and show that there are benefits of using simulated
annealing. It has a slow dropping and hopcount rates. On the other hand, it always delivers more
messages to the destination than epidemic routing. In addition, the running time is the same for the
both approaches, because all the attributes were generated in the previous part. Thus, there are no
arguments for not using simulated annealing after we have generated the optimum one time. On the
other hand, we have to come up with a good logic for the attributes Wy, W,, and W3. After this,
generating the maximum takes a lot of time. Here it has taken two days to run only the simulated

annealing algorithm.

For global point of this thesis we found a second routing protocol based on global information which
is better than epidemic routing. In next chapter, we try to find a third one. At the end of this work, we

compare each of them.

45






Chapter 6.

Reinforcement-learning

Over the last couple of years, the field of reinforcement learning has grown significantly. The paper
of [BL94] demonstrates that the practical task of routing packets through a communication network
is a natural application for reinforcement learning algorithms. Their "Q-routing" algorithm is related
to certain distributed packet routing algorithms as in [Rud76] and [Tan89|]. It learns a routing policy
that minimizes the number of "hops", which a packet will take. It does so by experimenting with
different routing policies and gathering statistics about decisions that minimize total delivery time.

The learning is continuous and online, and it uses only network connection patterns and load.

The experiments in [BL94| were carried out using a discrete event simulator to model the transmission

of packets through a local area network and are described in detail in [LB93]].

In the previous chapters, we always have run multiple simulations to find an optimized routing policy.
In this way we designed two algorithms to improve results against epidemic routing. Now we perform
optimization inside a simulation run. A learned model is only specified for one simulation run. In
the following chapter, we try to maximize the forwarded messages to their destinations. Again, the
goal of this section is the finding of an algorithm which performs better than epidemic routing. For

implementation, we use the package tensorflow, [ten17]], developed by Google.

6.1. Routing

The routing algorithm is similar to the one from chapter @] The only difference is the way we
are choosing the number of neighbors we want to send the message to. This is discussed in sec-
tion [6.2.4]
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6.2. Reinforcement learning algorithm

In this section, we discuss reinforcement learning and the used algorithm.

6.2.1. The learning models

We have three models of the reinforcement learning algorithm. Each of them has its own complexity
level. The easiest one is shown in fig. It saves only the reward for every action. There is no
link between states of the network and actions/rewards. This model is good for scenarios, if there
is no connection between input states and the parameter for optimization. The input status can be
for example the count of dropped messages. The parameter for optimization can be for example the
variance between the count of forwarded messages from a specific minute and the mean of forwarded
messages from all minutes. If we already know that there is no connection between state and reward,
it is better to use no state, like in fig. Our action is the number of neighbors we want to send a
message to, like in chapter ] The reward is the amount of the messages sent to destination for the
minute when the action takes place. It is one divided by the difference between the mean of forwarded

messages and the count of forwarded messages from the minute the action took place.

action reward

Figure 6.1.: Multi-action network

The next model is the one for using states: section [6.2.1] We want to use this model for our scenario

of maximization forwarding messages. Our state is composed of two variables:

* The count of neighbors.

* Secondly, we give the algorithm the knowledge about the count of the already sent messages

for the current minute.

* The count of all potential messages in network.

If there is no connection between this state and the equalization of forwarding messages, then the
algorithm should give results that we would receive by using a random count of neighbors a message
should be forwarded to.

The most complex model is shown in figure section section [6.2.1] A new state will be calculated

in this model using an action. In our scenario, this means we have to return the next state from the
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[ state }of action | reward |

Figure 6.2.: Contextual Agents

simulator. Then the reinforcement algorithm calculates the reward on its own. Because the returning
of the next state is more complex, we start with the second model. If it does not return good results,

we have to try the first model. If it returns good results, then we can try the third model.

[ state ]—»[ action Hreward}

Figure 6.3.: Full RL Problem

6.2.2. The Contextual Routing

Here we define our contextual routing. In this scenario, we are using network states. This means that

each network state consists of the following attributes:

* First, we take the number of neighbors that we can send the message to.
* Second, we use the count of messages which are already forwarded for a given minute.

* Finally, we want to use the potential messages that currently exist in the network.

Each state has different success probabilities for each number of neighbors to send a message, and as
such requires different actions to obtain the best result. We want our agent to learn to always choose
the number of neighbors that will most often give a positive reward, depending on the network state
presented. Therefore we create a list networkStates of probabilities for all states. To match a given
sensor to a probability of networkStates we create an array mappingStates, which contains all the
network states itself. For doing the matching we write a function. It is given in section [6.2.2] The

function returns the position of the given state in networkStates.

Each state has different success probabilities when sending a message to each neighbor, and as such
requires different actions for obtaining the best result. We want our agent to learn to always choose
the number of neighbors that will most often give a positive reward, depending on the present network

state. For this purpose, we create a list of networkStates with probabilities for all states. In order to
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match a given sensor to a probability of networkStates, we create an array of mappingStates, which
contains all the network states. For doing the matching we write a function. It is given in section

section [6.2.2] The function returns the position of the given state in nerworkStates.

Algorithm 1 Mapping a state to probability: getNetworkStateIndex()

for x in range {0, ..., length(mappingStates)} do
checkSensor = False
for y in range {0,...,length(State)} do
if mappingStates|x,y] # sensor[y] then
checkSensor = True
end if
end for
if checkSensor = True then return x
end if
end for

6.2.3. The Policy-Based Agent

We set up a simple neural network. Its input is the current network states and it returns an action for
every request. In our case, it is the number of neighbors we want to give the message to. We are using
a single set of weights. The policy gradient method is used by our agent. Thus, for a selected action
the values are moved towards the received reward. This enables the agent to learn which actions are
the best at the current state. This is the important step of our reinforcement learning problem. The

code can be found in listing [T}

6.2.4. Training the Agent

The training of our agent is split in three steps:

* First, the agent obtains a state from the environment.
* Then the agent takes an action.

* Finally, the agent receives a reward and updates the model.

Using these three parts, we are able to update the networking with the following condition: given
States, the agent chooses actions that will return the highest rewards over time. The pseudo code is
given in section [6.2.4] We want to iterate over our code infinitely. After that, we iterate over inputs

as long as we give only actions. When we receive a reward, we stop the inner loop. After this, the
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algorithm expects an input from the simulator. Then we split the input. On the left side, we expect the
type of the input, reward, sensor or printing of the routing table. In case of printing, we export all states
to an excel file except the ones that were never used. This means that we check whether the rewards
are not equal to zero. Next, we check if the given input is a reward. If yes, we extract the action and
reward from the input and break the inner loop. Before starting a new loop and taking the next input,
we run the reinforcement algorithm on action and reward and update the neural network. If the input

is a sensor, we take from the agent the action for the given sensor and give it to the simulator.

Algorithm 2 Training the Agent

for True do
reward =0
for True do
input = get input from simulator
if Check if "print" is in input then
for Iterate the built table of rewards do
if Check if line of table is not equal to zero then
Export line to excel
end if
end for
else
sensor = [ get type of input,
get first parameter of input,

get second parameter of input]
s = getNetworkStatelndex(sensor))

if Check if "reward" is in input then
action = get third parameter of input
reward = get fourth parameter of input
break inner loop
else if Check if "sensor" is in Input then
action = take action from agent given the sensor
give networkStates[s|[action]) to simulator
end if
end if
run reinforcement algorithm on action and reward and update the neuronal network
end for
end for

6.3. Implementation

In this section, we discuss the implementation of reinforcement routing. This means that we show the

way a network state is defined and the implementation of rewards.
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We use a threshold to define the number of cases where we use the routing table of the reinforcement
routing or we use a random number. The routing table or random number returns the number of
neighbors we want to give a specific message to. If we take a result from the reinforcement routing
table, we should not give a reward. Otherwise specific results are unjustifiably promoted. Therefore,

we need the random generated sending probabilities.

In case we want to take a number from the routing table, then we create the network state using the

following attributes:

* First, we take the number of neighbors that we can possibly send the message to.
* Second, we use the count of messages that are already forwarded for a given minute.

* Finally, we want to use the potential messages that currently exist in the network.

In the following part, we look closer at the implementation. Like discussed above we consider two
cases. The first case is a probabilistic generated result, which indicates a learning for the reinforce-
ment algorithm. For this purpose, a list containing all sensors of randomly generated actions and the
generated action is generated. We call this list sensorList. Otherwise, we consider the case of a given

result by the reinforcement algorithm. The logic is shown in section [6.3]

Algorithm 3 RL-returns
random = get random number in {0,...,100}
if random > randomThreshold and currentTime > timeThreshold then
return Get a reward from reinforcement algorithm, given the sensor
else
Action = random number in {0, ..., countOfNeighbors}
sensorList append action
return action
end if

Next, we look at sensors and actions that have to be given as a reward to the reinforcement learn-
ing algorithm. Therefore, we iterate over all items in sensorList. If the difference between the current
simulator time and the time of a generated sensor + action in sensorList is greater or equal to one, a re-
ward for the entry is given to the reinforcement algorithm. We create a list named alreadyLearnedList
containing all sensors that have already been evaluated. We check if the new sensor has already been
evaluated for the simulation time during which the sensor is generated. If not, we give the sensor
+ action to the reinforcement learning algorithm, remove the sensor from sensorList and add it to
alreadyLearnedList. The algorithm is shown in section[6.3]

First, we check if the attributes have already been evaluated for the minute. If it has not already been
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Algorithm 4 RL-learning
Inputs
Given is the sensor built by number of neighbors, already send messages and count of potential
messages in network.
End
for sensor in sensorList do
if currentSimulatorTime — sensorTime >= 1 then
alreadyExist = false
for alreadylearned in alreadyLearnedList do
if alreadylearned(Time) = sensor(Time)
and alreadylearned(CountOfNeighbors) = sensor(CountOfNeighbors)
and AlreadyLearned(CountOfAlreadyForwardeMessages) = sensor(CountOf
AlreadyForwardeMessages)
and AlreadyLearned(CountOfPotentialMessages) =

sensor(CountOfPotentialMessages) then
alreadyExist = true
end if

end for
if not alreadyExist then
reward = get count of forwarded messages to destination for sensor(Time)
alreadyLearnedList append [sensorTime, sensor(CountOfNeighbors),
sensor(CountOfAlreadyForwardeMessages),

sensor(CountOfPotentialMessages)]
give reward to reinforcement learning algorithm (sensor, reward)

remove sensor from sensorList
else
add sensor to list foRemove
end if
end if
end for
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evaluated, then we calculate the reward by using the count of messages that were forwarded to the

destination during the minute the entry was created at sensorList. After that, the reward is given to the

reinforcement learning algorithm and the entry is added to the list of already learned sensors.

6.4. Validation

In the following chapter, we evaluate the reinforcement algorithm. For this purpose, we look at two

subjects. First, we make some validations of the reinforcement algorithm. Second, we look at some

outputs of the simulator.

In the following, we add some inputs to the reinforcement learning algorithm and discuss the happen-

ings. In table[6.1|the first column represents the minute the line was printed.

Time . Forwards without potential
. comment Messages in . return | reward

(minute) to destination messages

13 Random 4 203 400 4

13 get result 3 203 400 0

13 get result 3 206 397 0

13 Random 2 209 394 1
give reward

13 for minute | 1 232 358 1 6
12

13 get result 3 210 396 0

13 get result 3 213 393 0
give reward

13 for minute | 3 237 359 3 6
12

We look at some action from minute three. The second column contains three cases:

Table 6.1.: Comparison optimization routing and epidemic routing

* Random: During the first minute in 10 percent of cases a random number is generated to make

a decision about how many messages should be sent.

* Give reward: If a random number is used for making the decision, this number can be evaluated

a minute later. The minute later the number of forwarded messages to destination is given to
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the reinforcement algorithm.

* Get result: In general, after some time the routing table of the reinforcement algorithm should

be filled more and more. Then the simulator can take results of this routing table.

Here we can see that the random coincidentally generated numbers are four, one and three. Two
coincidentally generated numbers are evaluated in the reinforcement algorithm. They are one and
three from minute twelve. The total count of forwarded messages to a destination is six at the 12th

minute. The result of the routing table here is always zero.

Next, we take a look at the generated routing table.

Forwards without
to destination

1 232 358 1
3 237 359 3

Messages in potential messages | return

Table 6.2.: Comparison optimization routing and epidemic routing

In table [6.2] we can look at an abstract of the routing table. The cases are evaluated at the cases of
table We notice that the evaluated results are marked as the best ones in the routing table. An
additional check gives us feedback that there are no other cases that are evaluated with a different
return. The complete routing table can be found in the attached CD and its extractions, in table

6.5. Evaluation

Since the goal of this work is finding better algorithms than epidemic, we evaluate the designed
reinforcement algorithm in the following section. We focus on the scenario that we have already
focused during the evaluation of optimization routing. We take the random scenario from table
Accordingly, we can compare both protocols in the concluding chapter of this work. The simulation
is carried out for 15 minutes. Because the reinforcement algorithm is computationally intensive, this
is the maximum we can afford with the available computing power. We use the metrics as discussed
in section

Hopcount

We notice that the hopcount values in the both graphs in fig. [6.4] are growing over time and remain

high with some outliers. The vertical value range of the graphs is different. For reinforcement routing,
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Figure 6.4.: Hopcount of Case 1, scale on y-axes vary,
arrow on right indicates direction of improvement

the maximum value of the sum of hop counts is 1200, while for epidemic routing it is 4500. In both
graphs, the maximum value is reached after about twelve minutes. The hop counts look similar, except
the fact that the hop count values for epidemic routing are generally higher than for reinforcement
routing. The smaller hop count of reinforcement routing might indicate a higher rate of delivered
messages to a destination or a higher dropping rate. Either of these cases can be the reason there
are fewer messages with a long lifetime. The sum of the hop counts depends on the count of sent

messages per minute. Next, we look at the metric of forwarded messages.

Forwarded messages
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Figure 6.5.: Forwarded messages of Case 1, scale on y-axes vary,
arrow on right indicates direction of improvement

Here, we discuss the graphs from fig. [6.5] These graphs look similar. Reinforcement learning has
more outliers than epidemic routing. The difference in outliers might be caused by the randomness
factor used in reinforcement routing. Ten percent of the decision of how many neighbors should

be recipients of the message is generated coincidentally. Another difference is that reinforcement
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6.5. Evaluation

routing is capable of sending 300 messages per minute, while epidemic routing sends approximately
600 messages per minute. Like in optimization routing this might be due to the reason that not every
message is sent directly. The receiver is not overloaded and has a little bit more time to forward it.
When a sender sends all of his messages directly, the receiver can only handle a few of them. But the

sender marks them as already sent.

Dropping rate of messages
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Figure 6.6.: Dropped messages at Case 1, scale on y-axes vary,
arrow on right indicates direction of improvement

The dropping rate is shown in fig. [6.6] Here once again the graphs look similar. We notice again that
reinforcement learning has a higher rate of outliers, which might be caused by the randomness factor

of the algorithm. In addition, epidemic routing has about ten drops more per minute.

Received messages at destination

Finally, we discuss the delivery rate. We can look at it in fig. The general impression is that
reinforcement routing always delivers more messages to a destination than epidemic routing. The
maximum amount of received messages in a minute for reinforcement routing is 15, which occurs
during the first minute. Epidemic routing forwards no message to a destination during the first minute.
This could be due to the reason that reinforcement routing is not sending every message immediately.
There are many situations, where reinforcement routing goes through the buffer and tries to send the
messages to the destination. We have already discussed the reason for sending more messages in

reinforcement learning. For epidemic routing, the maximum is five.

In this section, we do not make an evaluation of multiple simulation runs, since reinforcement learning

requires a lot of running time.
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15
]

rrrrrrrr Epidemic routing

— Simulated annealing
routing

10
Il

Messages received by destination
Improvement

Time

Figure 6.7.: Received messages at Case 1, scale on y-axes vary,
arrow on right indicates direction of improvement

6.6. Conclusion

In this chapter, we have discussed the implementation of a reinforcement learning algorithm for cre-
ating a routing table. Because of this as well as for preparation of a prototype more introduction
was necessary. We were able to achieve good results with this prototype. The number of received
messages per minute is about 5 more than in the other methods. We did not analyze using boxplots
because the required computing power is too high. In conclusion, reinforcement learning constantly

performs much better regarding all considered benchmark criteria.

Finally we found a third algorithm that use global information and performs better than epidemic

routing.
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Chapter 7.

Conclusion and future work

Since opportunistic networks seem to fit to a large topic of real world problems on the one hand, on
the other hand routing protocols have to solve the difficult issue of finding a routing path which exists
probably only in future or never as full connected path. Since the routing using no information was
able to be improved by using local information, the strong suspicion develops that further improve-
ments can be achieved through the use of global information. We designed three algorithms to create
routing tables based on a sending probability. These algorithms are using global network information.

In this chapter, we discuss the results of this work. We will also look at future work in this field.

7.1. Conclusion

We already set the design options optimization routing, simulated annealing routing and reinforcement
routing against outputs of epidemic routing in this thesis. The comparison against each other is done

in this chapter.

We began with optimization routing. The comparison to epidemic routing can be improved in all
cases in terms of every discussed metric, especially forwarded messages to a destination. However,
the improvement was in the range of 0-10 received messages by destinations. This improvement was
only caused by the fact that we did not send every message immediately when it was possible. No
information or attributes were used from the network. Thus, it was comparatively simple to set this
routing up. We can recommend this routing for the cases when the setup needs to be fast and the

routing should be a little better than flooding.

In chapter[5] in which the simulated annealing algorithm was explored, the outputs were significantly
better than the ones from epidemic routing. But the reason for that was not the simulated annealing
algorithm. For the routing the construction of W;, W, and W5 like in equations [5.1] [5.2] and [5.3]
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was much more important. Simulated annealing is like the optimization from chapter ] Simulated
annealing is good for giving more exact optima. Thus, it was helpful to use it here. We have shown

that the structures of Wy, W,, and W3 are helpful to increase the delivery rate.

Reinforcement routing was able to achieve much better results than epidemic routing. In the case
discussed in this work and in all other test cases reinforcement learning always generated better results
than epidemic routing. Thus, reinforcement routing is better than optimization routing in terms of the
considered metrics. The disadvantage is that reinforcement routing needs a lot of time to set it up.
Time of setting up is made of implementing the reinforcement learning algorithm and training the
learning model, and therefore the available routing table. For the purposes of this work we set up a

contextual network and used three discreet parameters.

In case one has to choose between these two approaches we point out the general difference between
reinforcement routing and simulated annealing or optimization routing. We have seen that the simu-
lated annealing approach should be preferred to optimization routing if constructing the routing table
can be done without time pressure or limited computing capacity. Otherwise, optimization routing
should be used. After the routing table is done, both routing protocols are equally fast. Reinforcement

learning routing should be used if a good delivery rate is needed and computing capacity is high.

Routing algorithm Effectiveness | Efficiency Time
Set up | Routing
Optimization routing + - + +
Simulated annealing routing + + - +
Reinforcement learning routing + + - -

Table 7.1.: Comparison design options of this thesis

In the comparison between design options is summarized. Design criteria of this work are effi-
ciency and effectiveness. In terms of effectiveness we discuss the criteria of received messages by
destination. For discussion of efficiency we look at rate of forwarded messages, hop count and drop-
ping rate of a message. All of the three design options reached nearly the same effectiveness which
is better than the one of epidemic routing. The efficiency of optimization routing exceeds the one of
epidemic routing, however it still has potential for improvement. Simulated annealing routing and
reinforcement learning routing achieve similar efficiency which is much better than the one of opti-
mization routing. The time factor is divided in time of finding the optimized routing table and time
of execution of adaptive routing. Optimization routing is set up in a short time and the execution is
in O(1). The set up for simulated annealing takes a long time, however it is fast in execution (O(1)).

The reinforcement learning algorithm is time consuming in implementation and execution.
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7.2. Future Work

We have seen several approaches for increasing the delivery rate. For our next work, we would focus
more on one approach. Here it was not clear which approach had enough potential for a whole work.
Retrospective reinforcement learning would have the most potential. The expansion of the defined

structure in chapter 5| would also have enough potential.

7.2. Future Work

In the following chapter are future works for the three design options of this thesis presented. In
in future project a larger reinforcement learning model could be set up and a comparison between
different software libraries can be done. Next new structures like W, W, and W3 can be defined. At

least simulated annealing can be used without structures like W, W, and Ws.

The most prioritized future work is an implementation of a full reinforcement learning problem, as
indicated in chapter[6] This would improve the learning process. On the other hand, the network state
could be significantly expanded. In this work, the network state was only represented by three types of
information. In general, all network and host attributes should be represented in a network state. This
includes, for example, the location of all hosts and the buffer status. Then the learning algorithm would
have much more possibilities to learn the best routing strategies. Thus, in our opinion, the section of
reinforcement routing has the highest potential for future work. The reason for the high prioritization
is the large disadvantage of reinforcement learning in this work: Large computational complexity.
But this disadvantage can be avoid by set a initialization of the learning or routing table. Therefore
an initial simulation run has to be run, like in optimization and simulated annealing routing. The
resulting routing table is saved and can be used for every routing next time. In reinforcement routing
this routing table is continuously updated. The frequency of update can be manipulated by setting
variable randomT hreshold. A random number and thus also a computational complex updating of
the routing table is done often if randomT hreshold is large. Goal of future work could be to combine
the advantages of low computational complexity of optimization routing and simulated annealing at
running time and the good results, in terms of count of forwarded messages, of the reinforcement

learning implementation of this work.

Next we look at future work regarding the simulation annealing routing, explored in chapter 5] We
found some structures for calculating a sending probability. In future works, other structures could
be found as well. For example, for decreasing the standard division of deviation rate. The network is
much more calculable, which can be helpful for increasing the performance of applications. Another
example could be decreasing power usage, with second prioritization. The found structures in this
work achieve second best results of this work and there are no direct disadvantages to fix in future

work. Therefore finding new structures is prioritized with the second highest significance. The goal
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of future work would be to adapt the mechanism to improve other attributes like delivery rate in this

work.

The optimization, which was done in chapter @ could also be done using simulated annealing. There
can be found a better optimum for sending probability. This could result in another performance
optimization based on delivery rate. Additionally, optimization can be run for more cases, like host
numbers up to 1000. Because of limited computing capacity, we only ran it for a few scenarios.
Therefore future work build larger routing tables. Additionally, a goal of feature work could be to

remove the structures W, W, and W3 and run the simulated annealing algorithm again.

All in all the work has shown there are a lot of improvements possible in terms of opportunistic net-
works. Since the computational complex part can be done in previous for optimization and simulated
annealing routing, the protocols can be easy adapted to real world scenarios. This is also valid for
the reinforcement learning routing, since the training can be done remote and updates are send after
doing the model training or hard coded time units. Therefore I expect some future work in which the

algorithms of this work are adapted to some projects used in real world.
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Appendix A. Routing tables

htl  size hosts percent | optimization | flooding
2 75 5 69 1.88 1.38
2 75 15 9 5.92 1.72
2 75 25 39 9.04 1.64
2 75 35 89 12.15 1.96
2 75 45 9 16.20 1.72
2 85 5 89 1.69 1.00
2 85 15 29 5.68 2.16
2 85 25 79 8.52 2.08
2 85 35 9 11.36 1.77
2 85 45 9 14.60 1.96
2 95 5 79 1.64 0.92
2 95 15 29 5.56 1.76
2 95 25 9 8.35 1.85
2 95 35 9 10.64 2.20
2 95 45 9 13.80 1.69
2 105 5 79 1.28 1.12
2 105 15 99 4.38 1.28
2 105 25 9 7.60 1.88
2 105 35 9 10.00 1.31
2 105 45 9 11.58 1.84
2 115 5 49 1.12 1.00
2 115 15 19 4.80 1.62
2 115 25 9 6.96 1.72
2 115 35 9 9.88 1.88
2 115 45 9 11.58 1.84
6 75 5 49 2.40 1.48
6 75 15 9 7.92 2.32
6 75 25 9 12.65 2.12
6 75 35 9 16.08 2.12
6 75 45 39 20.24 2.12
6 85 5 89 2.23 1.44
6 85 15 39 7.24 2.60
6 85 25 9 11.64 1.76
6 85 35 19 14.92 2.08
6 85 45 19 19.00 2.12
6 95 5 99 1.88 1.27
6 95 15 59 6.04 2.46
6 95 25 9 10.85 2.65
6 95 35 9 14.44 1.60
6 95 45 9 17.16 2.32
6 105 5 99 1.84 0.96
6 105 15 9 6.64 2.24
6 105 25 9 9.32 2.00
6 105 35 9 12.08 1.92
6 105 45 9 15.76 1.72
6 115 5 79 1.35 0.96
6 115 15 29 5.28 2.50
6 115 25 9 8.88 1.81
6 115 35 19 11.19 2.62
66 6 115 45 9 14.32 2.40

Table A.1.: Comparison optimization routing and epidemic routing - Part 1



htl size hosts percent | optimization | flooding
10 75 5 49 2.00 1.27
10 75 15 49 8.16 2.12
10 75 25 19 12.52 2.40
10 75 35 19 16.77 2.15
10 75 45 9 21.12 2.32
10 85 5 69 2.12 1.31
10 85 15 19 7.92 2.40
10 85 25 9 11.32 1.92
10 85 35 9 16.00 2.92
10 85 45 9 18.88 1.88
10 95 5 59 1.84 1.12
10 95 15 49 6.52 2.04
10 95 25 9 11.72 2.12
10 95 35 9 14.23 2.20
10 95 45 9 16.46 2.04
10 105 5 79 1.62 1.15
10 105 15 29 5.92 1.56
10 105 25 9 10.32 2.19
10 105 35 9 12.36 1.73
10 105 45 9 16.32 2.00
10 115 5 79 1.56 0.92
10 115 15 9 5.36 2.16
10 115 25 9 9.04 2.20
10 115 35 9 11.44 2.19
10 115 45 9 14.88 1.96
14 75 5 89 2.23 1.50
14 75 15 9 7.88 1.76
14 75 25 19 13.20 1.84
14 75 35 9 17.62 2.68
14 75 45 9 21.50 1.84
14 85 5 89 2.00 1.32
14 85 15 39 7.68 1.62
14 85 25 9 11.80 2.32
14 85 35 9 15.20 2.56
14 85 45 9 18.32 2.24
14 95 5 99 1.92 1.19
14 95 15 29 6.40 1.52
14 95 25 9 10.52 1.92
14 95 35 9 14.76 2.16
14 95 45 9 16.84 2.36
14 105 5 89 1.56 1.27
14 105 15 19 6.16 2.04
14 105 25 9 10.24 2.23
14 105 35 9 13.84 2.08
14 105 45 9 16.92 1.73
14 115 5 69 1.35 1.35
14 115 15 9 5.80 1.69
14 115 25 9 9.48 2.23
14 115 35 9 11.52 2.44
14 115 45 19 13.48 2.12

Table A.2.: Comparison optimization routing and epidemic routing - Part 2
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htl size hosts percent | optimization | flooding
18 75 5 49 2.54 1.24
18 75 15 9 8.88 2.12
18 75 25 9 12.68 2.19
18 75 35 9 17.08 2.04
18 75 45 9 21.44 1.92
18 85 5 49 2.08 1.27
18 85 15 19 7.72 2.32
18 85 25 9 12.16 2.20
18 85 35 59 14.56 1.88
18 85 45 9 18.16 2.00
18 95 5 89 1.92 0.77
18 95 15 49 6.48 1.84
18 95 25 9 10.64 2.08
18 95 35 9 15.00 2.08
18 95 45 9 17.80 2.40
18 105 5 89 1.48 1.12
18 105 15 9 6.32 1.88
18 105 25 9 9.85 2.27
18 105 35 9 13.00 1.80
18 105 45 9 15.54 2.58
18 115 5 79 1.42 0.76
18 115 15 29 5.56 2.23
18 115 25 9 8.72 1.84
18 115 35 19 11.36 2.04
18 115 45 9 14.08 2.31

Table A.3.: Comparison optimization routing and epidemic routing - Part 3
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Count of Count of already

Count of potential

action

neighbors forwarded messages messages

0 1

0 2

1 2

2 5

2 6

3 7

4 7

4 10
5 11
8 12
5 13
7 13
5 14
8 14
9 14
11 16
11 19
26 26
28 27
29 27
24 28
24 28
27 28
26 29
29 29
20 31
21 31
20 32
32 33
30 34
36 34
51 34
16 35
36 36
37 36
49 36
49 36
56 37
13 38
32 38
43 38
47 38
54 38
53 39
41 40
43 40
46 40
56 40
39 42
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Table A.4.: Routing table created by reinforcement learning - Part 1
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Count of Count of already Count of potential .
i action

neighbors forwarded messages messages

3 60 42 3
2 43 43 2
4 43 43 1
3 56 43 2
4 59 43 3
7 37 44 5
2 60 47 2
1 60 49 0
1 60 50 1
2 63 50 2
1 65 50 0
2 63 51 2
3 63 51 3
2 64 51 1
2 96 51 1
3 63 52 2
2 66 52 2
1 95 52 0
5 61 53 3
2 66 55 0
5 92 55 2
8 81 57 3
1 87 57 0
2 86 58 1
5 88 59 1
3 68 62 3
1 71 64 1
1 109 64 1
1 70 65 0
2 71 65 0
8 73 65 0
2 108 65 1
3 68 67 1
4 102 67 0
4 106 67 2
2 100 69 0
6 98 71 4
2 130 71 2
3 97 72 2
1 127 72 1
4 109 73 0
5 127 74 2
1 141 76 0
7 120 79 0
5 137 80 1
6 136 81 5
4 117 82 1
1 145 82 0
1 146 83 1

Table A.5.: Routing table created by reinforcement learning - Part 2




Count of Count of already

Count of potential

neighbors forwarded messages messages action
4 142 25 :
8 113 36 4
4 132 %7 0
3 151 90 N
2 147 91 )
3 146 92 >
4 147 94 0
4 159 97 4
1 154 99 X
2 152 101 0
4 155 101 0
1 159 101 1
2 154 102 )
6 162 105 P
1 161 106 0
3 159 108 |
1 166 110 1
10 166 122 10
1 168 125 0
2 166 127 0
3 169 129 3
6 30 131 6
2 176 136 1
1 24 137 0
2 169 137 0
1 175 137 0
3 174 138 2
5 22 139 3
4 26 139 0
2 173 139 |
4 172 140 3
8 173 140 6
1 316 140 |
3 171 141 )
2 12 142 0
2 171 142 )
3 314 142 |
! 11 143 0
4 18 143 0
3 170 143 0
1 10 144 0
1 242 144 0
7 253 144 0
2 241 145 )
2 5 146 ’
1 25 146 0
1 167 146 g
2 277 146 1
5 7 147 ’

Table A.6.: Routing table created by reinforcement learning - Part 3
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Count of Count of already Count of potential .
i action

neighbors forwarded messages messages

1 177 147 0
5 250 147 2
1 313 147 0
2 3 148 0
2 6 148 1
1 176 148 0
2 241 148 2
2 310 148 2
1 312 148 0
2 2 149 1
2 5 149 1
1 30 149 1
1 175 149 0
1 205 149 0
2 241 149 2
1 245 149 1
6 274 149 3
1 300 149 1
1 310 149 1
1 311 149 0
1 1 150 0
3 182 150 0
4 241 150 4
3 244 150 2
3 278 150 3
2 310 150 1
1 0 151 0
1 36 151 1
1 39 151 1
2 39 151 2
2 203 151 0
3 228 151 0
1 243 151 0
2 272 151 0
5 245 152 0
3 271 152 2
5 297 152 2
1 30 153 1
5 185 153 3
1 206 153 1
4 238 153 1
9 290 153 2
4 303 153 4
5 36 154 2
11 159 154 3
4 178 154 0
1 241 154 1
4 280 154 0
4 306 154 0

Table A.7.: Routing table created by reinforcement learning - Part 4




Appendix B.

Algorithm

Listing 1: The Policy-Based Agent

class agent () :

def _ _init_ (self, 1lr, s_size,a_size):

self

.state_in= tf.placeholder (shape=[1],dtype=tf.int32)

state_in_OH = slim.one_hot_encoding(self.state_in,s_size)

output = slim.fully_connected(state_in_OH,a_size,

biases_initializer=None,

activation_fn=tf.nn.sigmoid,

weights_initializer=tf.ones_initializer())

self

self.
self.
self.
self.

.output = tf.reshape(output, [-1])

chosen_action = tf.argmin(self.output,0)

reward_holder = tf.placeholder (shape=[1l],dtype=tf.float32)
action_holder = tf.placeholder (shape=[1l],dtype=tf.int32)

responsible_weight =

tf.slice(self.output,self.action_holder, [1])

self

.loss = —(tf.log(self.responsible_weight) xself.reward_holder)

optimizer = tf.train.GradientDescentOptimizer (learning_rate=lr)

self

.update = optimizer.minimize (self.loss)
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