Aggregation and Map-Matching of Mobile Cellular
Network Traces

Norbert Goebel Adrian Skuballa Martin Mauve Kalman Graffi

Heinrich Heine University, Diisseldorf, Germany
Computer Science Department
Computer Networks Group

HEINRICH HEINE

UNIVERSITAT
DUSSELDOREF

TECHNICAL REPORT TR-2016-001
HEINRICH HEINE UNIVERSITY, DUSSELDORF, GERMANY
COMPUTER SCIENCE DEPARTMENT

JuLy 2016



Aggregation and Map-Matching of Mobile Cellular
Network Traces

Norbert Goebel Adrian Skuballa

Martin Mauve Kalman Graffi

Department of Computer Science, University of Diisseldorf, Germany
{goebel, mauve, graffi} @cs.uni-duesseldorf.de , adrian.skuballa@uni-duesseldorf.de

Abstract—The trace-based simulation of Vehicle-to-X (V2X)
applications relies on sound traces in a format usable by the simu-
lation framework. However traces normally use gps coordinates
and traffic simulators operate on graph based road networks.
Furthermore positions gathered using gps are error prone. Thus
some post-processing of the traces has to be conducted to map-
match and prepare them for the V2X simulation framework.
In this paper, we introduce our post-processing techniques used
to make traces generated by the Rate Measurement Framework
(RMF) available to our trace-based simulation environment.
Furthermore we present a walk-through usage example of our
tool-chain.

I. INTRODUCTION

A fundamentally important requirement for trace-based sim-
ulations are sound traces in a format usable by the simulation
model. While high quality network traces of high volatile
networks can be obtained by various means, they often need to
be aggregated to be useful for the simulation model. Network
traces for trace-based simulation of V2X communication add
the challenge of map-matching, where Global Positioning
System (GPS) coordinates need to be matched onto a road
network graph.

We utilize the RMF [1] to obtain high quality network traces
of mobile cellular networks while being on the road.

During each RMF measurement drive, the following data
is collected and stored with corresponding timestamps in
nanoseconds:

o Available data rate, drop rate and delay for each commu-
nication direction with a frequency of up to 5 Hz.

o The position of the measurement vehicle in 1 Hz intervals

e Modem status information regarding the current network
condition, like the used network cell sector and the used
frequency band, gathered with a frequency of 5 to 10 Hz.

The collected data has to be post-processed before it can
be used as a basis for our simulation framework [2] for
“Coupled Simulation of Mobile Cellular Networks, Road
Traffic and V2X Applications using Traces”. The simulation
framework requires a graph based simulation database with
tuples (e, 0, g,t,a,d, [, c). Each tuple contains the edge ID, the
offset on the edge, the group ID, the measurement time, the
available data rate, the backbone delay, the loss probability
and an ID representing the used cell sector. Hence a major
task is the matching of coordinates in latitude and longitude
onto the road network graph, which uses edges and offsets
to define positions. Thereby each edge has a start and an

endpoint and each point in between can be defined using
the offset. As a side condition, the edgelDs have to be
convertible on the fly during the simulation to those used by
the traffic simulator Simulation of Urban Mobility (SUMO),
which has its own naming convention and itself transform
OpenStreetMap (OSM) XMLs to its format. As SUMO at that
point adds many small edges for lane switching, which are not
present in the real world, we can not use the SUMO net graph
directly for the map-matching process.

At least the following two post-processing steps, which are
described in the paper at hand, had to be implemented:

o map-match the error prone GPS positions onto a road
network graph

o map the measured network characteristics to positions on
the same road network graph

Further challenges solved in the paper at hand are:

o the combination of multiple measurement traces of the
same area for the simulation

« finding representatives for measurement groups

¢ choosing specific network conditions for the simulation
by selecting traces which fit user defined network char-
acteristics as closely as possible

We start the remainder of this paper by presenting the
related work in Section II, followed by a short summary of
the prerequisites for the post-processing in Section III. Further
on we explain the map-matching process and the aggregation
of multiple traces in Section IV. We show how the map-
matched gps-data is transformed into (road-edge, offset) tuples
and how a minimal SUMO net-graph containing only edges
with measurements is built for the simulation. In Section V
we present an example of the usage of the complete post-
processing tool-chain. We conclude the paper with Section VI.

II. RELATED WORK
A. OpenStreetMap (OSM)

OpenStreetMap [3] is a free, community driven world map.
It offers decent map coverage for most parts of the world.
The map data is accessible as map tiles and as XML files,
which define the underlying data used for map rendering.
The main components of an OSM XML file are defined by
node and edge tags. While a node tag can contain many
attributes, we just use the unique id and the position given
as latitude and longitude. Each way tag can store multiple
attributes, too, and the most important one is its unique id.



<node 1d="2409285517"
lon="6.8725373"/>

<node 1d="296343732"
="6.8726286"/>

lat="51.1622775"

lat="51.1622536" lon

<way 1id="1011096">
<nd ref="2409285517"/>
<nd ref="296343732"/>

<tag k="highway" v="secondary"/>
<tag k="lanes" v="2"/>

<tag k="1lit" v="yes"/>

<tag k="lit_by_gaslight" v="no"/>
<tag k="maxspeed" v="50"/>

<tag k="name" v="Benrather_Schlossallee
"/>
<tag k="postal_code" v="40597"/>
</way>

Listing 1. OpenstreetMap tags example with stripped creationtime, version
and usernames.

In addition, each way can have multiple child tags, which are
either node (nd) tags or key-value tags. Every way representing
a road segment has at least two nd tags, which reference
node ids representing the consecutive course of the road’s
segments. It optionally stores multiple key-value tags defining
characteristics like speed limit, number of lanes or street type.
An example excerpt of an OSM XML file with only one way
consisting of two nodes is shown in Listing 1. We stripped
the creation timestamps, version information and user-names
in the tags shown, as they are not relevant for the paper at
hand.

B. Map-Matching

The process of determining the most probable path a vehicle
has traveled on a road network while analyzing a series of
GPS positions is called map-matching. While GPS positions,
as described in [4], are error prone, many use cases like
navigation systems rely on the knowledge of the whereabouts
of the vehicle on the road network. Thus many different
map-matching algorithms were developed in the last two
decades. Navigation systems have to determine the current
position of the vehicle using an online map-matching algo-
rithm. Such algorithms can only use the current and previous
GPS measurements for the calculation of the current position
on the road network graph. This is the main reason why their
estimation is especially error prone on intersections. Offline
map-matching algorithms, on the other hand, are used after
a complete GPS trace has been recorded. They thus have
an omniscient view on the complete measurement series and
can use all GPS positions for the map-matching of every
measurement. This can significantly raise the quality of the
estimated vehicle’s path on the road network. As conducting
the network measurements using the RMF does not rely on
map-matched positions on the road network, we focused on
offline map-matching algorithms. While many offline map-

matching algorithms incorporate data from a dead reconning
device, the authors in [5] presented an offline map-matching
algorithm that only relies on GPS coordinates and a directed
graph representing the road network. Their algorithm uses the
mutiple hypothesis technique (MHT) and works by minimizing
the sum of the euclidean distances of all GPS measurements
to the estimated routes. Starting with the IV closest links of the
road network to the first GPS coordinate, it keeps evaluating
the NV best routes — those with the smallest cumulative errors
— while matching additional GPS coordinates. At junctions,
additional routes for every outbound edge is added to the list
of routes. After a new calculation of the distances, the routes
with the highest distances are removed from the list of best
routes until only N routes are left. The authors have shown
that their algorithm is fast and yields good matching results.
Thus we opted for this algorithm in our implementation.

C. Cellular Network Simulation

Introduced in [6], Trace Based UMTS Simulation (TBUS)
forms the base for our cellular network simulation model. We
extended the simulation model with a fair cell share model and
implemented it as an Objective Modular Network Testbed in
C++ (OMNeT++) module in [2]. Therein we also presented
our complete simulation framework using the V2X Simulation
Runtime Infrastructure (VSimRTI) as the simulation core,
SUMO for traffic simulations, OMNeT++ with our library
libtbus for the simulation of the cellular network and the V2X
application simulator (VSImRTI_App). We used the simu-
lation framework with measurements gained with the RMF
introduced in [1] and the map-matching process described in
the paper at hand to simulate an Emergency Warning Appli-
cation (EWA) using European Telecommunications Standards
Institute (ETSI) standards and an enhanced, mobile cellular
network aware EWA version. Using the simulation results, we
were able to show that ETSI-defined timeouts for EWA appli-
cations have to be altered for cellular network communications
and that an offloading of traffic to the geoserver significantly
lowers the bandwidth needed, without sacrificing traffic safety.

III. PREREQUISITES AND FORMAT OF THE NETWORK
TRACES

As a prerequisite to our post-processing, at least one net-
work trace has to be gathered using the RMF [1]. Each trace
generates four files which are needed as input for the post-
processing:

e cellinfo.txt contains a consecutive list of timestamped

status information of the modem (like used network cell)

o downstream-data.csv contains timestamped network char-

acteristics observed in the downstream direction

e upstream-data.csv contains timestamped network charac-

teristics observed in the upstream direction

o gpsd.log contains logged gps data like position and time

Furthermore, a genuine OSM XML with the mapping
data of the regions the measurements were conducted in
is needed. In the remainder of this paper we call this file
genuine.osm.xml.



| Prerequisites I

| - - T =< |
- ~ B
— -~ |

Trace(s) generated h )
by the RMF '

genuine.osm.xml -
including the region Vo
R - of interest 7

OSMParser

Trim the
genuine.osm.xml

roads.osm.xml

JXMapMatchVer3

Map-match a trace

route.osm.xml

map-matched
measurement

14
DataUinion OSMJoin
Combining Join multiple

route.osm.xml

joined-routes.osm.xml

map-matched traces

4

Cell sector
identification

Filter desired
network characteristics

filtered
map-matched
measurements

N

\
| VSimRTI V2X Simulation )

Figure 1. Overview of the post-processing work-flow.

The software needed for the implementation should run on
any Linux or Windows platform. Working java, sqlite3, SUMO
and (for the very last step) VSimRTI installations are required.

IV. POST-PROCESSING STEPS

We split the post-processing of our network traces into
multiple steps. This significantly reduces the workload if
multiple measurements of the same area need to be processed

and also allows flexible aggregation or selection of measure-
ments. Figure 1 gives an overview about the multiple steps
in our post-processing chain, which we describe in detail in
the following subsections. The dashed red lines surrounding
the prerequisites and the VSimRTI V2X simulation are not
part of the post-processing work-flow. The post-processing
itself is split into four major parts with headings naming
the corresponding programs developed for the task at hand.
Bubbles enclosed by rectangles mark steps in the work-flow.
Round bubbles surround output files generated by the previous
process.

A. Trimming the OSM File (OSMParser)

In the first post-processing step, the OSMParser is
used to shrink a genuine OpenStreetMap XML file
(genuine.osm.xml) by filtering all information, that is
not related to roads and by removing all parts that do not
belong to the measurement region or the region of interest.
The region of interest hereby is a rectangular region defined
by latitude and longitude ranges. These ranges can either be
defined by hand through a command line switch, or they are
extracted from the gpsd.log file(s) of measurements passed
to the OSMParser. Furthermore, the OSMParser performs
some operations to assure that a bijective function between
OSM coordinates and the (edgelD, offset) tuple in the traffic
simulator SUMO exists. As SUMO’s netconvert merges nodes
with the same coordinates, but different nodelDs into one
node, it might create intersections in the SUMO road-graph
which are not present in the OSM data. Thus the OSMParser
searches for nodes with identical latitude/longitude coordinates
and increments the latitude of each but the first “duplicate”
nodes in steps of 0.00000001 degrees (approximately one
millimeter). Additionally, the OSMParser splits OSM ways
consisting of more than two nodes into separate ways consist-
ing of exactly two nodes to circumvent a length calculation
problem of netconvert.

The output generated by the OSMParser is an OSM com-
patible XML-File, which we refer to as roads.osm.xml.
It only consists of nodes and ways. The nodes have unique
nodelDs and distinct coordinates and are referred to by at
least one way. The ways have unique wayIDs, too, and refer to
exactly two of these nodes. Each edge is directed. An excerpt
of a roads.osm.xml with a single way and its two nodes
is shown in Listing 2.

The roads.osm.xml output of the OSMParser then is
fed to SUMO’s netconvert, which generates a corresponding
SUMO road network graph roads.net.xml from it. An
excerpt showing the SUMO edge generated from the way
shown in Listing 2 is shown in Listing 3. It shows that
netconvert uses the wayID and the nodelDs defining the way
to build the unique edgelD for SUMO’s network graph.

This network graph is used for the traffic simulations by
SUMO in the VSimRTI V2X simulations. As the nodeIDs and
waylIDs can change in OSM over time (e.g. between releases)
roads.osm.xml and roads.net.xml are only useful
if used in conjunction. roads.net.xml files generated



<node 1d="1573051002" lat="51.1227132"
lon="6.7750606"/>
<node 1d="1836570477" lat="51.1227595"
lon="6.7750414"/>
<way 1d="1000596">
<nd ref="1573051002"/>
<nd ref="1836570477"/>

<tag k="highway" v="residential"/>

<tag k="maxspeed" v="30"/>

<tag k="name" v="Am_Schwimmbad"/>

<tag k="old_way_id" v="23645367"/>

<tag k="oneway" v="yes"/>

<tag k="old_oneway" v="yes"/>
</way>

Listing 2. Excerpt of a roads.osm.xml.

<edge id="1000596
_1573051002_1836570477_1573051002"
from="1573051002" to="1836570477" priority=
"—1">
<lane id="1000596
_1573051002_1836570477_1573051002_0"
index="0" speed="8.33" length="4.02"
shape="2843.76,42.01_2842.87,45.93"/>
<lane id="1000596
_1573051002_1836570477_1573051002_1"
index="1" speed="8.33" length="4.02"
shape="2840.55,41.27_,2839.65,45.20"/>
</edge>

Listing 3. Excerpt of a roads.net .xml.

using a different roads.osm.xml are not compatible for
the ongoing map-matching and simulation process. But if
the measurement and simulation area does not change, the
generated roads.osm.xml and roads.net .xml files can
be used for multiple map-matching processes and simulations
even if different traces are used.

The significant size reduction of the
genuine.osm.xml file reduces loading and execution time
of the actual map-matching process and the simulation.

B. Map-Matching (JXMapMatchVer3)

Given that a network trace and corresponding
roads.osm.xml and roads.net.xml files exist,
the second post-processing step, the actual map-matching,
can be carried out. We developed a semi automatic graphical
Java Application called JXMapMatch to do the actual map-
matching. In a first step, it map-matches every collected GPS
position (gpsd.log) onto the road network graph described
by the roads.osm.xml using a modified version of the
algorithm introduced in [5] and explained in Section II. After
the algorithm has calculated the most probable route taken
by the measurement vehicle, the graphical editor allows
manual changes of the route. This enables an easy correction
of map-matching errors caused by bad gps accuracy or
faulty mapping data. Finally, the actual measurement data
is matched onto the road network graph by interpolating
the position based on the timestamps of each measurement

—— e Y Y= = e = —

measurement measurement
edge of trace 1 of trace 2
——— [ ¥

Figure 2. Example of an edge that is passed two times.

and the map-matched route taken by the vehicle. Each
map-matching process using JXMapMatch generates multiple
output files:

1) multiple KML files are generated, which allow the easy
visualization of the measurements using Google earth
(71

2) map-matched measurements (map-matched.csv)

3) an even smaller version of the roads.osm.xml file
containing only the roads used in the map-
matched traces is generated, which we refer to as
route.osm.xml

C. Identifying Network Cell Sectors and Combining Multiple
Measurements (DataUnion)

The third post processing step, implemented as DataUnion,
addresses two challenges:

1) it identifies the different cell sectors of the mobile cellular
network
2) and it allows the combination of multiple measurements

1) Identifying Network Cell Sectors: For the trace-based
simulation it is important to know the cellular network cell
sector the tracing vehicle was communicating with at a specific
time. As this information is not readily available, it must
be derived from the logged modem information. The RMF
logs the Location Area Code (LAC) and the CelllD when
communicating with a 2G cellular network cell and, when
using a 3G network connection, the Channel and the Primary
Scrambling Code (PSC). On the one hand, two neighboring
network cells must not use the same settings, as their com-
munication would interfere. On the other hand, the number
of combinations of LACs and CellIDs respectively channels
and PSCs is limited. Thus multiple cells with the same settings
exist. DataUnion therefore first groups measurements with the
same connection settings. Afterwards it checks the distances
of the measurements in any group and forms subgroups if
measurements are farer apart than a parameterized distance.
We set the default for this distance to 5 km as mobile cellular
network cells can be quite large and the 5 km distance worked
well in all our traces. Each such subgroup is assigned a
unique CellID by DataUnion, which is associated with the
corresponding mobile cellular network characteristics.

2) Combining Multiple Measurements: Often the map-
matched measurements of multiple traces need to be combined
to enlarge the simulation area, whereas in other situations it
is desirable to aggregate multiple measurements of the same
area.

Figure 2 sketches an example situation where an edge is
passed two times during measurements. Merging the traces
of Figure 2 based on their offset on the edge would lead to the



sequence 21212212112121. Imagine two different situations
for the measurements where the first pass was conducted
during rush hour and the second pass was made in the middle
of the night. Obviously, the measured network characteristics
of these traces can deviate largely. As a consequence, multiple
switches between extremely different network characteristics
are possible. This can have a significant influence on the sim-
ulation outcome and lead to unrealistic network simulations.
Hence DataUnion instead allocates a unique groupID g to
every measurement. Thereby the grouplD g is equal for all
measurements mapped to the same edge and belonging to the
same passing of the edge. For every network measurement the
post-processing thus results in the desired tuple (e, o, g, t, a,
d, 1, ¢) required by our simulation model.

D. Selecting desired network characteristics (DataUnion)

A commonly asked question when analyzing algorithms
target the best, average and worst case scenarios. Defining
equivalent realistic cases for cellular network communication
simulations is quite challenging as the same thoughts disal-
lowing easy combination of multiple measurements have to
be applied, too. Our solution for this is a two step filter option
build into DataUnion. It allows the selection of a specific
groupID per edge for the simulation. In the first step, for
each group of measurements sharing the same grouplD, a
representative value either for the delay, the available data rate
or the loss rate is selected as:

o min: the minimal value of the group

o max: the maximal value of the group

o avg: the average of the group

o med: the median of the group

« minstde: the maximum of “the average value subtracted
by the standard deviation” and the “min” value

o maxstde: the minimum of “the sum of the average value
and the standard deviation” and the “max” value

o avgstde: the arithmetic average of all values within the
range of minstde and maxstde. We specifically added this
option to minimize the impact of measurement outliers
as often only 3 to 10 measurements are forming a value
group.

o ww: the way weighted average of the value group. In
the simulation, a measurement is used from its measured
position until a position with another measurement is
passed. Thus this representative selection weights the
measurements depending on the length their value is valid
on their edge.

In the second step, a single groupID per edge is selected
based on the representative and one of the following, selectable
algorithms:

« all: no filtering is performed

o med-: the groupID with the median representative value
is chosen for each edge. If two medians exist, the first is
chosen.

o med+: the groupID with the median representative value
is chosen for each edge. If two medians exist, the second
is chosen.

Figure 3. SUMO creating negative coordinates for one lane (green) from the
blue edge.

e p € [0,1]: the groupID with the representative closest to
minrep + p - (maxrep — minrep) is chosen.

After these two filter steps exactly one grouplD is chosen
per edge as long as not “all” is selected. All generated tuples
(e, 0, g t, a, d, 1, c) are stored in the graph-based simulation
database. As switches between traces using this algorithm
only occur when changing edges, it is possible to choose
the network characteristics that are most interesting for the
desired simulation scenario, but still retain realistic network
simulations.

E. Joining multiple route.osm.xml files (OSMJoin)

While the measurements itself are combined and aggre-
gated by DataUnion, the route.osm.xmnl files correspond-
ing to these traces need to be merged, too, as the traffic
simulator SUMO needs to know the ways and nodes of
all routes taken by any of the combined traces. We thus
implemented OSMJoin, which allows the joining of multiple
route.osm.xml files while keeping the same nodelDs
and wayIDs used in the roads.net .xml used by SUMO.
Furthermore, OSMJoin helps to avoid a simulation bug caused
by SUMO, which transforms the geographical coordinates of
the given roads.net.xml to its own coordinate system
consisting of positive numbers only. During the creation of the
internal route graph, SUMO converts OSM ways with multiple
lanes into multiple parallel ways with one lane. This, as shown
in Figure 3, can lead to negative coordinates, resulting in
severe problems during the VSimRTI simulation. Figure 4
shows how OSMJoin solves this problem by adding two single
lane horizontal ways above and below the area defined by
the given route.osm.xml file(s). These two ways are not
connected to any other way and the coordinates of the defining
nodes are lower/higher than the coordinates of all nodes.
The used offset is parameterized. This solves the negative
coordinates problem in the simulation and also assures that
the two new ways are not used during the simulation, as each
route in SUMO needs to be at least two ways long.

Afterwards, the joined-routes.osm.xml is used
by netconvert to create the SUMO road network graph
joined-routes.osm.xml.



Volmerswerth o

Grimlinghausen

_ . SG Himmelgel:
D) [Rheinbagen

(89) 5
L\

Allerheligen

Figure 4. OsmJoin generated minimal OSM graph with top and bottom single
lane ways (Map ©OpenStreetMap [3])

V. EXEMPLARY WORKFLOW

In this section we show an exemplary workflow of our
post-processing tool-chain, which is available for download
at github 1:2:3-4_ All listings used in this section show single
line commands executed in a Linux bash shell. To enhance
readability we manually split the commands into multiple
lines — one line for each parameter. We also assume that
the called program either resides in the current directory or
in the path. Furthermore, the input files are accessible in
subdirectories to the current working directory in our examples
following a naming scheme of YYYYMMDD/HHMMSS. In
the shown examples we combine four traces conducted on
3" August 2015.

A. OSMParser and netconvert

The OSMParser is used to shrink a
genuine.osm.xml file by deleting all non-road
information and by constraining to the area of interest.
In the following example the OSMParser parses a genuine
OSM XML file (Parameter -oi) of the City of Diisseldorf and
its surroundings. The name of the output file is defined by
-oo and all gpsd.log files preceded by the -g parameter are
used to constrain the area of interest to the rectangle formed
by (minlon,minlat) and (maxlon,maxlat) contained in the gps
logs.
java OSMParser

—0oi duesseldorf-regbez-latest.osm.xml
—00 roads.osm.xml

~g 20150803/090007/gpsd.log

-g 20150803/091227/gpsd. log

—g 20150803/092532/gpsd. log
-g 20150803/093139/gpsd. log

Uhttps://github.com/hhucn/OSMParser
Zhttps://github.com/hhucn/JXMapMatchV3
3https://github.com/hhucn/OSMJoin
“https://github.com/hhucn/DataUnion

B 1xMapMatchver3 (=1
ramm ! | A5Gk 1 Choose source files
Zenter Sicpard 1 )
- ' | LA : - Routing Graph
== =% H N,
= L i ] OsmParser_Outpu...
= Sidfieatior 1 7 ¥ GPS Track
1 k] C e
e R el k ot gpsdioy
@ ) T T = Werster
Jelpiarge/erdi 3 i ) ; SEED
// % 4 Select overlays
& 7 s DI
%J%e R oce Routing Graph
)f [ GPS Trace
|
Aseiagratuel »
Map Matching Algorithin
9 N Route Algorthm
- e
Erfttal v ] tigz? . container size
]
5 y .’.
e Ealeshiin © f
» i
_\, NSG Himmeigzister
Norf, [Rheinbogdn
\
) B /
((89). % rd
um & e
elien
A Dusseldort
A
» v
. b | o
GPS trace file "gpsd log" with 411 GPS paints Inaded! Boundry min(lonAsty max donfst): (5 747313333, 51 132205000) (6 765798333, 51.164540000)

Figure 5. Screenshot of JXMapMatchVer3 (Map ©OpenStreetMap [3]).

Even though the multi-node ways of the genuine OSM XML
file (303MB in this example) are split to multiple two-node
ways in the output file, the output file is significantly smaller
(<3MB).

As stated in Section  IV-A, the generated
roads.osm.xml needs to be converted to a
roads.net.xml. This can be accomplished by calling
netconvert:

netconvert
——osm-files roads.osm.xml
-0 roads.net.xml

B. Map-Matching with JXMapMatchVer3

In Section IV-B, we explained how the map-matching pro-
cess works. As JXMapMatchVer3 is a GUI-based application,
no command line parameters are needed. Thus we give a
short description of the workflow using the screenshot shown
in Figure 5. The GUI is split into a MapView on the left
and a navigation pane on the right. The MapView shows
OpenStreetMap Map Tiles in the background and (when
roads.osm.xml, roads.net.xml and a gpsd.log are
loaded) the road network graph (lilac) and the logged gps
positions (blue).

C. Aggregating map-matched measurements with DataUnion

After several traces have been map-matched by
JXMapMatchVer3 using identical roads.osm.xml and
roads.net.xml files, their traces can be combined by
DataUnion. As explained in Section IV-D, the data can be



combined leaving multiple grouplDs per edge. An exemplary
command is:

java DataUnion
-0 combined-map-matched.csv
-g all
-1 20150803/090007/map-matched.csv
-1 20150803/091227/map-matched.csv
-1 20150803/092532/map-matched.csv
-1 20150803/093139/map-matched.csv

The aggregation of the same traces with active filtering
could look like:

java DataUnion
-0 filtered-map-matched.csv
-g med-
-t datarate
—r Ww
-1 20150803/090007/map-matched.csv
-1 20150803/091227/map-matched.csv
-1 20150803/092532/map-matched.csv
-1 20150803/093139/map-matched.csv

In this example, for each edgelD with multiple as-
signed groupIDs only one groupID is saved in the
filtered-map-matched.csv output. The selection
bases on the data rates. The representative for each group is
the way weighted average of the group. The group with the
lower median is selected as the only group for this edge in
the filtered output.

D. Joining multiple route.osm.xml by OsmJoin

A usage example for OsmJoin, which combines the routes
of four traces to joined-routes.osm.xml is:

java OsmJoin
-0 joined-routes.osm.xml
-i 20150803/090007/route.
-i 20150803/091227/route.
-1 20150803/092532/route.
-1 20150803/093139/route.

xml
xml
xml
xml

osm.
osm.
osm.
osm.

E. Generate Necessary Files for the Simulator

Finally, the aggregated measurements need to be converted
to a sqlite database which is used by the OMNeT++ module of
the simulation framework. Let the measurements be contained
in filtered-map-matched. csv, then the sqlite database
can be created with the commands:

awk --field-separator="," ’'BEGIN{i=0} /down/ ({
print j. Il, n $24 "’ n $3 ||, n Sll "’ " $12 ", n
$23 ", mw $l5 ", n $l7 ", " $l6; i:i+l}l

filtered-map-matched.csv > filtered-
download.csv

awk —-—field-separator="," ’BEGIN{i=0} /up/ {

print i ll," $24 "," S3 "," sll "," $12 ll,"

$23 ll’ll $15 Il,ll $1’7 ll,ll $16; i=i+1}l
filtered-map-matched.csv > filtered-upload
.csv

cat << EOF | sglite3 test_edge.sqglite
pragma user_version=1l;

.separator ,

.import filtered-download.csv download
.import filtered-upload.csv upload
EOF

Furthermore, the joined-routes.osm.xml needs to
be prepared for SUMO and VSimRTI, which we use for our
V2X simulations in [2]. For the generation of the SUMO net
file we use netconvert with the following parameters:

netconvert
—--osm-files joined-routes.osm.xml
-0 joined-routes.net.xml

The conversion for VSimRTI is performed by scenario-
convert, which is distributed with VSimRTI. We used VSim-
RTI Version 0.15 for our simulations, and thus used the
following command to create the database:

java —jar scenario-convert-0.15.0.jar
——0osm2sumo
—-d joined-routes.db
-1 joined-routes.osm.xml
-n

VI. CONCLUSION

In this paper we introduced the methods used to post-
process our position-based mobile cellular network traces
generated using the RMF. The post-processed output builds
the simulation basis for our V2X simulation framework pre-
sented in [2]. We explained how the conversion from gps
positions to positions in a road network graph works and
introduced our map-matching implementation. Furthermore,
we introduced our aggregation approach for multiple traces
by a multitude of filtering options. In Section V we presented
a walk through example of the complete tool chain. The
complete post-processing tool chain presented in the paper
at hand is available as sources (see Section IV) under MIT
licenses. The results of the post-processing are already actively
used in V2X simulations with the use of VSimRTI and our
OMNeT++ module presented in [2].

REFERENCES

[1] N. Goebel, T. Krauthoff, K. Graffi, and M. Mauve, “Moving Measure-
ments: Measuring Network Characteristics of Mobile Cellular Networks
on the Move,” in 2015 IEEE Vehicular Networking Conference (VNC)
(IEEE VNC 2015), Kyoto, Japan, Dec. 2015.

[2] N. Goebel, R. Bialon, M. Mauve, and K. Graffi, “Coupled simulation of
mobile cellular networks, road traffic and V2X applications using traces,”
in I[EEE ICC 2016 - Mobile and Wireless Networking Symposium (ICC’16
MWN), Kuala Lumpur, Malaysia, May 2016.

[3] OpenStreetMap, “OpenStreetMap,” [Accessed Feb. 14" 2016], Copyright
and License: www.openstreetmap.org/copyright. [Online]. Available:
http://www.openstreetmap.org/

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-
matching vehicle tracking data,” in Proceedings of the 3lst
International Conference on Very Large Data Bases, ser. VLDB
’05. VLDB Endowment, 2005, pp. 853-864. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083592.1083691

[5] F. Marchal, J. Hackney, and K. W. Axhausen, “Efficient Map-
Matching of Large GPS Data Sets - Tests on a Speed
Monitoring Experiment in Zurich, volume 244 of Arbeitsbericht
Verkehrs und Raumplanung,” Tech. Rep., 2004. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.113.4605

[6] N. Goebel, M. Koegel, M. Mauve, and K. Graffi, “Trace-based simulation
of c2x-communication using cellular networks,” in /I/th Annual
Conference on Wireless On-demand Network Systems and Services
(WONS 2014) - Special Session on VANETs and ITS3, Apr. 2014, pp. 108—
115. [Online]. Available: http://dx.doi.org/10.1109/WONS.2014.6814730

[71 Google, “Google earth,” August 2007. [Online]. Available:
http://earth.google.de/



