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Abstract—Simulation of cellular network communication is
complex and typically requires a high degree of knowledge about
the underlying network and its parameters. At the same time
simulating cellular networks is important for the automotive
industry in order to be able to test the feasibility of applications
that use car-to-x-communication before performing costly field
tests. In this paper we propose a trace-based simulation model
derived from real-world measurements. It does not require any
information about the network besides information that can be
readily measured by a regular user, it is much faster than regular
simulation, and it has been validated by comparing simulation
results to real world measurements.

I. INTRODUCTION

In the context of Car-to-X (C2X) communications, the
impact of a particular C2X application is a pivotal question that
needs to be answered in the development process. To this end,
it is vital to get a thorough understanding of the underlying
communication channel. Currently, C2X applications utilize
either local, ad-hoc short-range communication (e. g. IEEE
802.11p) or conventional cellular mobile communication (e. g.
GPRS, UMTS or LTE). While there has been good progress
evaluating the performance of IEEE 802.11p based on theoret-
ical models, network simulations or real-world measurements,
the knowledge of the performance of C2X communication via
cellular networks is much more limited. The main reason for
this is the very complex nature of cellular wireless networks
which makes them hard to model and simulate accurately.

In this paper, we propose a way to simulate today’s
cellular network communication in order to determine the
availability of information in the networked vehicles. Instead
of simulating particular aspects of the radio communication
or the network architecture, we propose to use a trace-based
simulation approach: first, we collect measurements on the key
characteristics of the cellular network in the spatial area that
we want to examine in the simulation (like illustrated by the
green streets in figure 1). The collected traces are in turn
used as basis for our simulation model that we employ to
determine what information is available in which vehicle at any
specific point in time. While the simulation model itself could
be extended to simulate entire mobile cellular networks the
simulation depends on location based network measurements.
Concentrating on C2X communication and thus focusing on
road networks reduces measurement complexity and enables us
to use map-matching to weaken the positioning error inflicted
by the inaccuracy of GPS.

Figure 1: Simulation area.

In contrast to regular, model-based simulation of network
and radio communication parameters, a trace-based simulation
provides results that directly follow from real-world measure-
ments. Therefore, compared to regular simulations, they are
much less likely to deviate significantly from the measured
real-world ground truth. Furthermore, a trace-based simulator
requires significantly less computational complexity than a
model-based simulator, thus achieving a very good scalability
in the number of simulated vehicles. In addition, collecting
measurement traces with a small probe vehicle fleet and run-
ning simulations on this basis is much more cost-efficient in an
early development phase than repeatedly conducting large field
tests with numerous equipped vehicles. Furthermore if another
C2X application needs to be tested in the same simulation
area, the measurements can be reused. Certainly a community
driven database with measurements for different simulation
areas could further reduce C2X application development costs
and would allow to test applications in foreign areas.

The key contributions of this paper are twofold:
(1) We introduce a novel simulation model using measurement
traces to simulate UDP traffic over mobile cellular networks.
(2) We validate the simulation model by comparing simulation
results to independent real-world measurements.

In the remainder of this paper, we give a brief overview of
related work in Section II. We explain our tracing methodology
and the arising challenges in Section III and describe our
basic simulation model and our implementation in Section IV.
Section V contains an analysis and a validation of the proposed
simulation model. We further introduce improvements to our978-1-4799-4937-3/14/$31.00 ©2014 IEEE



approach in Section VI and evaluate them in Section VII. We
conclude this paper in Section VIII.

II. RELATED WORK

For our work, we do not require any insights into the
cellular mobile network and thus treat it as a black box. We
therefore focus on existing end-to-end measurement methods
only, in which two network hosts actively participate in the
measurement process. All existing black box methods either
utilize packet pairs — two packets usually sent back-to-back
— or packet trains — a sequence of measurement packets sent
with varying gaps between consecutive packets. Measuring
data rates in networks has been studied extensively in the last
two decades and the examined methods mainly differ in the
ways the packets are sent and analyzed.

Considering multiple slightly different notations in the
related work, we use the following terminology:

The capacity Ci of a network link i is the maximum IP-
Layer throughput that can be achieved without the presence
of competing cross traffic. The available data rate Ai of a
network link i is the maximum IP-Layer throughput that can
be achieved while competing cross traffic exists. The utilization
Ui of a network link i is the ratio of its capacity that is used
by cross traffic: Ui = 1− (Ai/Ci).

A network path is a sequence of network links from a
sender to a corresponding receiver. The capacity C of a
network path is the minimal capacity of all links on the
path, the available data rate A for a network path is defined
analogously. The link with the smallest capacity on the path is
called the narrow link, while the one with the smallest available
data rate is referred to as the tight link. Following equations
apply to a network path with N links and corresponding link
utilizations Ui:

C = min
i=0..N−1

Ci

A = min
i=0..N−1

[Ci(1− Ui)]
(1)

With this terminology in mind, we can now look at the existing
work in this area. Early approaches for data rate measurements
used simple packet pair [1] or packet train techniques [2].
However, these approaches either did not reflect today’s Inter-
net practice or were later on proven to measure the available
data rates incorrectly, for example by the authors of [3].
We therefore only focus on recent end-to-end measurement
methods that either base on the Probe Gap Model (PGM) or
the Probe Rate Model (PRM).

A. Probe Gap Model (PGM)

Figure 2 illustrates the modus operandi of the PGM: the
model uses Packet Dispersion — the temporal gap at the
receiver between two packets sent back-to-back — to estimate
the available data rate of the network path.

While PGM only needs two packets to estimate the avail-
able data rate, it has some drawbacks: first, the estimates
exhibit a very large variance if the measurement covers only a
short time interval. Therefore, multiple estimates with some
kind of smoothing are needed to achieve more stable esti-
mates. Second, PGM assumes FIFO queues in the routers

Figure 2: Operating mode of the Probe Gap Model (PGM).

and depends on one link of the path being the tight link
and the narrow link at the same time. Finally, the capacity
of the network path needs to be known a priori to estimate
the available data rate which is not given in black box
scenarios. These drawbacks leave PGM unsuitable for black
box measurements in mobile cellular networks.

B. Probe Rate Model (PRM)

PRM uses the concept of self-induced congestion to esti-
mate the available data rate of a network path: PRM systems
send packet trains starting with large temporal gaps between
consecutive packets that decrease towards the end of the packet
train. Thereby, the data rate is increased in the course of the
transmission time of the packet train.

As long as the send rate is smaller than the available
data rate of the network path, the receive rate is equal to the
send rate. But, once the send rate exceeds the available data
rate, a queue builds up at the tight link within the network
which causes the delay of the packets to increase so that
the receive rate eventually will be smaller than the send rate.
Using repeated measurements, the available data rate can be
estimated by locating the point at which the receive rate
exceeds the send rate. PRM is used, for example, by TOPP,
Pathload, Pathchirp, PTR and Assolo [4]–[8].

As long as the cross traffic remains constant, the mea-
surements can be repeated with varying send rates, so that
theoretically, arbitrary estimation accuracy can be achieved.
High accuracy degrees, however, result in measurements that
take several Round Trip Times (RTTs) to be completed. Both
the required stability of the cross traffic and the long measure-
ment duration render PRM unsuitable for mobile measurement
scenarios.

III. TRACING CELLULAR NETWORKS

We propose a trace-based simulation model of cellular
networks, which is based on real-world measurements and not
on assumptions or artificial simplifications. Since measurement
traces play such a crucial part in our simulations, the way how
the respective measurements are being gathered is important.
In this section, we discuss the setup that we used as well as
how the values were traced during our measurements.

A. Measurement Setup

We performed the network measurements with a mobile
node and a stationary server node, both running Linux operat-
ing systems. We equipped the mobile node with a 3G cellular
network interface (Sierra Wireless MC8775), the stationary
node had access to a gigabit Ethernet. To avoid reachability
problems due to Network Address Translation (NAT) that is



usually employed by cellular network providers, the mobile
node always initiated the measurements.

Additionally, both the mobile and the server node were
connected to GPS receivers (Garmin 18x LVC) that provided
Pulse Per Second (PPS) signals via serial connections. We
therefore used the devices both for self-positioning and high-
accuracy time-synchronizations, thus turning both nodes into
Stratum 1 servers with mean synchronization errors below
1 ms. To this end, we ran the gpsd software [9] in combination
with an ntp daemon [10] for the time synchronization. The
usual ntp time synchronization over the network is not an
option, because ntp requires symmetric communication delays
that are not given in cellular networks and we aim at keeping
any additional traffic load as low as possible to not distort our
own measurements.

For spatial repeatability, we selected two routes of the
local public transport: one bus route through a rural/urban
area and one tram route through the urban area of a major
German city. On the bus route, we performed one round-trip
measurement run logging data for 119 minutes. The round-trip
measurements on the tram route took 83, 91 and 92 minutes.
We logged every packet’s send and receive event with the
respective timestamps and GPS trajectory data at a frequency
of 1 Hz as well as all available modem status data.

B. Measuring Available Data Rates, Delays and Packet Loss

As discussed in Section II, we cannot use PGM and
PRM in mobile networks. We therefore resort to simple bulk
traffic measurements: we determine the available data rate with
sequences of n ≥ 2 UDP datagrams, each of size sp including
all headers, that we send as back-to-back packet trains. In
cellular mobile communications, network characteristics are
usually not symmetric, so we measure them separately for each
communication direction. We perform the measurements once
per second for each direction to provide a good spatial mea-
surement coverage. In the following, we only regard upstream
measurements from the mobile client to the measurement
server; the downstream measurements work analogously.

The client fills each packet of the train with the train
length n, the packet’s position index in the train, its send
timestamp, the packet train sequence number, and the last
measurement results (delay, available data rate, drop rate) for
the other communication direction. Additionally, the packets
in the upstream direction have an extra field for the currently
used network technology of the modem (GSM, GPRS, EDGE,
UMTS or HSDPA). Using this information, the server can
approximate the client’s available data rate A as follows:

A =


sp·(l−f)

trx(l)−trx(f) n′ ≥ 2
sp

trx(f)−ttx(f) n′ = 1

NaN else (n′ = 0)

(2)

where f and l are the indexes of the first and last received
packets of the packet train, n′ is the number of actually
received packets of the train and ttx(i) and trx(i) are the send
and receive timestamps of the ith packet, respectively. Due to
the high-accuracy time synchronization the server can safely
use the absolute timestamps from the client.

Unfortunately, bulk traffic measurements have a significant
drawback, which was one of the reasons PGM and PRM were
developed in the first place: they are prone to overloading the
measured network path. This self-induced congestion would
then make it hard to accurately determine the delay that one
could expect from an uncongested network. We deal with
this drawback by dynamically adapting the length of the
packet train so that its total size is approximately half of the
currently available data rate of the network path that is under
investigation, multiplied by the length of the measurement
interval. This allows the measurement data to leave the network
before the next packet train is sent and thus enables us to
provide accurate delay measurements at least for the first
packet of the train.

There are two ways how the currently available data rate
can be estimated in order to adjust the train size: first, given
that the wireless link is most likely the bottleneck, the mobile
device can use the information about the network technology
currently in use; this is usually provided by the cellular
network interface and implies an upper bound for the available
data rate. Depending on the refresh rate of this information,
this technique allows for quick adaptations of the packet train
size for the upstream direction. In the downstream direction,
however, the server cannot adapt its train parameters that
quickly, because this can only be done as a reaction to the
currently used network technology announced in the upstream
packets from the client. Second, the client can employ the data
rate measurements that were made based on its last packet
train: to this end, the server piggybacks this approximation
onto its own packet train. Once the client receives the server’s
packet train, the approximation can be read out and the
client’s packet train size can be adjusted, if necessary. Since
the client needs to wait for the server’s approximation, the
reaction time for this method is potentially longer than using
information about the currently used network technology. For
our implementation, we use the minimum of both values as an
estimation of the current available data rate.

Not every sent packet is delivered to its receiver, as some
packets get lost during transmission. Given that every packet
carries the sequence number and the total number of packets
of its packet train, we can determine how many packets of a
train reached their destination and thus can calculate the packet
loss rate P for each packet train using the formula:

P = 1− n′

n
(3)

For the approximation of the packet transmission delay, we
expect that the client’s transmission queue is empty and the
delay is measured for the first packet in line. In doing so,
we measure the network transmission delay dtotal as the total
packet transmission delay of the first received packet of a
packet train:

dtotal = trx(f)− ttx(f) .

If we are able to calculate A 6= NaN, we can estimate a
packet’s transmission delay dair for the wireless link:

dair =
sp
A

Finally, this enables us to calculate the packet’s backbone delay
dbb:



Figure 3: Simulation model for client-server communication.

dbb =

{
dtotal − dair 0 < dair < dtotal

NaN else
(4)

Now that we have obtained the loss probability P , the
available data rate A, and the delays in the wireless link (dair)
and the backbone (dbb), we create our simulation model.

IV. BASIC SIMULATION MODEL

In this section, we show how the measurement traces can
be used as a basis for realistic network simulations. We discuss
the necessary preprocessing of the measurement data and then
introduce our simulation model. Finally, we provide a brief
insight into the implementation of our simulator.

A. Spatio-Temporal Preprocessing

Before the collected measurements can be utilized for sim-
ulations, they first need to be assigned to geographic positions.
During the generation of the traces, position information is
recorded once every second. On the basis of this information,
the spatio-temporal preprocessing maps each event to the
respectively latest measured position.

B. Simulation Model

Based on the measured network characteristics, we simu-
late the traversal of packets through the network. We use two
main assumptions in our model: (1) the wireless link is the
tight link and (2) the vast majority of packet drops occur on
the wireless link.

Given these assumptions, we build our simulation model
as shown in Figure 3. We simulate the upstream (left) and the
downstream (right) using two queues each, that are traversed
sequentially: one queue (CRSQ/CRRQ) simulates the available
data rate (and thus indirectly the transmission delay dair) and
the packet loss, while the other queue (CDSQ/CDRQ) simu-
lates the backbone delay dbb. In all our trace measurements,
we did not observe any out of order packets; therefore, we
use FIFO queues, implying that packets cannot overtake each
other in the simulation.

1) Upstream: If a packet is sent upstream, it first is queued
in the Client Data Rate Send Queue (CRSQ). Once a packet
is the head of the queue it waits until its transmission delay
dair has passed and then leaves the CRSQ. As client move-
ments often imply changing network characteristics and thus
changing available data rates, we need to adjust the calculation

of dair whenever the available upstream data rate changes in
our simulation. Let k ≥ 1 be the number of prior changes for
the simulated available data rate for this packet and let dair(i),
A(i) for 1 ≤ i ≤ k be the already passed fractions of the
transmission time and corresponding available upstream data
rates for the packet. Then, the remaining transmission time
dair(k + 1) can be calculated as:

dair(k + 1) =
sp −

∑k
i=1 dair(i) ·A(i)

A(k + 1)
(5)

Our event-driven simulation implementation ensures that
sp >

∑k
i=1 dair(i) ·A(i) always holds.

Once dair has expired, it is determined if the packet is
dropped. To this end, we calculate the mean drop probability
for this packet using (dair(i))1≤i≤k and the corresponding
spatial drop probabilities P (i) for the same locations:

P =

k∑
i=1

dair(i)

dair
· P (i) , where dair =

k∑
i=1

dair(i) (6)

If the packet is not dropped, it is enqueued to
the Client Delay Send Queue (CDSQ), together with
the time of its earliest possible delivery to the server,
t = current simulation time + dbb. If the packet becomes head
of the queue, it is delivered to the server once t is reached in
the simulation.

2) Downstream: The downstream direction is slightly dif-
ferent in respect to the ordering of the queues: a packet
first passes the Client Delay Receive Queue (CDRQ), which
simulates the backbone delay valid at the time the packet
becomes head of the queue. Afterwards, the packet is enqueued
into the Client Data Rate Receive Queue (CRRQ) which
simulates the available data rate, the transmission delay and
finally the drop probability for the packet.

C. Dealing with Problems in the Measurement Traces

After some preliminary tests we discovered that there are
some rare cases where problems with the measurement traces
would lead to significant artifacts in the trace-based simulation.

First, in some situations, the initial method for adapting
the packet train size is not fast enough to avoid overloading
the network. During those periods of self-induced congestion,
we cannot use delay measurements to calculate the backbone
delay dbb accurately, because in such situations, dbb includes
an unknown queuing delay dqueue > 0 that cannot be estimated.

As first approach to alleviate this problem we disregard
delay measurements that clearly indicate self-induced conges-
tion: we eliminate any delay measurement that yields a delay
of more than one second. Instead of calculating a delay for
those situations we reuse the estimated delay of the previous
measurement.

Second, certain measurement outliers in our available data
rate estimations originate from lag while timestamping due to
using a non-real-time OS and from packets arriving with a
higher data rate than they were sent with. The latter indicates
that the network introduced very heterogeneous queuing delays
to different packets of the packet train. To tackle this issue, we



trace single packets packet trains congested trains
run direction duration packets ploss P(ploss) trains tloss P(tloss) con P(con) phases bytes sent

Bus upstream 6957 103417 5,204 5.03 6958 50 0.72 93 1.34 24 75,000,976
Bus downstream 6953 103261 379 0.37 6954 18 0.26 135 1.94 30 136,589,108

Tram1 upstream 4972 72259 6,552 9.07 4973 75 1.51 108 2.17 44 51,133,852
Tram1 downstream 4972 73427 1,142 1.56 4973 68 1.37 163 3.28 30 96,300,656
Tram2 upstream 5512 78966 4,440 5.62 5513 22 0.4 241 4.37 46 55,481,848
Tram2 downstream 5512 82256 1,210 1.47 5513 72 1.31 98 1.78 23 108,287,468
Tram3 upstream 5579 81456 1,493 1.83 5580 64 1.15 172 3.08 52 57,574,868
Tram3 downstream 5579 83076 1,705 2.05 5561 103 1.85 106 1.91 23 109,568,728

The first group of three columns identify the measurement run, the communication direction and the duration in seconds. The second group shows the number of packets sent and
lost and the loss rate. This is followed by the number of packet trains sent, completely lost and the complete loss probability during the trace. The next group shows information on
self-induced congestion during the traces. con is the number of packet trains during congestion followed by the congestion probability for a packet train in this run and the number of

identified congestion phases.

Table I: Statistical data of our measurement traces.

filter out all available data rate measurements that are clearly
not feasible, e.g. that exceed the limit of the transmission
technology (GSM, GPRS, EDGE, UMTS, HSDPA) currently
used by the modem. Again, we reuse the results of prior
measurements to “estimate” the correct value at the point
where we discarded the measurements.

D. Simulation Implementation

Simulating networks can be accomplished using a multi-
tude of simulation paradigms. We opted for a discrete event
simulation, as it promises a timely and accurate simulation of
every event and because of its linear complexity in the number
of simulated events. An event-driven simulator advances the
simulation time only between discrete events, as it jumps from
one event to the next event in time; this has to be taken into
account when simulating applications. One main aim is the
easy portability of current Car-to-X (C2X) applications to our
simulation framework. As many C2X applications—like those
in the simTD project [11]—are implemented in Java, we chose
this programming language for our simulator.

V. VALIDATING THE BASIC SIMULATION MODEL

We validated our trace-based simulation model using the
real-world data from our measurement traces.

A. Simulation Setup

To validate our simulation model we take advantage of
having logged every sent and received packet with timestamps
and packet train parameters during trace generation. Our basic
validation idea is to simulate every single measurement using
the GPS positions measured as movement simulation for a mo-
bile node representing our measurement equipment. While on
the other communication side, an Internet node represents our
measurement server. Throughout the time the node traverses
the GPS trace, we simulate the measurement traffic by injecting
the same packets at exactly the same points in simulation time
as they were recorded during the measurements. This includes
both upstream and downstream measurement packets. Using
the preprocessed network characteristics of the same trace
as simulation basis, the packets traverse our simulated net-
work. During the simulation, we append timestamped traversal
information of the queues to every packet. This, combined
with the measurement data of the received packets from the
measurement run, enables us to compare the simulated packet
flow with the real world measurements. As simulation base we

took our four previously mentioned detailed traces summarized
in table I.

B. Analysis

In our evaluation, we compare the packet delays and the
packet drops of each measured packet with its counterpart
in the simulation. As we inject the packets at exactly the
same send time into our simulation as they occurred in our
measurements, trealtxi (j) = tsimtx

i (j) holds for all packets j
of each packet train i. The only difference the simulation
can generate is dropping different packets than the simulation
and causing different end-to-end delays to the delivery of the
packets. Since the determination whether a packet is lost in
our simulation is probabilistic, it is improbable that the exact
same packets that were lost in the measurement run are lost
in the simulation, too. We therefore analyze the following two
parameters in our evaluation: first,

ddiff
i (j) := tsimrx

i (j)− trealrxi (j) (7)

for all packets that are neither lost in reality nor simulation
and second,

drop∆(t) := dropssim(t)− dropsreal(t) (8)

where dropsreal(t) is defined by

dropsreal(t) :=
∑

∀i,j : trealtx
i (j)≤t

dropreal
i (j) (9)

and dropreal
i (j) :=

{
0 packet i.j was received in reality
1 packet i.j was lost in reality

and analogous definitions for the simulation counterparts.

While (7) defines the delay error packet i.j encounters in
the simulation, (8) defines the difference in the number of
dropped packets in the simulation versus reality up to the time
t. As our simulation model evenly spaces consecutive packets
as long as no data rate change event occurs and as long as there
is no packet loss, we expect that ddiff

i (j) > 0 for almost all
packets of a train that are not the first or last received packet of
a train. If simulation mirrors reality, ddiff

i (f) and ddiff
i (l) should

be small or zero.

Figure 4(a) shows the downstream simulations and mea-
surement data of one of our data sets (Tram2). In the topmost
chart, trealrxi (f) is plotted against the left y axis (Delay
[ms]), and dropsreal(t), dropssim(t) and drop∆(t) are plotted
against the right y axis (Drops). We capped the delay graph
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(a) Basic simulation model.
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(b) Enhanced simulation model.

Figure 4: Downstream simulation and measurement data for Tram2.

at 5000 ms—the three spikes top out at about 16, 14 and
17 seconds. The two middle charts show ddiff

i (f) and ddiff
i (l)

while the bottom chart shows the measured data rate and drop
rate. Visual inspection clearly shows that our basic simulation
model works well in general but has problems to mirror the
real packet drop rates in cases of high self-induced congestion.
Closer examinations showed that the number of dropped
packets is underestimated significantly in those situations,
in particular if complete packet trains are lost. In all other
situations the simulated packet losses and delays match those
of our real-world measurements quite closely. The top chart of
Figure 6 shows that the problem of underestimated packet-drop
rates is less severe in the upstream direction.

VI. IMPROVEMENTS

The basic simulation model faces two limitations: (1) it
underestimates the packet loss rates in the simulation for
situations where the real-world data indicates massive packet
loss and (2) it uses a rather unflexible ad-hoc approach to deal
with self-induced congestion for the delay measurements. For
both aspects we now present improvements.

A. Interpolating Timestamps for Lost Packet Trains in the
Downstream

In the downstream direction, we use the receive timestamp
of the first received packet of each packet train to estimate
the location at which the measured data rate and drop rate
was observed. For packet trains that were lost entirely, no
such timestamp exists and we must find an approximation
for the correct timestamp for the beginning of the 100%
packet loss. We chose linear interpolation to estimate the
missing timestamps using the timestamps of the neighboring
packet trains that were not lost as references. In the upstream
direction, we do not face this problem as we use the send
timestamps in that direction.

B. Available Data Rate for Lost Packet Trains

The measured data rate for lost packet trains surely is
A = 0. However, the simulator needs to know how many

packets (or bytes/s) it has to drop during a complete loss phase,
otherwise the send queue will be emptied too fast or too slowly.
While we have to investigate in future work if it is possible
to derive a better approximation for the data rate using the
information gained in Section VI-C we opted for A = 2 · n · sp
as a first attempt to improve the drop rate estimation.

C. Detecting Self-Induced Congestion

In order to deal with phases of self-induced congestion in
a more fundamental way than before, we first need a way to
identify those phases.

Let ttx
i (l) be the send timestamp of the last packet of

sequence i that started without congestion and ttx
i+1(f) be the

send timestamp of the first packet of the following packet train.
Ideally, this would allow the use of the formula

con(i + 1) =

{
true ttx

i+1(f) < ttx
i (l) + dair(i.l)

false ttx
i+1(f) ≥ ttx

i (l) + dair(i.l)
(10)

to detect a congestion start (con(i + 1) is true and con(i) is
false) or end (con(i + 1) is false). Unfortunately, we neither
know the air delay dair(i.l) of the last packet of i nor do the
send timestamps reflect the exact time when the packet left
the device. Instead, they indicate when our application handed
it over to the network stack. As an approximation for dair(i.l)
we can use dair(i). But still, all but the send timestamps of
first packets of packet trains that started in a congestion-free
phase are incorrect and we need to apply a correction to those
false timestamps. Let ttx

i (f) be correct, i.e. the send queue was
empty when i.f was enqueued. With our 1 Hz measurements,
this also implies that trx

i (l)− ttx
i (f) > 1s− dair(i) holds. Using

the receive timestamps, the corrected ttx
i (l) is:

tcorrtx
i (l) = ttx

i (f) + trx
i (l)− trx

i (f) (11)

This allows us to replace ttx
i (l) with tcorrtx

i (l) in equation (10)
to decide if the network queue was empty when sending packet
i + 1.f :

con(i + 1) =

{
true ttx

i+1(f) < tcorrtx
i (l) + dair(i.l)

false ttx
i+1(f) ≥ tcorrtx

i (l) + dair(i.l)
(12)



Figure 5: Splitting of the packet train with sequence 1.

If con(i + 1) = true we are in a congestion phase and now
have to correct ttx

i+1(f) to

tcorrtx
i+1(f) = tcorrtx

i (l) + dair(i) (13)

This correction is repeated for each consecutive packet train
until con(i+ 1) = false again — which marks the end of the
congestion phase and the need to correct ttx(f) ends.

If dair(i) cannot be measured, because less than two packets
of train i arrived, we approximate it using the last valid
available data rate measurement A(i− 1) and the packet size
sp(i) of the train i. As dair(i) is derived from A(i), which
is measured over the time span of the complete packet train
i, it is only an approximation. Its repeated use might lead to
added errors in long congestion phases and thus might lead
to tcorrtx

i+n(f) being larger than trx
i+n(f). To solve this, we

altered the correction of ttx
i+1(f) to

tcorrtx
i+1(f) = min

 tcorrtx
i (l) + dair(i),

trx
i+1(f)− sp(i + 1)

A(i)
− dbb(i)

 (14)

D. Improving the Delay Estimates

The ability to determine phases of self-induced congestion
without using an arbitrary constant enables us to implement
a much more flexible correction for delay measurements than
the one introduced in Section IV-C. We can now fix the delay
measurements during all phases of self-induced congestion
and not just those indicated by a rather arbitrary constant. As
in the basic simulation model, we replace the delay values
measured during self-induced congestion with the last valid
value preceding it.

E. Splitting of Packet Trains

Self-induced congestion periods always start with a few
packet trains that were sent with a higher data rate than the
medium offers at that moment. This leads to packet trains
where the first packet of the train arrives far more than one
second before the last. This imposes three problems for our
simulation: First, the frequency of the measurements decreases
(recall that we try to generate 1 Hz measurements with moving
nodes). Second, the send timestamps of the first packet of
each train during a congestion phase cannot be used for delay
measurements. Third, as we also use the send timestamp to
derive the location of the packet for the upstream direction, we
map the measurements to the wrong location (as we assume
they were sent before they actually left our network device).
To reduce these effects, we altered the examination of our
measurement traffic and split packet trains with more than
one second train arrival time ∆train := trx

i (l)− trx
i (f) > 1s

into sections of approximately one second length. Figure 5
shows an example of a packet train with sequence number

one consisting of eight packets (1.1 to 1.8), that was split into
three sections.

We split packet trains using the following five rules: (1)
If less than two packets of the packet train arrived, then the
packet train is not split up. (2) A section contains at least
two packets that arrived at the destination. (3) A lost packet
(like 1.5 in Figure 5) cannot be the last packet of a section
except for the last section of a packet train. (4) If rules 1-3
are fulfilled and ∆section+next not lost packet of the train > 1s create a
new section following rule 5, otherwise add the packet to this
section and repeat rule 4 until all packets are in sections. (5)
The last packet of each section serves as the first packet of the
following section.

By treating each section as a separate packet train we gain
more measurement points for available data rate and packet
loss probability. This does not alter the number of usable
delay measurements, though. Without dividing packet trains
into sections, we use the send timestamp of the first packet
of a train in the upstream to match it to a location. As the
first packets of each section (except for the first section if
con(train) = false) were sent during congestion the improved
version uses (11) and (13) with f := first packet of a section
and l := last packet of a section to correct those timestamps.

VII. EVALUATION OF THE ENHANCEMENTS

We validated the improved simulation model with the eval-
uation setup as in Section V. A comparison of the results of our
simulation model and those with improved preprocessing in
figure 4(b) indicates that the simulation of packet losses during
self-induced congestion improved significantly. The remaining
differences originate in the uncertainty of the available send
data rate during 100% packet loss phases. Overestimating the
send data rate results in too many packets being dropped and a
send queue that decreases too fast, resulting in lower simulated
packet delays. Underestimating the send data rate on the other
hand leads to too few packets being dropped in the simulation
and a queue building up larger than during our measurements.

A comparison of the two graphs of Figure 6 reveals,
that the small differences of the drop sums dropssim(t) and
dropsreal(t) shown with our basic simulation model are almost
completely resolved using the enhancements described in the
last section. The statistical data of all four measurements in
table II shows, that out of 78966 packets in the upstream,
the improved simulation model dropped 4440 packets in the
simulation out of 4442 in the real measurements, only a ratio
of 0.0000025 of all packets was not dropped correctly. Out of
the 82256 packets in the downstream, the improved simulation
model dropped 1062 out of 1210, thus a ratio of 0.0018 of all
packets were not dropped correctly.

The cumulative distribution functions of the packet delay
differences of our measurements and simulation results dis-
played in Figure 7 show that 87% of the downstream packets
and 82% of the upstream packets are off by at most 3 ms.

The higher number of outliers in the upstream are the result
of much longer self-induced congestion phases in the upstream
— we measured up to 50 seconds delay for some packets in
“Tram3” upstream. These rare cases of extreme self-induced
congestion (between 1.34% and 4.37% of the packet trains



trace send vs. dropped real delay simulated delay sim-real delay
run dir packets rdrop sdrop rmin rmax ravg r95 smin smax savg s95 dmin dmax davg d95

Bus up 103417 5204 5125 51 18516 216 304 51 45729 299 305 −2609 26222 31 70
Bus down 103261 379 401 37 11227 274 308 19 11769 254 299 −5598 2012 −19 35

Tram1 up 72259 6552 6302 49 22549 379 563 49 14228 292 586 −19815 8933 −93 98
Tram1 down 73427 1142 876 36 34676 433 525 16 19856 427 586 −19758 9175 −10 44
Tram2 up 78966 4440 4442 49 38371 412 562 50 31100 336 566 −21908 2231 −79 95
Tram2 down 82256 1210 1062 46 18307 282 465 38 12862 277 452 −17125 8329 −6 42
Tram3 up 81456 1493 1465 48 50742 484 607 48 14016 296 650 −47703 2983 −188 100
Tram3 down 83076 1705 1074 37 22919 311 398 38 22927 388 434 −3109 9219 20 41

Columns one and two identify the trace and the communication direction. The following three column groups show statistical information of the real (measured) packet delays, the
simulated delays and the differences of both. The *95 columns show the 95percentile. While dmin, dmax, davg were gained using real-sim delays, d95 was gained using |sim-real|.

Table II: Statistical data of the simulation showing packet delays and drops.
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Figure 6: Upstream simulation and measurement data for
“Tram2”. The top shows the basic simulation model, the
bottom the simulation model with improved preprocessing.
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Figure 7: CDF plots of the differences in packet delay mea-
surement versus simulation.

are sent in congestion phases, see table I) lead to errors in the
estimation of packet loss and delays. In future work, we will
focus on improving the measurement of the traces to detect
self-induced congestion earlier and thereby reduce its negative
impact on the simulation model.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel trace-based simu-
lation model for C2X-communication using mobile cellular
networks. We validated the simulation results by simulating
our measurement traffic and comparing the results to the real
world packet flow. The evaluation revealed two challenging

situations caused by inaccurate measurements: self-induced
congestion with high delays and phases with 100% packet loss.

We then introduced several improvements to correct false
timestamps and filter incorrect delay measurements. Further-
more, we split packet trains with large train arrival times
to gain more measurement points. Finally, we showed that
all of these improvements enhanced the simulation results
significantly.

For the future, we plan to improve our measurement
framework to further reduce the number and length of self-
induced congestion phases, to extend our simulation model to
properly estimate available data rates for multiple users of a
network cell, and to release an OMNet++ implementation of
our simulation model.
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