
Protecting User Privacy in WiFi Sharing Networks
Till Elsner Denis Lütke-Wiesmann Björn Scheuermann

Heinrich Heine University Düsseldorf, Germany
{elsner, scheuermann}@cs.uni-duesseldorf.de, denis.luetke-wiesmann@uni-duesseldorf.de

Abstract—WiFi sharing communities are an interesting option
for mobile Internet access. Today, however, users need to give
up privacy in exchange for connectivity: they are required
to expose their identity in order to be granted access. This
information can be used to track users and to generate usage
and movement profiles. We identify the challenges of providing
a maximum level of privacy and anonymity in a WiFi community.
From a discussion of privacy properties of existing architectures,
we arrive at a privacy-aware WiFi sharing design for fully
anonymous usage—without sacrificing any participant’s security
or legal safety. This system, like some previous designs, relays a
mobile user’s data via this user’s home network; we discuss how
and under which circumstances this contributes to privacy and
anonymity. In order to enable users to remain fully anonymous
in such a system, a means to locate the home network of a user
without leaking permanent identifiers is needed. We introduce
and evaluate volatile host names, a novel method to generate
anonymized, non-persistent host names in standard DNS.

I. INTRODUCTION

In a WiFi sharing community, users are allowed to access
the Internet from foreign access points in exchange for shar-
ing their unused Internet connection bandwidth with others.
However, in today’s deployed WiFi sharing communities (most
prominently, FON [1]), this gain of connectivity comes at a
significant cost in terms of privacy: in order to be granted
access to the Internet via a community access point, a user
is first authenticated by a central community operator. This
provides the community operator with exact knowledge when
and where a particular user accessed the Internet, yielding
a detailed profile of her movement and community resource
usage. Not only the community operator, but similarly also
any community member providing an access point can learn
about her users, and may even eavesdrop on the users’ traffic.

Here, we consider the question how a WiFi sharing com-
munity can be built that provides full privacy protection for its
users. Our key arguments, detailed in the course of this paper,
are as follows. We start by discussing some WiFi community
designs that have been proposed in the scientific literature, in
particular [2], [3], [4], [5]. These proposals use triangle routing
via the guest user’s own home network. We will argue how
this concept avoids the necessity to disclose the user’s real-
world identity to any other party, and therefore constitutes a
promising basis for privacy-aware WiFi sharing.

However, even if the resulting design guidelines are fol-
lowed and such a design is employed, significant risks for the
users’ privacy remain due to indirectly leaked identification
attributes: we will discuss that if persistent attributes, even
if completely unrelated to the real-world identity, make a
user recognizable upon later returns, an eventual revelation

of the user’s real identity is very likely. This threat is not
sufficiently taken into account by existing systems. In fact,
in a WiFi sharing community based on triangle routing via
the user’s home network, it turns out upon closer examination
that one central puzzle piece for providing full user privacy is
missing: how can a user request to be connected to her home
network without revealing an identifying attribute, namely the
(dynamic) DNS name of this home network?

We are the first to solve this problem, with a mechanism
which we call volatile host names (VHNs). A volatile host
name is a host name that can be resolved via standard
DNS, but only once, i. e., for a very limited period of time.
Multiple VHNs from the same user—referring to the same
host or home network—cannot be linked. In combination
with regularly changing IP addresses of the home network
(which are common for many home Internet connections), a
user repeatedly accessing the Internet via a community access
point cannot be recognized based on this attribute. VHNs
therefore provide the missing component that is needed to
build a privacy-aware WiFi sharing community.

The remainder of this paper is structured as follows. In
Sec. II, we examine previous work in the WiFi sharing context,
with a focus on anonymity and privacy aspects. Based thereon,
we identify the shortcomings of existing approaches, derive
requirements for privacy, and discuss solution strategies in
Sec. III. In Sec. IV, we describe our volatile host names
approach, analyze its security, and evaluate its performance.
We conclude the paper with a summary in Sec. V.

II. RELATED WORK

The most popular deployed WiFi sharing community is
FON [1]. Its centralized authentication scheme with user ac-
counts bound to the user’s real-world identity makes the FON
community improper for anonymous use by design, as the
community operator knows exactly which person used which
access point at which point in time. From a user perspective,
this is surely not desirable. As we will see, the problem can
be overcome by avoiding centralized authentication.

Several designs in the scientific literature—including the
proposals made by Sastry et al. [2], by Heer et al. [3], by
Leroy et al. [4], and our own previous work [5]—route a
mobile user’s traffic via a trusted relay in her home network.
For instance, this relay could be physically running on the
user’s own community access point. This concept is outlined
in Fig. 1. The key motivation is to relieve the operator of
the access point from the liability of potential misuse: since
all traffic of a mobile user is routed via her home network,

c©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.



Fig. 1. WiFi sharing approach using triangle routing.

any potential misuse would also be attributed to this network,
and not to the person offering the access point. Beyond
this observation, however, we find that the “triangle routing”
concept, if used in the right way, in addition also exhibits
significant privacy benefits. We will therefore build upon this
architecture when we discuss the construction of a privacy-
aware WiFi sharing community in the following.

III. PRIVACY-AWARE WIFI SHARING

In the remainder of this paper, we will step-by-step develop
the requirements for a WiFi sharing system which allows its
users to remain completely anonymous. At the same time, we
will ensure that we do not sacrifice other important aspects
like, e. g., the protection of access point providers against
misuse of their service. To this end, we discuss privacy threats
in WiFi sharing approaches, and how to overcome them.

A. Tracking by the community operator

A prototypical example for centralized authentication is the
aforementioned community FON [1]. Binding a user’s account
to her real-world identity enables FON to identify a user in
case malicious traffic arises. However, it also provides full
knowledge about each user’s movement and usage pattern.

As a means to avoid the central authentication instance, one
might replace the online authentication process by certificate-
based offline authentication. Instead of being directly authen-
ticated by the community operator, guest users would then
prove their community membership using a certificate issued
by the operator. In the simplest case, this certificate would
bind a public key for authentication to a real-world identity,
and would certify that the certificate holder is a community
member. The role of the community operator would be to
issue these certificates. Since the community operator does
not need to be contacted when the actual (public key-based)
authentication is performed, the community operator can no
longer track the usage patterns of community members.

B. Tracking by access point operators

The simple certificate-based scheme outlined above still
reveals the identity of the users to the access point provider.
One may very well argue that this is even worse than revealing
the access pattern to a community operator, because the access
point operator can not only observe when the access point has
been used by which user: in addition, the access point can see
the network traffic of each user.

Heer et al. [3] propose a system where the certificates do
not include real-world identities. At a first glance, it may
appear that, in such an approach, the access point operator
does not know whom to hold accountable in case of misuse.
This, however, is elegantly solved by a concept first proposed
by Sastry et al. [2], where each user’s traffic is relayed via
the user’s home network. A community access point does
therefore not provide full, unrestricted Internet access to a
user, but only access to her home network, which could be
specified in the user’s certificate. The home network forwards
the data between the user’s current location and the Internet.
As can be seen in Fig. 1, the guest’s communication partners
on the Internet will thus see an address from her own home
network as the source of the traffic. Consequently, there is no
liability risk for the community member offering the access
point. Moreover, such an approach can easily be combined
with encrypting the traffic between the user’s device and home
network. This protects the mobile user’s traffic from snooping
by the access point, or by other users of the same access point.

C. Tracking anonymized identifiers

In a system as discussed so far, the community operator
is not involved in the actual authentication, and the access
point provider is not able to immediately link her users to
real-world identities. While Heer et al. [3] term this property
“anonymity”, we will rather refer to it as “pseudonymity” as
defined by Pfitzmann and Köhntopp [6]: while a connection
can not directly be linked to the user’s real-world identity,
multiple connections of the same user can easily be linked
to each other. Keeping real-world identities out of certificates
does thus not suffice: the host access point gets to see the
guest’s certificate, which remains unchanged for each authen-
tication. The host can thus easily determine if and when the
same guest connected before.

Anonymity in the sense of unlinkability is important, be-
cause otherwise “anonymized” connection profiles about the
holder of any certificate can be created, i. e., profiles which
are not (yet) linked to a real-world identity, but only to
a pseudonym/certificate. As these profiles include more and
more data, the set of users that could possibly be the originator
of the data becomes more and more constrained. In the context
of anonymization services, this set of possible identities behind
a pseudonym is termed the “anonymity set” [6]. Eventually—
often surprisingly rapidly and easily [7]—the anonymity set
becomes smaller and the real-world identity is revealed with
very high probability. Once the real-world identity behind a
given certificate is known, all past and future actions can be
linked to this identity—that is, full tracking is possible.

D. WiFi sharing without persistent attributes

Avoiding this problem boils down to avoiding visibility of
any persistent attributes of a user to the access point. This
includes data exchanged during authentication, but also, for
instance, the MAC address of the user’s device: the same user
must “look” entirely differently upon each connection.



As for the persistent information in the certificate, a solution
strategy based on our own previous work [5] is possible. In this
work, we introduced a WiFi sharing system without any central
operator, not even a certification authority. The association
between a user and this user’s home network is not based
on certificates, but is verified on-line by simply “asking” the
home network. For details how this is accomplished we would
like to refer the reader to [5]; the general idea is as follows:
the guest user connects to an access point and provides it with
the DNS name of her so-called remote station. The remote
station is a specific host in the guest user’s home network
which is used to relay her traffic. The guest user shares a
secret key with her remote station. The access point, before
allowing any traffic between the user and the Internet, connects
to the named remote station and performs a remote station
approval handshake. The handshake provides the access point
with an unencrypted and the guest user, via the access point,
with an encrypted version of the same random number; if the
guest user named the correct remote station, she will be able
to decrypt the encrypted version and can thereby prove to the
access point that data traffic between the guest and the named
remote station can safely be allowed. The guest user will then
be permitted to set up a tunnel to her remote station.

With respect to privacy aspects, the key feature of this
handshake is that it does not reveal any information to the
used community access point, except for the DNS name of
the claimed remote station. In a typical setup, this will be a
dynamic DNS host name [8] which resolves to the current IP
address of the guest user’s home network.

In summary, if we build a WiFi sharing community based
on the triangle routing concept and adopt a remote station
approval handshake along the lines of [5], only the following
information about the guest will be accessible to the access
point: (1) the DNS name of the user’s remote station, (2) the
current IP address of the remote station, as resolved via DNS,
and (3) the MAC address of the guest user’s device.

Recognition by MAC address can easily be avoided, as the
assignment of a random MAC address prior to connecting to
an access point is possible with every modern WiFi chipset and
operating system. The issue of the IP address of the remote
station, too, is easy to solve: a privacy-aware user should use
an Internet provider where the IP address of her connection
changes regularly, e. g., upon each re-connect. Such address
changes could be triggered automatically by the provider on a
daily basis (as is the case for a certain, but decreasing number
of Internet providers), or, if not forced by the provider, by the
user herself by shutting down and re-establishing her Internet
connection, either manually or automatically. Since out-of-
band channels like cellular connections may imply significant
cost—especially when used abroad—, the most reasonable
option to communicate the remote station’s current IP address
to the user is to announce it via DNS.

The key open issue that remains to be solved is therefore the
following: upon connection establishment, the DNS host name
of the remote station is handed over to the access point, in
order to perform the remote station approval handshake; how

can we avoid that this host name can be used as a permanent
identifying attribute of the guest user? Note that the guest user
cannot resolve the host name herself, because at this point she
is not yet allowed to communicate with the Internet; moreover,
allowing unauthenticated guest to perform name resolutions
would also open up avenues for authentication circumvention
techniques like DNS tunneling [9]. Note also that existing
cryptographic DNS extensions like DNSSEC [10] are obvi-
ously not helpful here: DNSSEC provides authentication, but
not confidentiality or anonymity.

IV. VOLATILE HOST NAMES

Our solution to the problem of anonymizing DNS names is
the volatile host names (VHN) approach. If a user decides to
use volatile host names, she sets up a dynamic DNS account
with a provider offering that feature. The user can then, in
a first step, request an arbitrary number of so-called request
tokens from her DNS provider (e. g., via a web site) prior to
using the WiFi sharing community. Each request token can be
used to construct a volatile (i. e., one-time) DNS host name for
the user’s home network. The user can download more request
tokens at any time. Thereby, by registering a single dynamic
DNS account, the user has an arbitrary number of DNS names
for her home network available. The DNS provider does not
need to store the tokens; that means, the VHN extension of the
DNS server can provide an arbitrary number of DNS names
to a user without the need to remember a single one of them.

In a typical usage scenario, a user contacts a community
WiFi access point and would then need to name her remote
station. At this point she would use one request token to
generate a VHN. This VHN is then communicated to the
access point as the remote station DNS name. The access point
does not need to be aware that a VHN is used, as VHNs can
be resolved using standard DNS, just like any other host name.
By resolving the VHN, the access point will obtain the current
IP address of the user’s remote station. Soon later, the VHN
will become invalid and can no longer be resolved. The user
does not need to take care of this invalidation; she only needs
to remove the corresponding requst token from the list.

To be practically usable, such a technique must, beyond
anonymity, fulfill two important requirements. First, compati-
bility with standard DNS must be preserved—it is obviously
not realistic to deploy updated DNS servers throughout the
Internet. In our volatile host name system, the only server
with extended functionality is the authoritative name server
of the dynamic DNS provider, i. e., VHNs provide host name
anonymization over standard DNS as specified in [11]. Second,
the protocol should be constructed in a way that does not
open up avenues for denial-of-service attacks against the
DNS provider. This rules out a solution based on public key
cryptography: the computational requirements would be far
too large, and would make the DNS server susceptible to DoS
attacks. VHNs use only symmetric cryptography so that, as
we will show, the involved computations are very efficient.
The abovementioned statelessness also contributes to making
the approach robust against DoS attacks.



Fig. 2. Request token list generation.

A. Approach

Each user of a VHN-enabled DNS provider has a user
ID c, which is basically a string and is only known to the
provider and the client. In our prototype implementation, we
used strings of either 24 bytes or 56 bytes (these sizes yield
tokens of full cipher block size lengths). For each user ID, the
DNS server stores the current IP address; this resembles the
information stored by any standard dynamic DNS provider.

To be able to generate VHNs, a client must first obtain
request tokens from the DNS provider, which the provider
generates on demand using a symmetric key S. This key is not
known by the user but only to the authoritative DNS server. S
is also not user-specific: the same key S is used for all users
(i. e., for all customers of the dynamic DNS provider). The
generation of request tokens is outlined in Fig. 2. To generate
a token, the server picks a random transaction number (TAN);
in our implementation, TANs are 8 byte long. It then encrypts
the tuple (TAN, c) using key S. For encryption, the TAN and
c would typically be concatenated. We denote the encrypted
tuple by R. Both R and the unencrypted TAN are then
transmitted to the client, together they form a request token.

To generate a VHN from a request token (TAN, R), the
client first calculates a cryptographic hash value cksumt over
both the current system time t and the TAN. We use an 160 bit
SHA-1 hash for cksumt; the timestamp is 4 byte long. The
hash value serves as a checksum to prevent replay attacks.
Then, the host name part of the VHN is assembled as the
concatenation of R, t, and cksumt. To be compliant with the
range of allowed characters for DNS names as stated in [11],
this string is then base32 encoded [12]. Finally, the domain
name of the VHN-aware dynamic DNS provider is appended.
In summary, the VHN looks as follows:

base32(R t cksumt).example.com,

where example.com is the domain of the dynamic DNS
provider. Base32 encoding adds 40 % in size, so for field
lengths as stated above the length of the host name stays
significantly below the limit of 255 characters in DNS [11].

Note that the domain name is appended in clear text to the
scrambled host name, and the overall construction looks like
any valid DNS host name. Thus, neither the access point nor
any intermediate DNS servers need to be aware that a VHN
is being used. In fact, they could not even tell a volatile host
name apart from a “normal” (yet, admittedly, long and rather
random) one. This trait also implies that no user would be
forced to use a specific VHN provider (or to use VHNs at
all)—each user is free to choose any service that is able to
provide DNS names for the current remote station IP address.

Fig. 3. Anonymized request.

Figure 3 sketches the way a VHN resolution request takes.
When the authoritative DNS server of a VHN dynamic DNS
domain receives a request to resolve a host name, it extracts
R, t, and cksumt. It decrypts R using S and thereby obtains
c and the TAN. Using t and the TAN, the server can check
whether cksumt is correct. If this check holds, the server
compares t and its own current system time, to check if t is
sufficiently current. Only then, the request will be answered.
This requires synchronized clocks between a client device
and the authoritative DNS server, but only to a very coarse
accuracy that will easily be achievable in practice: a tolerance
of a few minutes seems appropriate. The larger the allowed
deviation, the longer will it be possible to resolve the VHN.

B. Security analysis

Without knowledge of the key S, it is not possible to extract
the client ID c from a VHN. It is also not possible to decide
whether two different VHNs belong to the same user.

An attacker could still keep track of the current IP address
by repeatedly resolving a once obtained host name, enabling
linking of different connections of the same user even if they
use different host names. Such replay attacks are warded off by
the inclusion of the timestamp t and its checksum cksumt: t
forces the invalidation of the VHN after a short time. Updating
t would also require an update of cksumt. The TAN required
to do so cannot be obtained from the VHN by an attacker.

Also important to the security is the use of the cipher
block chaining mode (CBC) for the encryption of R. To avoid
unnecessary overhead, we use a fixed initialization vector
(IV) for the encryption in all request tokens. This prohibits
the use of an operation mode such as cipher feedback mode
(CFB) [13]: the first ciphertext block with CFB encryption is
simply an XOR of the encrypted IV and the first plaintext
block. Any user of the same dynamic DNS server could thus
easily obtain the encrypted IV from her own request tokens,
because she knows the plaintext block. On this basis, she could
recover the plaintext TAN from the VHNs of other clients.
Using CBC for encryption avoids this problem.

C. Performance

The volatile host names approach has been designed with
anonymity and security in mind, but, to avoid being prone
to denial-of-service attacks, it also takes speed and protection
of server resources into account. The server does not need to



20k

40k

60k

80k

100k

120k

AES265 AES128 Blowfish

re
q
u
e

s
ts

/s
e

c

ciphers

client IDs
24 byte
56 byte

Fig. 4. Measured processing speeds.

store any data beyond the usual dynamic DNS information
(i. e., the current IPs) and one single key S—no matter how
many request tokens have been generated (or have been used).
Generating a request token requires one symmetric encryption.
Generating a VHN from a request token on the client side
requires the calculation of one cryptographic hash value.
Resolving a VHN takes one symmetric decryption plus the
calculation of one cryptographic hash value. Using symmetric
cryptography only, all these operations are highly efficient.

The only additional step required to resolve a VHN in
contrast to a conventional DNS name is the transformation of
the VHN to the encapsulated host name, i. e. the decryption
of the VHN and the validation of the timestamp. Therefore,
our evaluation focuses on this transformation, since all other
factors influencing the resolution process performance also
exist in conventional DNS and are not affected by the VHN
scheme. To evaluate the transformation’s performance, we
have implemented VHNs in a prototype. It is written in
Java, using the Java Cryptography Extension (JCE) with JCE
Unlimited Strength Jurisdiction Policy Files 6. The evaluation
has been performed using an 2.66 GHz Intel Core2 Quad CPU,
with 4 GB RAM, on 64-bit Gentoo Linux (kernel 2.6.31).

We performed multiple measurement runs with different
parameters. We used different symmetric block ciphers and
client IDs c of length 24 byte and 56 byte. We took measure-
ments using AES with key lengths of 128 and 256 bit, and
Blowfish with a key length of 56 bit. Fig. 4 shows the number
of requests that could be decoded within one second, for each
of the abovementioned configurations. All results show the
average over 10 runs and min-max error bars.

Using 24 byte long client IDs c results in R values with
a length of 56 characters (24 byte client ID + 8 byte TAN,
base32-encoded). The base32 encoded timestamp needs 7
characters. For the hash value we use a 160 bit SHA-1 hash,
which grows to 32 characters through the base32 encoding.
The complete VHN therefore has an overall length of 95 byte,
not including the domain name of the dynamic DNS provider.
During transport, at least 56 bytes of headers will typically be
added (10 byte DNS + 8 byte UDP + 20 byte IP + 14 byte
Ethernet frame + 4 byte Ethernet CRC), resulting in a lower
bound on the overall size of a request packet of 151 byte.

One million requests, as used in our test, would thus result in
at least 1.125 Gbit of traffic. Our prototype needs approx. 9.5

seconds for verifying and decrypting this number of requests,
so it is capable of handling DNS traffic at line speed for
connections of more than 120 Mbit/s. If 56 byte long client IDs
are used, the results are even more favorable: despite a slightly
lower number of decryptions per second (due to the longer
ciphertext), the additional characters result in an even higher
data volume (and thus a lower number of requests per second
received on a given network link), so that this combination
could operate at even higher line speeds.

In summary, our results show that even with our non-
optimized Java implementation, processing VHN DNS re-
quests is easily possible at typical line speeds. Therefore,
thanks to being built on the basis of purely symmetric crypto-
graphy, our scheme is very efficient, and its low cryptographi-
cal overhead will not make the dynamic DNS provider’s server
susceptible to DoS attacks.

V. CONCLUSION

In this paper, we presented techniques applicable to provide
full anonymity and privacy within a decentralized WiFi sharing
community. We argued that the key aspect that needs to be
solved is the avoidance of permanent identification attributes
that could be used to recognize a guest. We showed that a
combination of a triangle routing-based community network
architecture, the certificate-free remote station approval hand-
shake, and dynamically varying MAC and IP addresses is
a good basis for such a system. In order to become fully
robust against tracking by anonymized identifiers, it needs to
be combined with a way to obtain the current IP address of a
user’s home network without using a permanently resolvable
DNS name. We therefore developed volatile host names as
a means to perform DNS request anonymization with low
overhead and without a compatibility breach.

REFERENCES

[1] “FON,” Website. [Online]. Available: http://www.fon.com
[2] N. Sastry, J. Crowcroft, and K. Sollins, “Architecting citywide ubiquitous

Wi-Fi access,” in HotNets ’07, Nov. 2007.
[3] T. Heer, S. Götz, E. Weingärtner, and K. Wehrle, “Secure Wi-Fi sharing

on global scales,” in ICT ’08, Jun. 2008.
[4] D. Leroy, M. Manulis, and O. Bonaventure, “Enhanced wireless roaming

security using three-party authentication and tunnels,” in U-NET ’09,
Dec. 2009.

[5] W. Kiess, T. Elsner, B. Scheuermann, and M. Mauve, “Global grassroots
WiFi sharing,” in WCNC ’10, Apr. 2010.

[6] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudonymity – a proposal for terminology,” in Workshop on Design
Issues in Anonymity and Unobservability, Jul. 2000, pp. 1–9.

[7] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in
SP ’09, May 2009.

[8] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic updates in
the domain name system (DNS UPDATE),” RFC 2136, Apr. 1997.

[9] T. van Leijenhorst, K.-W. Chin, and D. Lowe, “On the Viability and
Performance of DNS Tunneling,” in ICITA ’08, 2008.

[10] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS
security introduction and requirements,” RFC 4033, Mar. 2005.

[11] P. V. Mockapetris, “Domain names – implementation and specification,”
RFC 1035, Nov. 1987.

[12] S. Josefsson, “The base16, base32, and base64 data encodings,” RFC
4648, Oct. 2006.

[13] “Modes of operation for an n-bit block cipher,” ISO/IEC 10116:2006.


