
Integrating Support for Collaboration-unaware VRML Models into
Cooperative Applications

Werner Geyer, Martin Mauve
University of Mannheim, Germany

{geyer, mauve}@pi4.informatik.uni-mannheim.de

Abstract
This paper presents design and architecture of the
distributed virtual reality service (dvr) which allows
collaboration-unaware VRML animations and simulations
to be integrated into cooperative applications. The dvr
service realizes the distribution of VRML content to a group
of participants via multicast. User interactions with the
VRML model are synchronized in a manner transparent to
the VRML content. To demonstrate the feasibility of our
novel approach, we have successfully integrated the
distributed virtual reality service into the digital lecture
board which is a shared whiteboard tailored to the specific
needs of collaborative work, for instance, in the area of
computer-based distance education.

1. Introduction

One of today’s most challenging multimedia applica-
tions is computer-based teleconferencing. In addition to
audio and video, teleconferencing systems generally come
with both a shared whiteboard for joint sketching of ideas,
and an application sharing tool. These systems are
employed in a variety of fields such as distance education,
teleconsulting, telemedicine and telecooperation. In this
paper we address the need to integrate the sharing of 3D
animations and simulations into existing telecooperation
applications. Areas of application for this functionality are
the usage of interactive 3D models in teleteaching sce-
narios, telepresentations involving 3D information, or joint
development of engineering objects over the Internet.

The foundation of our work is the digital lecture board
(dlb) [3], a novel shared whiteboard supporting a rich func-
tionality ranging from displaying and annotating slides to
chatting and voting. The dlb was developed at the Univer-
sity of Mannheim and is tailored to support the specific
requirements of telecollaboration. The integration of sup-
port for shared 3D animations and simulations is accom-
plished by providing a distributed virtual reality (dvr)
service which can be controlled through the user interface
of the dlb. This service makes it possible to share 3D
geometry and behavior specified in the virtual reality mod-
eling language (VRML). Due to its design and architecture,

the dvr service can be employed by arbitrary cooperative
applications.

2. Digital Lecture Board (dlb)

The digital lecture board [3] is a shared whiteboard tool
which is being developed in the context of computer-based
distance education. The design of the dlb has been mainly
influenced by our experience with synchronous teleteach-
ing in the TeleTeaching projects of the University of
Mannheim [2].

2.1. Main Features

The current prototype of the dlb supports the following
main features. A more detailed description of design issues
can be found in [3] and [4].
• User Interface. The user interface of the dlb has been

designed according to thelook & feel of common
Windows applications (see Fig. 5). The interface is easy-
to-use and configurable so as to be able to adapt to
different instructional settings. We have implemented a
flexible workspace concept with multiple layers where
arbitrary media objects can be displayed and modified.
Private workspaces are provided for single participants
which can be used to prepare material invisible to the rest
of the group. Moreover, users can attach private
annotations to an online document. The content of the
shared workspace can be stored in a structured, SGML-
like file format.

• Media Support. Since media are very important in
modern instruction, we have integrated a variety of
media formats (GIF, Postscript etc.) into the dlb, as well
as many types of built-in object (rectangles, lines etc.).
Similar to word or graphic processing software, the dlb
provides editing functions like select, copy, paste, group,
raise, lower etc. for the integrated media formats.
One of the greatest benefits of applying computers in
education is the chance to use new media such as
simulations and/or animations. Since these media allow
for a better presentation of certain complex contents,
they can ease students’ understanding of complicated
subject matter. The graphical presentation and the
possibility of exploring a model by changing, for

instance, model parameters represents a strong
motivational function. This has motivated us to extend
dlb’s media capabilities with VRML through the
integration of the dvr service presented in this paper.

• Collaborative Services. Today’s video-conferencing
solutions suffer from a lack of communication channels
compared to the traditional face-to-face situation. Social
protocols or rules which control human interaction and
the course of group work in a face-to-face situation are
not automatically available in a remote situation and are
difficult to reproduce. These mechanisms include, for
instance, raising hands, giving rights to talk or to write on
the blackboard, setting up work groups, or reference
pointing.Collaborative services provide mechanisms to
support the communication of persons through
computers and to increase social awareness. The dlb
implements basic services such as floor control, session
control, voting, online student feedback, chat, and
telepointers.

• Recording. In contrast to many video conferencing
systems, the dlb supports the synchronized recording of
sessions, including all media streams, i.e. audio, video,
telepointer, whiteboard annotations etc. Students or
users who missed a session or who want to review a
certain topic are able to retrieve a previously recorded
lecture from a server. In order to be able to use existing
recording facilities such as the VCRoD service (Video
Conference Recording on Demand) [6], we rely on the
Internet RTP standard [8] for transmitting data between
distributed instances of the dlb.

• Security. Many existing teleconferencing applications
neglect security issues almost completely, even though
security is extremely important to allow for private
sessions and billing, specifically in the Internet. The dlb
is furnished with a user-oriented cryptographic concept
which provides high secure and fast software encryption
by integrating state-of-the-art encryption algorithms
such as IDEA, CAST, Blowfish etc [4].

2.2. Architectural Issues

In order to provide a high responsiveness, the distribu-
tion architecture of the dlb is completely replicated, i.e. an
instance of the dlb is running on each participant’s com-
puter. Each instance of the dlb holds a complete copy of the
session data (on-line document). The dlb instances commu-
nicate with each other by using a reliable multicast proto-
col on top of IP-Multicast.

The software architecture of a single dlb is depicted in
Fig. 1. On the application level, the core part of the dlb
embeds functional modules such as a postscript interface, a
telepointer module etc. Moreover, the dlb makes use of
local services such as, for instance, the scalable multicast

protocol (SMP) [5] for reliable multicast data delivery.
Remote services are currently the VCRoD service for
recording, and in the future, a multimedia database for stor-
ing teaching and learning materials. The distributed virtual
reality service presented in this paper is integrated into the
dlb as a local service which is accessed by a functional
module (see Fig. 1).

3. Using VRML for Animations and
Simulations

The virtual reality modeling language (VRML) is a “file
format for describing interactive 3D multimedia on the
Internet” [9]. VRML as a description language for 3D
models and their behavior is very well suited for the devel-
opment of simulations and animations. On the one hand,
VRML is an international standard and allows the plat-
form-independent definition of animations and simulations.
On the other hand it is not limited in the area of deploy-
ment as are animation tools for specific application fields.
Compared to an implementation in a standard program-
ming language such as Java, the development of anima-
tions in VRML offers a higher level of abstraction and is
therefore faster and more convenient.

The interaction with VRML content (also called a
“world”) is realized by using VRML browsers. Similar to
HTML, a VRML browser is responsible for the presenta-
tion of the content and the handling of user- and applica-
tion-generated events.

The basic building blocks of VRML arenodes. Nodes
containfields which can be elementary data types or nodes
themselves. The hierarchy formed by the nodes in a VRML
file is called ascene graph. The visible parts of the scene
graph are displayed by the VRML browser. Interaction
with VRML worlds is realized by special nodes which are

Figure 1. The dlb software architecture

d v r
c l i e n t

d i g i t a l l e c t u r e b o a r d

p s i m g

c s m
c l i e n t

v o t e

d v r

g sc s m

I P - M u l t i c a s t
n e t w o r k

s m p

V C R o D m d b

a p p l i c a t i o n
l e v e l

l o c a l
s e r v i c e s

r e m o t e
s e r v i c e s

s e c l i b

. . .

t p

s m p
c l i e n t

p s (p o s t s c r i p t i n t e r f a c e)
i m g (i m a g e l i b r a r y)
t p (t e l e p o i n t e r m o d u l e)
v o t e (v o t i n g m o d u l e)

c s m (c o l l a b o r a t i v e s e r v i c e s m o d e l)
s m p (s c a l a b l e m u l t i c a s t p r o t o c o l)
d v r (d i s t r i b u t e d v i r t u a l r e a l i t y s e r v i c e)
s e c l i b (s e c u r i t y l i b r a r y)

g s (g h o s t s c r i p t)
m d b (m u l t i m e d a d a t a b a s e)
V C R o D (V i d e o C o n f e r e n c e
R e c o r d i n g o n D e m a n d)

called sensors. A touch-sensor, for example, is able to
catch mouse-click events and distribute them to other
nodes. These nodes can react to the events, e.g. by starting
a timer or modifying the scene graph. A running timer peri-
odically generates specific events which allow for time
tracking in a VRML animation. This mechanism enables
the modeling of real-time behavior, e.g. moving an object
for a period of time.

While VRML provides all the mechanisms required for
simple animations, it does not (and was never intended to)
support full programming language functionality. How-
ever, this functionality is required for complex animations
which involve, for example, state information, non-linear
interpolation, or network activity. To allow for the model-
ing of more complex behavior, VRML provides script
nodes which define an interface between the VRML world
and a script written in a regular programming language
such as Java or C++.

In addition to script nodes, VRML browsers can provide
another API for programming language interaction: the
External Authoring Interface (EAI). The EAI is supported
by most state-of-the-art VRML browsers and provides
methods by which a VRML browser can be controlled by
external applications. The EAI can be employed, for
instance, to load and modify VRML content as well as to
catch and send events.

VRML per se does not define any mechanisms for the
distributed presentation of and interaction with animations.
In order to use VRML in cooperative applications such as
the dlb, we have developed thedistributed virtual reality
service (dvr). To realize distributed interactive animations,
two key problems have to be addressed: first, the VRML
content needs to be transmitted efficiently to all partici-
pants of a session. Second, mechanisms for the distribution
and synchronization of user interaction with the VRML
animation are required. The approach presented in this
paper solves these problems by using script nodes and the
External Authoring Interface.

4. Design Decisions

There are a number of design decisions which influ-
enced the development of the distributed virtual reality ser-
vice. The most important ones are:
• Distribution architecture. Similar to the dlb, the dvr

service is based on a replicated distribution architecture
so as to avoid the well-known problems of centralized
approaches such assingle-point-of-failure, performance
bottleneck, low responsiveness, and lack of scalability.
Common application-sharing approaches are not viable
for 3D animations since the huge amount of data —
resulting from sharing the 3D content of the VRML
browser window — would consume an unacceptable
amount of bandwidth.

• dlb integration. A central goal behind the dvr
development was a generic software architecture which
would allow for a smooth integration of the dvr interface
into arbitrary cooperative applications. With respect to
the dlb, users should not perceive the service as a stand-
alone application. The usage of VRML animations
should be as intuitive and simple as the handling of other
media (images, graphical objects etc.). To satisfy these
requirements, the local dvr service was realized as a
client-server software system without a graphical user
interface other than the VRML output. On the shared
workspace of the dlb, VRML animations are symbolized
by an icon. Activating the icon by mouse click starts the
animation at all participating sites.

• VRML interface. The external authoring interface can be
used to control VRML browsers by external
applications. Since currently there is no VRML browser,
which supports the full VRML specification as well as
the EAI and script nodes for UNIX systems, we used the
VRML browser development library OpenWorlds [1].
This C++ library supports all required functionality and
is available on a variety of platforms such as Solaris, Irix
and Windows95. OpenWorlds is a scene graph execution
engine which traverses the scene graph, executes VRML
nodes, routes events, and displays the resulting 3D
graphics.

• Synchronization. A replicated architecture implies that a
separate instance of a VRML animation is running on
each participant’s machine. To make sure that the
rendered 3D output is the same for all participants, the
VRML animations must be synchronized. The
synchronization of animations, which are controlled
solely by a timer, needs no further consideration since
VRML is real-time capable. That is, an animation which
is started on two machines at the same time will also end
at the same time, no matter how different the processing
speed of the two machines is. Visible results of
insufficient processing power are artifacts like jerky
movements of objects. However, user interaction can
easily destroy the synchronization between several
instances of the same animation since VRML does not
include collaborative sensors for the synchronization of
distributed instances of VRML animations. Hence, the
dvr service requires specific sensors for the
synchronization of user interactions.

• Collaboration-awareness. VRML content can be either
collaboration-aware or collaboration-unaware.
Collaboration-aware VRML content has been explicitly
developed to run in a collaborative environment. An
example of collaboration-aware VRML content are
multi-user VRML worlds. However, the vast majority of
current 3D models were not designed to be used in a
multi-user VRML world. This is quite natural since

multi-user worlds are only one small area where VRML
can be employed. VRML content without specific
mechanisms for the distribution of user interaction is
called collaboration-unaware. A major design goal of the
dvr service was the usage of arbitrary, collaboration-
unaware VRML animations in a cooperative
environment such that distribution and synchronization
issues would be completely transparent to the developer
of VRML content. To achieve this, we provide
collaborative sensors whose interface to the VRML
content is exactly the same as that of regular VRML
sensors. Regular sensors just need to be substituted by
collaborative sensors to enable the synchronization of
user interactions. This replacement can be done
automatically at run-time and is therefore transparent to
the original VRML author. We call VRML content
which has been transformed in this waysemi-
collaboration-unaware [7].

5. Distributed Virtual Reality Service (dvr)

5.1. General dvr Architecture

The distributed virtual reality service enables the syn-
chronized, distributed execution of VRML animations by
using the replicated client-server architecture depicted in
Fig. 2. The dvr server is responsible for the distribution,

presentation and synchronization of a VRML animation.
Convenient access to the services offered by the dvr server
is provided by a dvr client-stub. The client-stub communi-
cates with the server via local socket connections and is
available as a library. The application programming inter-
face (API) provided by the client-stub includes commands
for connection management and distribution of VRML
content. This content and the information about user inter-
action are exchanged between distributed instances of the
dvr server by means of the reliable multicast protocol SMP
[5] on top of IP-Multicast.

In detail, the dvr server offers the following services:
• A VRML animation selected by a user can be transmitted

to all other participants in a given session. Since a single
animation may consist of multiple files containing either
VRML content or other media, the VRML files are
parsed and all files belonging to the animation are
transmitted via multicast.

• The VRML animation can be loaded and displayed by an
integrated VRML browser.

• User interactions at any participating site, which change
the state of the animation, are transmitted via multicast to
all other participants.

5.2. dvr Server Architecture

Due to the replicated architecture and the need to inte-
grate a VRML browser into the dvr server, we have
designed the server as indicated in Fig. 3. The server con-

sists of the three main componentsApplication Communi-
cation Manager, dvr Communication Manager andVRML
Browser Manager. The Application Communication Man-
ager controls the local communication between dvr server
and dvr client (e.g. the dlb). This communication includes
requests from the local client to distribute and display ani-
mations. The dvr Communication Manager handles the
communication with peer server instances. Main tasks are
joining and leaving reliable multicast sessions, transmitting
VRML animations, and exchanging information about user
actions. The VRML Browser Manager provides an inter-
face to a VRML browser. We rely on the functionality of
the VRML External Authoring Interface to instruct the
browser to load VRML content and display the content in a
separate window.

5.3. Distributing User Interaction

The dvr service allows for the distributed and synchro-
nized execution of arbitrary VRML content. Hence, the

Figure 2. General architecture of the dvr service

dvr client-
stub

dlb dlbdlb

dvr server

SMP/IP-multicast

dvr serverdvr server

dvr client-
stub

dvr client-
stub

Figure 3. dvr server architecture

Communication

Manager

dvr

Multicast

Socket Interface

dvr Server

VRML API
TCP/IP

Application
Browser
VRML

Manager

Client OpenWorlds

Communication

Servers

Manager

distribution of user interactions must be transparent. As
already mentioned, our concept of distributing user interac-
tions relies on an automated transformation of collabora-
tion-unaware content into a semi-collaboration-unaware
content by replacing the standard VRML sensors with cus-
tomized cooperative sensors.

In order to demonstrate how the processing of VRML
data works, Figure4 (a) shows an excerpt of a standard
VRML file [7]. This fragment of VRML code contains a
TouchSensor (line 13 - 15), waiting for the user to touch
(click on) some geometry. Since the geometry is of no fur-
ther interest in this example, we replaced it by three dots.
The second element is aTimeSensor (lines 16 - 18)
which tracks the passage of time. Initially, theTimeSen-
sor is not activated. The user can trigger theTouchSen-
sor by a mouse click which makes theTimeSensor in
Fig. 4 (a) start ticking. TheTimeSensor then emits
events which indicate the passage of time. These events can
then be used to control an animation (e.g. the movement of
an object).

The processing needed to transform the original VRML
content into a semi-collaboration-unaware VRML model is
shown in Figure4 (b). For each sensor listening to user
input, we supply an alternative implementation, called
CooperativeX, where X is equal to the name of the original
sensor. VRML provides a standardized means to integrate
these customized nodes into a VRML file by using the
EXTERNPROTO statement. In this example the
EXTERNPROTO statement (lines 3 - 10) is used to declare
a CooperativeTouchSensor which is implemented
in a file called CooperativeSensors.wrl. One of the key
ideas behind the transformation is that a transformed sen-
sor looks like the original sensor to the remainder of the
VRML content. The only difference is that an additional

name attribute has been added. This attribute is needed to
identify the cooperative sensor which should receive an
incoming event from other participants. Thename needs to
be unique within the session, and can be of the form “User-
Name:ProcessID:IPAddress:NodeNumber”.

It is important to note that the transformation of the
VRML model can be done automatically without human
intervention. This ensures that the users will be able to
share arbitrary VRML models without manual modifica-
tion of the code.

5.4. Accessing Services

Cooperative applications can access dvr services by
using the dvr client-stub API. The client-stub is a C++
library which can be linked to the client. The application
programming interface, which was intended to be as simple
as possible, offers the following methods to access the dvr
service:
• Connect . This method allows to establish a connection

between client and dvr server. The local port number of
the server has to be passed as an argument.

• Disconnect . TheDisconnect method releases the
connection to the dvr server.

• JoinSession . By usingJoinSession , the client
requests the server to join a multicast session at a specific
address supplied by the client.

• LeaveSession . The server is instructed to leave a
multicast session.

• LoadVRML. This method requests the transmission of a
VRML animation to all participants (dvr servers) and
initiates rendering of the content at all sites. The filename
of the root VRML file for the animation needs to be
passed as an argument.

 1 #VRML V2.0 utf8
 2
 3
 4
 5
 6
 7
 8
 9
10
11 Group {
12 children [
13 DEF TouchIt TouchSensor {
14
15 }
16 DEF Timer TimeSensor {
17 cycleInterval 5
18 }
19 ...
20]
21 }
22 ROUTE TouchIt.touchTime TO Timer.startTime

(a)

#VRML V2.0 utf8

EXTERNPROTO CooperativeTouchSensor [
 field SFString name
 eventOut SFTime touchTime
 ...
]
[
 “../CooperativeSensors.wrl#CoopTouchSensor”
]
Group {
 children [
 DEF TouchIt CooperativeTouchSensor {
 name “mauve:13089:134.155.48.116:1”
 }
 DEF Timer TimeSensor {
 cycleInterval 5
 }
 ...
]
}
ROUTE TouchIt.touchTime TO Timer.startTime

(b)

Figure 4. Semi-collaboration-unaware VRML content

6. Integration into the dlb

VRML animations based on the distributed virtual real-
ity service are autonomous items of the shared workspace
of the dlb. Since direct rendering of VRML on the shared
workspace of the dlb was not feasible, the VRML item is
represented by an icon as indicated in Fig. 5. The VRML

item realizes the interface to the dvr service. It stores the
parameters required by the dvr client-stub such as, for
instance, multicast IP address, port number, or SMP
parameters. After having selected a VRML file, parameters
are requested through a dialog. Then a VRML item is cre-
ated and transmitted to the distributed dlb instances which
locally create a corresponding item. The VRML animation
is started via mouse click on the VRML icon. Upon this
event the dvr service distributes the VRML file(s) to all
involved dvr instances and launches a local VRML window
for rendering the VRML content (see Fig. 5).

7. Conclusion and Future Work

This paper addressed design issues and architecture of
the distributed virtual reality service. The dvr service is
based on a replicated client-server architecture on top of
IP-Multicast. Since rendering of VRML content is per-
formed locally at each participating site, a high perfor-
mance and responsiveness is achieved. We have
demonstrated the feasibility of our ideas by implementing a
prototype of the dvr service. This prototype has been inte-
grated into the digital lecture board, which is a cooperative
application for computer-based distance education.

Some open issues still need to be considered in the
future such as, for instance, the support for late comers by

providing an adequate late join algorithm, the synchroniza-
tion of viewpoints so as to provide guided tours, or the han-
dling of concurrent user interaction by means of floor
control mechanisms.

8. Acknowledgements

This work is funded by the Siemens Telecooperation
Center, Saarbrücken, Germany and IBM’s European Net-
working Center, Heidelberg, Germany. Moreover, we
would like to thank Tino von Roden for his excellent con-
tribution to the implementation of this work.

9. References

[1] Diefenbach, P., Mahesh P., Hunt D.: “Building
OpenWorlds (TM)”. In: Proc. of VRML’98, February 1998.

[2] Eckert, A., Geyer, W., Effelsberg, W.: “A Distance
Learning System for Higher Education Based on
Telecommunications and Multimedia - A Compound
Organizational, Pedagogical, and Technical Approach”. In:
Proc. of ED-MEDIA’97, Calgary, June 1997.

[3] Geyer, W., Effelsberg, W.: “The Digital Lecture Board -
A Teaching and Learning Tool for Remote Instruction in
Higher Education”. In:Proc. of ED-MEDIA’98, Freiburg,
June 1998.

[4] Geyer, W., Weis, R.: “A Secure, Accountable, and
Collaborative Whiteboard”. In:Proc. IDMS’98, Springer,
LNCS 1483, 1998, pp. 3-14.

[5] Grumann, M.: Entwurf und Implementierung eines
zuverlässigen Multicast-Protokolls zur Unterstützung
sicherer Gruppenkommunikation in einer Teleteaching-
Umgebung. Master’s Thesis (in German), Lehrstuhl
Praktische Informatik IV, University of Mannheim, 1997.

[6] Holfelder, W.: “Interactive Remote Recording and
Playback of Multicast Videoconferences”. In:Proc.
IDMS’97, Springer, LNCS 1309, 1997, p. 450-463.

[7] Mauve, M.: “TeCo3D - A 3D Telecollaboration
Application Based on VRML and Java”. Accepted at
Multimedia Computing and Networking 1999 (MMCN99) /
SPIE99, San Jose, February 1999.

[8] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.:
RTP: A Transport Protocol for Real-Time Applications.
Internet RFC 1889, IETF, 1996.

[9] VRML Consortium: Information technology -
Computer graphics and image processing - The Virtual
Reality Modeling Language (VRML) - Part 1: Functional
specification and UTF-8 encoding. ISO/IEC 14772-1:1997
International Standard, URL: http://www.vrml.org,
December 1997.

Figure 5. A VRML animation integrated into the dlb

