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Abstract. In this paper we propose a novel late join algorithm for distributed applications with a fully replicated
architecture (e.g. shared whiteboards). The term ‘late join algorithm’ is used to denote a mechanism that allows
a late-coming participant to join an ongoing session. Generally, this requires that participants in the session
inform the latecomer about the current state of the shared application, so that he or she is able to actively
participate in the session once the late join has been completed. While many existing distributed applications
implement some sort of late join, a thorough discussion of late join algorithms has not yet been conducted. We
therefore identify the key issues of late join algorithms and propose a set of requirements which a ‘good’ late
join approach should satisfy. Based on these requirements, we evaluate existing late join algorithms and explain
why we opted instead to develop a new, advanced late join algorithm for our own shared whiteboard. This late
join approach is discussed in detail, and we show how it enhances existing approaches significantly while still
being general enough to be used for arbitrary distributed applications.

1 Intr oduction

The availability of IP multicast in the Internet provides an excellent basis for the development of CSCW
applications since multicast is a very efficient way to realize group communication. Currently the most popular
multicast application scenario is video conferencing. While early research focused on the development of tools for
the transmission of audio and video streams, in recent years, new multimedia applications in the field of
telecooperation have emerged, e.g. shared whiteboards, shared editors, or distributed virtual reality applications.
In contrast to the well-known application sharing approach, these newer applications are based on a replicated
distribution architecture, i.e. acollaboration-aware instance of the application is running on each participant’s
machine. At any point in time such an application has a well-definedstate which can be changed byevents
transmitted over the network, e.g. initiated by user actions. The obvious benefits of this approach are its high
scalability, low responsiveness, and robustness against failures of single components.

However, a replicated architecture also implies a replication of the application data. Hence, a major drawback
of this approach is that it requires complex mechanisms to ensure the consistency of the distributed data. While
there are many approaches maintaining the consistency of a distributed application (e.g. total ordering of data, time
stamps), the problem of efficient state initialization is still unsolved. This problem arises whenever a new
participant joins an ongoing session. We call thislate join. In order to enable the participant to follow the session,
his or her instance of the application needs to be initialized to the current application state. The mechanisms to
transmit the current application state to new members of a session are calledlate join algorithms. A state
initialization of a replicated application by means of a late join algorithm is not only required by latecomers but
also for recovery purposes in case of hardware or software failures.

In this paper we present a novel late join algorithm which has been developed in the context of a shared
whiteboard known as the digital lecture board (dlb) [5] [3] [4]. The proposed mechanisms are general enough to
be applicable to arbitrary replicated applications that require an efficient state initialization. Our approach keeps
the initialization delay low for the latecomer while reducing the network and application loads. The late join
algorithm has been successfully implemented and tested in the digital lecture board.

In the following Section we analyze key issues of the late join problem and identify a set of general
requirements for late join algorithms. Section three covers existing work in the area of late join algorithms. In the
main part of this paper we present a stepwise solution to the late join problem: our first approach is based on unicast
network connections; the second and final algorithm makes use of the basic ideas of the first scheme but
additionally relies on multicast to further improve performance. Finally, we discuss the generalization of our late
join algorithm. Section five concludes the paper with a summary and an outlook.



2 Key Issues of Late Join Algorithms

The prime requirement for any late join algorithm is its ability to enable latecomers to participate in an ongoing
session. This is typically achieved by getting the state of the distributed application from the current participants
and initializing the application of the latecomer with this information. In the following we will use the termlate
join client to denote a new participant who requests a state initialization; the participant who is responsible for the
retransmission of the current state at a certain point in time is called thelate join server. The role of the late join
server may be assigned dynamically.

From the latecomer’s point of view the late join process can be divided into three distinct tasks: (1) identify
what information is needed, (2) get the required information, (3) initialize the application so that it is consistent
with the other participants’ applications. In the following subsections we will discuss the key problems that have
to be solved for different late join scenarios and will then propose a set of requirements which a ‘good’ late join
algorithm should fulfill.

2.1 Late Join Problems

In a scenario with a dedicated late join server all three tasks can be handled in a fairly straight forward fashion. The
latecomer asks the server about the currently required information, then proceeds to request this information and
finally initializes the state of its application. The only challenge in this scenario is to make sure that state changes
which happen during the late join are handled in a way that ensures a consistent state of the latecomer’s application.

In a fully distributed environment with true peer-to-peer multicast communication each of the three tasks poses
its own challenge. For the first task it is essential to get a consistent view on what information is needed to initialize
a latecomer’s application. Challenging problems in this area include knowing where and how this information is
kept, as well as who is responsible for providing this information to the latecomer.

Because of the lack of a dedicated server, one main issue in task two is to identify who will reply to the
information requests of the latecomer. A naive approach would let all current participants reply to the requests.
However, for a group of sizen this would lead ton-1 duplicate transmissions of this information. Since it is likely
that more than one user will require a late join within a short period of time, the number of duplicates is likely to
rise toi(n-1) wherei is the number of latecomers during a certain (short) time interval. In the worst case fori=n/2,
the number of duplicates rises ton2/4. This is clearly unacceptable; a late join algorithm thus needs to find a way
to eliminate or at least to reduce the number of duplicate transmissions.

Finally, the initialization of the application is challenging because user interactions might have modified certain
parts of the state while the late join was in progress. A late join algorithm in a peer-to-peer environment therefore
needs to monitor the regular communication during the late join and adjust the state of the application to
compensate for any user actions.

2.2 Late Join Requirements

Derived from the problems mentioned above, as well as from general design aspects of distributed applications,
the following requirements for late join algorithms can be identified:

• Consistency. A late join should lead to a consistent state of the latecomer’s application. With this state he or
she should be able to actively participate in the ongoing session.

• Robustness. The failure of individual components such as a participant’s computer or application should not
prevent a future late join. Moreover, a late join is likely to be executed after an individual component (e.g. the
application) has failed, in order to let the affected user (re)join the session.

• Low network load. The efficiency of a late join algorithm hinges on its sending only a minimal number of
duplicates. In addition only the data which is really needed should be transmitted. For example, it might be
efficient for a shared whiteboard to request only the state of the currently visible pages1 rather than requesting
the state of all pages ever shown in the session.

1 Assuming that there exists some mechanism that recovers the state of existing pages which become visible at a later point in
time.



• Low application load. Those participants who are not latecomers should not suffer too much from the
additional data transmissions required for the late join.

• Low initialization delay. The late join should complete within a limited time interval which is acceptable to
the user.

In the following section we will discuss existing late join approaches focusing especially on how they solve or fail
to solve the problems mentioned above, and how well they meet the requirements for a ‘good’ late join algorithm.

3 Related Work

Existing late join algorithms can be separated into approaches which are handled by the transport layer and those
which are completely realized at the application level. Application level late join algorithms can further be
subdivided into client-server oriented algorithms and peer-to-peer approaches.

Representative of the transport layer category are reliable multicast transport services that offer late join
functionality. A reliable multicast protocol can offer this service by using its loss recovery mechanisms to supply
the late-joining application with all data packets missed since the beginning of the session. The application then
needs to reconstruct the current state from these packets. An example of reliable multicast protocols which support
this operation is the Scalable Multicast Protocol (SMP) [7].

While this approach is very simple and straightforward, it has three main drawbacks: first, protocol instances
need to cache all data packets sent since the beginning of the session, resulting in high storage requirements at the
transport level. Second, both application and network load are most likely much higher than necessary. Replaying
all packets is likely to convey information that is no longer relevant, e.g. deleted pages in a shared whiteboard.
Third, the initialization delay in this approach is rather high since the application is fully operational only after all
packets have been received. The transport protocol cannot send those packets which are needed to display the
currently active pages before transmitting other packets because it lacks all knowledge about packet contents.

The distinct advantage of application level approaches is the use of application knowledge to reduce
initialization delay as well as network and application load. Client-server based late join approaches typically use
a centralized data storage model in which the dedicated data server also acts as late join server. Late-joining clients
usually connect to this server via unicast and request the part of the current application state that interests the client.
Consistency is easily achieved since state changing events are only executed at the server and can simply be
forwarded to the late-join client.

An example for the client-server approach is the groupware toolkit Clock [6]. Distributed applications
implemented with Clock are based on the Model-View-Controller (MVC) architecture that separates the
application data and its data manipulating methods (model), the user interface (view) and the event handling
(controller). Each client has its own instance of the controller and the view whereas only the data server possesses
an instance of the model. When joining a session, the view of the client requests all relevant data.

Centralized approaches have the advantage that the ability to perform a late join is inherent to their architecture,
i.e. a late join basically equals a regular state update. However, centralized architectures also have the following
well-known drawbacks: single-point-of-failure, as well as a high network load and a high application load for the
server.

In the case of distributed applications with a peer-to-peer architecture, every participant in a session possesses
a complete copy of the current application state. Therefore every participant is able to act as a late join server, and
every late join client can have one or more different servers. The MediaBoard (mb) [9] is a representative of this
category. Like its predecessor - the MBone whiteboard wb - the MediaBoard integrates the reliable multicast
transport protocol within the application, following the Application Level Framing (ALF) paradigm [1]. The late
join algorithm used by the MediaBoard is based on SRM [2], using its loss recovery mechanism to request the state
necessary for the initialization. Since the protocol is located within the application, it can use priorities to realize a
selective retransmission of the application state. The late join client first requests all the data needed to display the
active page; data of all other pages are requested with a low priority.

The advantages of this approach are high robustness, a low network load and a low initialization delay. While
it represents the state-of-the-art for late join algorithms, this approach still has some major drawbacks. First, all
participants of a session will see the retransmission of the whiteboard pages, even though non-latecomers are not
interested in this information. Second, the tight coupling between application functionality and loss recovery
mechanism implies that a late join can only be realized by replaying the entire history of network events. A replay
is inefficient since the current application state cannot be transmitted directly but can only be reconstructed through
the sequence of events. In addition to the time-consuming reconstruction of objects (e.g. restoring text objects letter
by letter), this also entails information being transmitted that is no longer relevant (e.g. delete events or consecutive



move events). Third, the granularity of the late join algorithm is limited to the original data packets, i.e. each packet
has to be requested (and repaired) separately. A single collective request (e.g. to restore a complete page of the
whiteboard) would be more efficient. Moreover it is not guaranteed that the replay of ‘old’ packets allow an
application to restore the correct state. If the medium is time-dependent, this may not be possible.

4 A Selective Late Join Approach

The late join algorithms implemented in the digital lecture board belong to the category of application level
solutions for a completely replicated architecture. Transport level solutions were not a viable alternative due to
their restrictions mentioned previously. We also did not consider centralized client-server approaches since the
digital lecture board - like most whiteboards - adheres to the paradigm of complete replication in order to avoid the
well-known problems of centralized components.

In contrast to applications that comprise a reliable transport protocol (e.g. wb, mb) following the ALF concept,
the dlb uses a reliable transport service below the application. While the ALF approach might generally be more
efficient, we considered a clean cut between application layer and transport protocol functionality more important
than a slight increase in performance. The choice is application dependent: for the dlb we did not expect a high
performance gain by using ALF while it would have made the design of the software significantly more complex.
While the separation of reliability mechanisms and application prohibits us from (ab)using the loss recovery
algorithms for late join purposes, it also enables us to provide a very generic and thus ’clean’ solution to the late
join problem. Moreover, separating reliability issues from the application facilitates application development since
the developer can then concentrate on key design problems.

The discussion in Section 3 on related work demonstrated that alow initialization delay during the late join can
only be achieved by reducing the amount of data transmitted to the minimum needed by the late join client to follow
an ongoing session. With respect to whiteboards the selection of this minimal required data is rather
straightforward. A shared whiteboard document consists of an arbitrary number of pages that contain an arbitrary
number of graphical objects. At each point in time there is typically only one active page that is visible to all
participants of a session. The data needed by a latecomer to follow an ongoing whiteboard session is a list of all
available pages and the objects of the current (active) page. The objects of the remaining pages are requested only
on demand, i.e. as soon as an arbitrary participant (including the late join client) activates such a page.

According to this selection scheme, we have developed two late join algorithms: a selective late join based on
unicast transmission and its successor, a selective late join based on multicast transmission. Besides providing a
low initialization delay by requesting only the necessary information, both algorithms are independent of the
transport protocol and focus on the reduction of network and application load.

4.1 Selective Late Join based on Unicast Transmission

The first algorithm involves two fundamental steps: in the first, a late join server is selected from the multicast
group and a unicast connection is established between the late join client and the late join server. In the second step,
the required data is transferred.

Step 1: Selecting the Late Join Server. To select a particular participant from the multicast group, we realized an
anycast mechanism on the level of the transport protocol. This mechanism is basically very similar to the repair
mechanism of SRM [2]. Notice that the anycast mechanism could just as well be realized within the application in
order to maintain the independence of the transport protocol. The time-sequence diagram of an anycast request is
shown in Figure 1.

In this example client C sends its IP address and port number plus information identifying the requested data
with a special Application Data Unit (ADU) called DelayedADURequest (DADUReq) to the group. The transport
protocol instances of A and B do not deliver this packet immediately but buffer it instead. At the same time, a
(givethrough-)timer is set. This timer expires after a time which depends on both a random component and on the
network delay between the sender of theDADUReq and each recipient. For calculation details see [2]. In Figure 1,
the timer of B expires first, triggering the delivery of theDADUReq to the digital lecture board of B. The information
received is then used to decide if B is able to act as server for the requested data. This is the case if B has a copy
of the requested data, and if B is not a late join server for another late join client. In the given example, both
conditions hold true, allowing B to become the late join server for C.

B answers the request by sending a DelayedADUResponse (DADURsp) that includes its own IP address and port
number to the multicast group. The receipt of theDADURsp deletes the corresponding givethrough-timer of



participant A, preventing the delivery of the DelayedADURequest to A’s dlb. C receives theDADURsp as well,
indicating the successful selection of a server.

In order to guarantee that this process of selection will also work if packets are lost, the sender of theDADUReq

uses a (repeat-)timer. If this timer expires, theDADUReq will be retransmitted and the repeat-timer will be reset until
a late join server has been identified or final failure is accepted.

Since a server is selected dynamically, a client can have different servers for different requests and a server can
respond to requests from different clients. A participant can also act as a server while still being a client.

The algorithm described above makes it likely that only one response per request will be sent, regardless of the
group size, and that the selected server will be a participant with a relatively small delay to the client. Since it
cannot be guaranteed that the client will receive exactly one DelayedADUResponse, only the first one is processed
by the client. Based on the exchanged transport addresses, a unicast connection between client C and server B is
established for the transport of the late join data.

Step 2: Transmission of Late Join Data. The client is now able to request all data that are necessary to follow an
ongoing session. The first information requested by the client is a survey of all pages (page list) created since the
beginning of the session. Next, the client requests the data (i.e. all graphical objects) for the currently displayed
page. The server answers with the transmission of all objects for that page, enabling the client to display the active
page. The client is now in possession of all information that is essential to participate in the session. At this time,
the dlb of the latecomer does not need the content of other pages because they are not visible. Therefore, the unicast
connection can be closed. The activation of a page that has not been requested yet starts another late join cycle.

The session is not interrupted during the late join process. Therefore objects of the active page might be
modified while a late join is in progress. In order to attain a consistent state, all operations which happen during a
late join are buffered by the late join client. Once the transfer of late join information is complete, these
modifications are applied to the active page.

In rare cases a late join server might have missed a previously transmitted packet that was not repaired before
the late join data was transmitted. In this case the late join server will transmit an inconsistent state. While the late
join server will eventually receive the missing information from the reliable multicast transport protocol, the late
join client will need additional help to discover that it should repair the inconsistent state of the active page. The
required help is provided by the late join server which appends the highest object sequence numbers of all active
senders for the current page in the page information. In the event of inconsistency the late join cycle is repeated.

Analysis. The use of an additional connection ensures that no participant other than the client and the server is
involved in handling the actual data transmission of the second step. Network load and processing time for the first
step can be neglected, being the equivalent effort of the SRM repair mechanism for a single lost ADU. Therefore,
network load and processing time applied to the multicast group as a whole are optimized. Consistency can be
easily achieved through the mechanism described above. Requesting only the currently visible page effectively
minimizes the initialization delay for the client. Since older pages are requested only on demand, network and
application load will be spread over a relatively long time compared to a request for all pages at once.

At the same time, this approach will result in the loss of data if the last participant who possesses information
about a certain page leaves the session. Experiments have also shown that the use of unicast connections can lead
to major problems: first, since a participant acting as a server can establish only one unicast connection at a certain

Fig. 1. Anycast mechanism
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time, it is blocked during an ongoing late join. If there are more clients than servers, some clients will have to wait
for a free connection, which will increase initialization delay. Second, the anycast mechanism described above
cannot guarantee that only one server will respond to a DelayedADURequest. Since a responding server opens a
unicast connection in anticipation of the client’s requests and the client reacts only to the first
DelayedADUResponse, one or more additional servers will be blocked until a time-out has closed the connection.
This can cause a further delay for other clients. Third, unicast prevents more than one client from making use of a
particular transmission, although the selective requesting of pages on demand is likely to lead to more than one
client needing a particular page at the same time. Fourth, opening and closing the unicast connection is costly and
generates an overhead that is not to be underestimated, especially if the effectively transmitted amount of data is
small. To summarize, our first approach had very promising elements, while it proved to be fragile and error prone
due to the use of unicast connections to transmit the late join data.

4.2 Selective Late Join based on Multicast Transmission

In order to overcome the weaknesses of the first approach, the second algorithm uses a dedicated late join multicast
group for the transmission of late join information. Participants joining an ongoing session stay members of this
group until they have received the state of all pages. The address of the late join group can either be algorithmically
derived from the address of the base group, or it can be announced together with the base address, e.g. by using the
Session Announcement Protocol SAP [8]. The key benefits of using a dedicated multicast group are as follows:
first, participants that join an ongoing session simultaneously (i.e. within a short period of time) can profit from
ongoing transmissions of state information, i.e. the network load is further reduced. Second, the late join server can
be stateless, which avoids blocking. Third, the time-consuming establishment of unicast connections is no longer
required.

The selective late join based on multicast transmission also relies on the anycast service of the underlying
transport protocol in order to select only one late join server within the multicast group. But in contrast to the first
approach, we are not transmitting the IP and the port number as the payload of theDADUReq packets but only the
type of required information (general initialization information, list of pages, objects of a certain page). The late
join server selected by the anycast mechanism replies by sending the requested data directly to the dedicated
multicast late join group. This scheme allows us to avoid the two distinct phases of the first approach.

Functionality of the Late Join Client. The behavior of the late join client is described by the finite state machine
depicted in Figure 2. We are use the following notation:

Fig. 2. Finite state machine of the late join client
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StartLateJoin() function that initiates the late join algorithm
INITReq outgoingDADUReq packet to request initialization information from an arbitrary late join

server
INITRsp incoming response of the late join server carrying initialization information
lj_enabled boolean value that determines whether or not a late join is desired by the user
CheckInit() function that processes initialization values
DADUFailed anycast service indicates that the anycast mechanism failed
NOP no operation
PLISTReq outgoingDADUReq to request a page list from an arbitrary late join server
PLISTRsp incoming response of the late join server carrying the current page list
POBJECTSReq outgoingDADUReq to request the objects of a certain page from an arbitrary late join server
POBJECTSRsp incoming response of a late join server carrying the objects of a certain page
DocumentComplete() boolean function that checks whether or not the complete online document is available
GotoPage() function called by the user to change the current page of the online document
PageAvailable() boolean function that checks whether or not objects of a certain page are available.

Note that outgoing DADUReq packets are transmitted by means of the regular multicast group using the
anycast mechanism while incoming packets are received from the dedicated multicast late join group, i.e. the late
join server always sends its replies to the late join group.

The late join client can be described by the following states:Idle, NoLateJoin, WaitForINIT, WaitForPLIST,
WaitForPOBJECTS, andComplete. At the beginning the whiteboard application of a latecomer is in theIdle state.
Calling the functionStartLateJoin() initiates the late join mechanism; aDADUReq carrying anINITReq is sent to
the multicast group. This packet can be used to request application dependent initialization information from an
arbitrary late join server. The digital lecture board, for instance, uses this mechanism to request a list of all
participant identifiers prior to choosing its own unique identifier.

If the anycast mechanism for theINITReq packet fails, i.e. an appropriate late join server is not available, the
application is informed by aDADUFailed indication of the underlying transport service. If the late join is disabled,
the client changes to theNoLateJoin state. Otherwise the client assumes itself to be the only member of the
multicast group and changes to theComplete state.

Upon receipt of anINITRsp packet the client processes the initialization data by callingCheckInit(). If the late
join is disabled, the client changes to theNoLateJoin state. Otherwise, the client assumes that a late join is required
and changes to theWaitForPLIST state by requesting a list of all the pages of an online document through the
PLISTReq packet delivered by the anycast mechanism. After having received the page list (PLISTRsp), the client
requests the objects for the active page by emitting aPOBJECTSReq through the anycast mechanism and changes to
theWaitForPOBJECTS state. In this state, incomingPOBJECTSRsp packets usually do not change the client’s state
anymore except if the complete online document has been received. In this case, the client performs a state
transition to Complete. If a remote or local user changes the active page of an online document in the
WaitForPOBJECTS state and the new page is not yet available, the late join client requests the objects for this page
by sending anotherPOBJECTSReq packet by means of the anycast mechanism.

Functionality of the Late Join Server. The late join server is stateless. If the requested data is available, incoming
information requests are answered immediately by sending the data directly to the dedicated late join multicast
group. Otherwise, information requests are ignored. The capability of answering incoming requests depends on the
client state of the late join server. It is important to emphasize the dynamic role of the late join server: each late
join client can become a temporary late join server if the client holds the requested state information. Table 1
describes the functionality of the late join server depending on the client’s state where 0 indicates that a request
can not be answered and 1 means that the requested data is available.

Analysis. The selective late join based on multicast retransmission eliminates the main disadvantages of the unicast
solution. Participants who join an ongoing session simultaneously (i.e. within a short period of time) can profit
from ongoing transmissions. The time-consuming establishment of a connection in the first approach is no longer
required. Hence,the initialization delay is reduced significantly. The stateless server makes the scheme veryrobust
and immunizes against blocking.Consistency is achieved through the same mechanism as in the unicast case.

Compared to the first approach, the only drawback to using a dedicated multicast group for the transmission of
late join data is a slightly increasedapplication load. Since clients will stay members of the late join group as long
as the late join is not complete, they might receive transmissions even though they already have the information.



A straightforward solution would be to leave the late join multicast group as soon as the late join of a single page
is complete. However, in this case the participant is obliged to rejoin the group whenever a page, that is not
available at the client, is requested. The required connection establishment increases latency again. So designing
late join algorithms is always a trade-off between initialization delay, network load and application load while
considering application specific requirements. Experiments have shown that for a whiteboard the additional
application load is not significant, while the reduction in network load can be rather high (especially when an
already existing page is activated).

Another interesting question is whether or not the late join server should be a member of the late join multicast
group. In our current solution the late join server sends to the late join group without being a group member.
Depending on the multicast routing algorithm, this might induce a certain overhead. In cases where this overhead
becomes significant, the late join server could join the late join session and respond to future requests. After a
certain time-out period without further requests, the server would leave the late join group.

The anycast mechanism is used effectively to suppress multiple responses to a single late join request.
However, multiple late join requests at the same time will still result in the same number of answers (number of
selected servers) even though only a single server would be required. Therefore, the same suppression mechanism
as for the reply implosion can be used to avoid a late join request implosion.

4.3 Generalization

The described late join algorithm based on multicast transmission can be easily modified for arbitrary replicated
applications other than whiteboards given that those applications use hierarchical structures for the replicated data.
The functionality of the late join server remains unchanged: requests are answered if the requested data is available,
otherwise they are ignored. The late join client increases in complexity the higher the level of hierarchy. Consider
n the number of hierarchy levels and Di, i = 0, ..., n, data of level i. The generalized state automaton of the late join
client is depicted in a simplified version in Figure 3.

After having requested data for level 0, the client has to deal with data requests on arbitrary levels by both the
local user and the remote participant. Therefore, we need a complete mesh for the state automaton at level 1. As
soon as the data for one level is completely received, there are no more state transitions to the higher level. The
states WaitForD0 and WaitForD1 equal the states WaitForPLIST and WaitForPOBJECTS of the whiteboard late
join client depicted in Figure 2. Take a distributed text editor as an example of an application with a higher number

a.
a. The request can be satisfied if the objects of the page are available.

Table 1. Late join server functionality

client state INITReq PLISTReq POBJECTSReq

Idle 0 0 0

NoLateJoin 0 0 0

WaitForINIT 0 0 0

WaitForPLIST 1 0 0

WaitForPOBJECTS 1 1 0/1a

Complete 1 1 1

Fig. 3. Generalized late join client state machine
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of hierarchy levels named, for instance,WaitForDocument, WaitForChapters, WaitForSections,
WaitForSubsections, andWaitForParagraphs.

5 Conclusion

An efficient state initialization by means of a late join algorithm is a crucial point in the design of interactive
applications based on replicated architectures. In this paper we have presented two late join mechanisms for
interactive whiteboards. Our approach is located at the application level and therefore allows for a selective
retransmission of the current application state. This reduces initialization delay on the one hand and makes the
approach independent of the underlying transport service on the other hand. The first late join algorithm described
relies on unicast connections for the initialization of a latecomer. The key issue is to avoid an implosion of replies
to a single late join request by applying an anycast mechanism. This reduces network and application load
significantly. The second approach uses the same avoidance mechanism but additionally improves the first scheme
by using a dedicated multicast late join group for retransmission. The key benefits are: reduced network load since
participants joining a session simultaneously can take advantage of ongoing retransmissions, a stateless server that
makes the scheme very robust, and the avoidance of time-consuming connection management. We have discussed
how the scheme can be further improved and have given indications on the generalization for arbitrary replicated
applications using hierarchical data structures. Our approach has been successfully integrated into the digital
lecture board. This whiteboard is currently used for synchronous teleteaching scenarios at a number of universities
in Germany [4].

One of the most important issues in future research will be a quantitative analysis of the efficiency of the
proposed scheme. Simulations will be used to tune the trade-off between initialization delay, network load and
application load. Moreover, it would be rather interesting to analyze the influence of transmission data granularity
on the efficiency of the scheme, e.g. in the case of whiteboards a late join algorithm could also request single
graphical objects instead of complete pages in order to reduce network and application load.
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