
Protected Chords in the Web:
Secure P2P Framework for

Decentralized Online Social Networks
Andreas Disterhöft, Kalman Graffi

Technology of Social Networks, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
Email: disterhoeft@cs.uni-duesseldorf.de and graffi@cs.uni-duesseldorf.de

Abstract—Online social networks have emerged as a main
tool to communicate in the Internet. While centralized
solutions are prone to censorship, privacy violations and un-
wanted marketing of the users data, decentralized solutions,
e.g. based on p2p technology, promise to overcome these
limitations. One major shortcoming is the need to install
additional software, which is progressively not accepted
by users which are used to web-based applications. In
this paper, we present how WebRTC can be used to
implement an installation-free, fully decentralized online
social network. With WebRTC, standard browsers can com-
municate directly, which allows to construct PKI secured
p2p overlays with replicated and access-controlled, reliable
storage. Evaluation shows that our approach is scalable in
terms of the number of users and complies with performance
requirements stated to today’s social networks.

I. MOTIVATION

Nowadays, the Internet is dominated by centralized
solutions, which unfortunately carry the risk of informa-
tion leakage, data misuse and spying on the users due
to the central access of the provider. Provider of current
social networking sites or communication tools, such as
Facebook or Skype, have an interest in using the user’s
data for marketing purposes as well as an obligation to
hand over all information and communication details to
national security organizations. While in rare cases, such
a cooperation might lead to the identification of terrorist
activities, the surveillance of millions or even billions
of people might lead to the attempt to control these
people. In totalitarian regimes, surveillance of the masses
and the subsequent selection and punishment of people
questioning the regime is an essential building block for
manifesting the suppressing power of these regimes.

Thus, alternatives to these centralized, possibly
surveilled solutions are needed. Overlay, e.g. Peer-to-Peer
(p2p), networks emerge in the Internet as a mean to
provide new network functionality to interested nodes,
such as information-centric routing or direct user-to-
user communication, without the need of central ele-
ments. However, current p2p overlays and corresponding
distributed mechanisms come with the limitation that
potential participants have to install a third-party software

in order to join the p2p network. This potential barrier can
lead to a reduced growth rate of a system’s user base.

With the introduction of WebRTC [1], it is possible to
establish an encrypted and direct p2p connection between
browser instances. By this, we gain the opportunity to
create a secured p2p network based on browsers without
the need of installing additional software, because popular
browsers already implement WebRTC.

Requirements: As a use case and core functionality,
our social networking solution supports the following
main features fully distributed: F1) a device-independent
login F2) search and establishing connections to reg-
istered users F3) buddy list management F4) commu-
nication via text-based-chat and audio/video streaming
and F5) a device-independent, distributed storage of the
contacts and chat history. As further, non-functional re-
quirements we state: N1) Security: First steps should
contain user authentication, authorization and access con-
trol. N2) Full decentralization: any protocol should be
planned to be equipped with mechanisms to handle
churn and an expected heterogeneity of the user devices’
resources.N3) Device independence: a user should not
be bound to any device. N4) Feasible demands: the
application should be responsive and consume only small
amounts of the user’s bandwidth and storage space.

The paper is organized as follows. In Section II, we
present a brief taxonomy of distributed online social
networks and highlight browser-to-browser-based DHTs
for online social networks are new. Section III elaborates
on our solution in detail. In the evaluation in Section IV,
we analyze our solution under various aspects.

II. RELATED WORK

An overview of the challenges in distributed social net-
works, which were proposed to alleviate the security and
censorship risk of centralized online social networking
(osn) sites, is given by Buchegger and Datta [2] and Paul
et al. [3]. Two large trends emerged in this research area:
private server approaches and p2p-based approaches.

Well-known work in the field of private server ap-
proaches are Diaspora [4], FOAF [5] and Persona [6].

These approaches assume users set up web servers, con-
nect them and create a distributed social network in this
way. By this, central storage points are omitted and the
control on the data remains at the users or their friends
but the risk of data misuse and censorship is given, as
any web server may be compromised or shut down.

In contrast, p2p overlay networks inherently assume
failures of participating nodes and provide a reliable
distributed data storage plane with DHTs. Thus, in p2p-
based approaches, users are expected to be only tem-
porarily active in the network, permanently online servers
are not assumed. The authors in [7], Safebook [8] and
GoDisco [9] concentrate on overlay networks mapping
the friendship relation, which offers the benefit of ef-
ficiency as communication remains mainly local in the
overlay as typically friends are interested in the updates
and data of their own friends. This first sub-class faces
some structural limitations in the case of bootstrapping
nodes with few friends or nodes not trusting their friends.
Their data availability is at risk as shown by Mega et
al. [10]. In order to overcome this problem, the second
class creates a DHT that is used as a distributed data plane
independent of the friendship relations. This approach
is applied by LifeSocial [11], [12], [13], PeerSoN [14],
SuperNova [15] and OverSoc [16].

Boldt and Fischer [17] proposed a browser-based p2p
network based on the Chord protocol using WebSocket
SOCKS5 Proxys and creating the possibility to store
encrypted data in the DHT using symmetric cryptog-
raphy. However, we worked independently in parallel
and realized several future work suggestions. Particularly,
we implemented a browser-based Chord protocol using
WebRTC, asymmetric cryptography, supporting device
independence and a basis for osn applications.

III. OUR CONTRIBUTION: A WEBP2P-BASED
FRAMEWORK FOR SOCIAL NETWORKS

In this section, we present our software architecture and
the most important protocols. They implement a browser-
to-browser based, p2p framework for social networks, in
specific implementing a secure buddy list, data storage
and personal text / audio / video communication. The re-
quirements stated in Section I, namely F1-F5 and N1-N4,
are met, whereby N4 is proved by the evaluation. Figure 1
shows the modular structure of our software. In the scope
of this paper we focus on the most important modules,
namely the Web-DHT-Overlay, which provides the basic
functions used by upper layers to tackle F3-F5, and the
realistic user simulation.

1) Web-DHT-Overlay Module: This module is the
main part of the software, which contains the p2p overlay
and the basic application support. The module is sub-
divided in the tasks for (a) establishing direct browser-
to-browser connections, (b) using these connections to

implement a DHT and (c) all security related functions.
For the lowest 1-to-1 communication layer, we use

PeerJS which encapsulates the WebRTC API. Using this
library we establish connections to remote peers, whereas
a PeerJS server acts as a broker but subsequent com-
munication is done directly, and start data transmission
or audio / video (AV) streaming. Security challenges to
overcome were due to that WebRTC-API can be reached
via Javascript which defines security risks as addressed
by Lawton [18]. We eradicated these issues by using the
Google Web Toolkit (GWT) and by following guidelines
for this framework. GWT is a framework to build web
applications, where Java code is translated to Javascript
by emulating Java standard APIs and is used to boost the
implementing time. As the framework emulates a list of
APIs, there exist limitations, which mostly arise because
of the browser environment. For example it is essential
to program in a single-threaded event-driven manner. We
harnessed the main advantage of GWT to use native
Javascript code through the JavaScript Native Interface
(JSNI), so an integration of native Javascript libraries
became possible. For the higher layers, we introduced
a new message type called Message which is used to
send and dispatch application layer messages, like text
messages, buddy requests and AV responses. In case of
an incoming message or streaming request, the local node
has to decide how to process this request / message (F4).

We decided to use Chord with its open source imple-
mentation OpenChord as the base, which is full decen-
tralized and provides stabilization mechanisms to handle
churn (N2). Despite the fact that Chord is known for
not being churn-resistant, we have chosen to use the
basic Chord overlay as it is simple and can be easily
modified to fit our needs in the future. Thus, due to our
modular structure, we are able to expand, modify and
even exchange our overlay in every detail. By applying
well-known features, mechanisms and strategies from
other overlays we may be able to improve the stability.

Figure 2 shows all modifications on plain OpenChord.
We added, removed and modified features with the aim to
support browser-to-browser interaction, security, robust-
ness and to provide with the application layer a usable
basis for social applications on top.

First of all, the Chord ID is now calculated from
the users credentials (user name, password), which is a
deterministic process. This gives us device independence
(N3). To do so, we generate an asymmetric elliptic curve
cryptography (ECC) key pair from the credentials. The
generated public key is now used as the Chord ID, so
every message can be encrypted by using the destination’s
public key and signed by the author. The receiving node
can verify the signature. To support this, nodes create
self-signed certificates, which are stored on deterministic,
well-defined places in the Chord ring i) hash(publicKey)

and ii) hashj(username). Please note the entry in (i) is
unique, so we get the exact search for a given public
key. The entries in (ii) are shared among the users with
the same user name. Iterating through the logical user
name list will return the desired contact. Thus, the search
for a peer is equivalent to the search for its certificate
(F2). These deterministic processes imply, however, that
a password change is currently not possible.

To preserve the overriding of user certificates and fur-
ther data elements in the DHT, we implement a distributed
identity-based access control mechanism. We introduce
three types of DHT entries to provide an identity-based
access control: i) unsigned: a simple unsigned entry
which can be modified by every node. Basic attributes:
ID, author ID and payload ii) signed: an entry which
contains the basic attributes plus a signature so other
nodes can verify it. Only the author of this entry is
allowed to modify this entry and iii) signed encrypted:
this entry contains in addition to the basic attributes a
signature but its payload is encrypted by the author’s
public key. Certificates are stored as signed entries so
that only the author should be able to modify the entry.
Each node checks whether an incoming store operation
is permitted by verifying the author and its signature.
In combination with the above mentioned asymmetric
cryptography on communication layer these are first steps
towards security (N1). If a participant decides to leave the
network, he revokes his certificates by overriding them
with dummy certificates. This is necessary as the logical
username list (hashj(username)) must not be interrupted.
Otherwise the username search may become corrupted,
however, the public key search would still work fine.

In order to realize an authenticated login to the network
we customized the join and create processes. We support
both public bootstrap nodes announced by web-servers
as well as private bootstrap nodes entered by the users.
If the local user wants to register and there is no valid
certificate stored, the node tries to insert the certificates
at the deterministic, well-defined places mentioned above.
If the local user wants to join and his certificate is valid,
the node will announce itself as bootstrap node to the
web-server. After a successful certificate check the user
has finally joined the Chord ring (F1).

2) GUI Module Addon - User Simulation: Besides the
GUI implementation for desktop and mobile platforms
(Figures 3, 4) we implemented the realistic behavior of
a simulated osn application user. Those models are taken
from Leskovec et al. [19], who modeled the user behavior
in an instant messaging application in a planetary-scale.
Furthermore, the work from Guha et al. [20] extracted
some characteristics for relayed audio video streaming.
Both papers formed the basis for our user simulation
model, which is used by our evaluation in Section IV.

Attribute Value
Nodes 50 nodes on 13 machines (CPUs: i3-2100, i5 560M, C2Q

Q9550)
Behaviour realistic behaviour (see Section III.2)
Webserver accessible via www.webp2p.de with StartSSL certificate,

receives monitoring information, generates and provides
friendship graph, runs PeerJS brokering server

Churn disabled dynamics
Scenario get user instance and join public Chord (10 minutes)

stabilize and synchronize (5 + 8 minutes at maximum)
add contacts (2 requests per minute)
start IM / AV using Google Chrome fake AV device (2 hours)

Duration 24 hours simulated in 2 hours

TABLE I
SIMULATION PARAMETERS

IV. EVALUATION

In the evaluation we focus mainly on the performance
and cost measures and side effects of this platform while
simulating realistic user behavior in a non-dynamic sce-
nario. It includes the following aspects: i) Can our system
cope with the requirements for an instant messaging (IM)
/ AV streaming platform? ii) What are the traffic costs
(maintenance, application, all)? iii) What response times
do occur for operations and message types? iv) How
much time does the crypto module take in this process?
v) What is the average hop count of started operations?
All relevant simulation parameters are listed in Table I
and the outcome of this scenario is summarized by the
next sections. Please note that all figures referenced in
this section show the arithmetical average over cumu-
lative data within intervals of 20 seconds and its 95 %
confidence intervals.

1) Streaming: Figure 5 shows the fairly low byte
rate of 4.3 KByte/s at the end of the scenario. This
is mainly due to the fake device provided by Google
Chrome which generates low quality dummy streams
compared to a real 720p web cam which exhibits a four
times higher bandwidth consumption depending on the
streamed content (static picture vs. many movements).
Another reason for such a low traffic is due to the power-
law distributed friend graph, where many nodes only have
one to two and a few nodes more than ten friends and our
AV streaming scheduler. Declined AV stream requests,
which were refused because the requested node is already
streaming, are rescheduled with an exponential backoff
strategy and a new created request to a random friend is
created and sent. Thus, the probability to get a stream
started with a node is reciprocal to its number of friends.

2) Bandwidth Usage: Sent bytes per second through-
out the whole scenario are shown in Figures 6 and 7. The
conspicuous rise at minute 23 is caused by certificate
searches, its contact add requests and subsequent con-
versations, which use FindSuccessor, Message and Re-
trieveEntries messages. Due to periodically called buddy
list savings, which store the full buddy list into the DHT
which in turn is replicated, the bandwidth consumption of

Contact searchContact list

Secure Chat Audio/Video Chat

S
im

pl
e

S
o

ci
al

N
e

tw
o

rk

Application - Basis

Graphical User Interface

Monitoring

SecurityWeb-DHT-Overlay

Bundle available
data and their return

Lo
g

ge
d

in
 s

uc
ce

ss
fu

lly

Lo
g

in
 w

ith
 id

e
nt

ity
,

lo
g

 o
u

t

Statistic requests
and their replies

Social network
specific requests
and their replies

Chord calls and
their callbacks

Search-, AV requests,
add contact, send
message to a contact

Reply on search requests,
incoming AV requests and
messages, contact updates

OpenChord1-to-1 Links

 Rendez-
 vous

1

23

Fig. 1. Software architecture

Category Message type Sent
[B/s]

[%]

Streaming WebRTC specific 4300 78.2
Backup
Jobs

InsertEntry 207.7 11.3InsertReplica 417.2
Stabili-
zation
Jobs

Notify 269.9
7.8Ping 157.0

FindSuccessor 2.7
Messages Message 117.6 2.1
Search /
Add

FindSuccessor 22.2 0.5RetrieveEntries 3.2

Other
NotifyCopy 2.7

0.1RemoveReplica 0.9
Shutdown 0.3

Total 5501.4 100

TABLE II
TRAFFIC PER CATEGORY

Message type send / receive in
avg [s]

send/receive in
total [s]

Ping 0.058 / 0.068 79.5 / 94.1
Notify 0.058 / 0.068 79.2 / 93.9
Message 0.058 / 0.068 48.8 / 57.4
FindSuccessor 0.058 / 0.070 10.1 / 12.2
InsertReplica 0.141 / 0.175 4.6 / 5.2
InsertEntry 0.150 / 0.131 2.0 / 2.2
RetrieveEntries 0.117 / 0.100 1.9 / 2.1
RemoveReplica 0.059 / 0.070 0.4 / 0.5
NotifyCopy 0.125 / 0.092 0.4 / 0.4
Shutdown 0.051 / 0.065 0.2 / 0.2

TABLE III
AVG / TOTAL CRYPTO TIME OF CHORD’S

COMMUNICATION LAYER (SORTED BY TOTAL)

Layer Added Adapted

Communication

• Browser-to-browser protocol
• Audio/video streaming via PeerJS
• Application message type
• Messages contain Operation ID’s

• Node addressing
• Removed: Connect messages
• Remove: COM protocols

DHT Overlay:
Web-Open-Chord

• Certificate infrastructure and management
• Application layer messages
• Audio/video streaming between peers

• ID out of Identity instead of URL
• Join and create process
• DHT entries

Security
• Encrypted communication
• Operations on certificates
• Security in DHT entries

Monitoring • Operation pool for Operation ID’s
All • Event-based callbacks • Threading removed

Fig. 2. WebChord - Adaptations made to OpenChord

Fig. 3. GUI for desktop PC’s.

Fig. 4. GUI for mobiles.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140

St
re

am
in

g:
 B

yt
e

R
at

e
[K

By
te

/s
]

Time [minutes]

sent
received

Fig. 5. Traffic of AV streaming

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140

M
es

sa
ge

s
Se

nt
 R

at
e

[b
yt

e
pe

r s
ec

on
d]

Time [minutes]

Notify, Copy Entries
Insert Entry

Insert Replicas

Remove Replicas
Shutdown

Fig. 6. Traffic of sent messages - Type A

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 20 40 60 80 100 120 140

M
es

sa
ge

s
Se

nt
 R

at
e

[b
yt

e
pe

r s
ec

on
d]

Time [minutes]

Ping
Message

Notify

Retrieve Entries
Find Successor

Fig. 7. Traffic of sent messages - Type B

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 20 40 60 80 100 120 140

M
es

sa
ge

s
av

er
ag

e
ho

p
co

un
t

[n
um

be
r]

Time [minutes]

Insert Entry
Find Successor
Retrieve Entries

Fig. 8. Hop count per message type

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

O
pe

ra
tio

ns
 a

ve
ra

ge
 re

sp
on

se
 ti

m
e

[m
s]

Time [minutes]

Stabilize
Check Predecessor

Send Message
Fix Finger

Fig. 9. Average response time - Op. A

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

O
pe

ra
tio

ns
 a

ve
ra

ge
 re

sp
on

se
 ti

m
e

[m
s]

Time [minutes]

Insert
Join

Replication
Retrieve

Fig. 10. Average response time - Op. B

InsertEntry and InsertReplica is steadily rising. Hence, at
the end, some users have to store large data, which results
in a leap and large confidence intervals. This reflects
in Table II, where the backup jobs consume 11 % in
total, including 7 % solely for the replication. Still, the
streaming takes the biggest share with 78 %. Compared
to the relatively low share of the application messages
(2 %) the stabilization jobs’ consumption is the four-fold
of it. In our setup a user needs an averaged and aggregated
bandwidth of 44 KBit/s for each direction. This is quite
low compared to the statistics of OOKLA, where each
user in the Internet got a download and upload bandwidth
of 23.2 and 10.6 MBit/s, respectively - as of 11.05.2015.

3) Cryptography Time of Communication Layer: Ta-
ble III presents the time taken by the security layer to
process messages sent and received by the communication
layer of Chord. This is a crucial metric for the user expe-
rience as a high number means a high probability the GUI
freezes because those tasks may block the single thread
processing the browser’s event queue. Summarized, every
node needed only 5.8 % of the whole time to process
messages in the crypto module. On average, the used
CPUs easily dealt with the occurred workload. Weaker
CPUs may suffer from split second freezes, thus web
workers are advisable in order to tackle this problem.

4) Hop count: Figure 8 demonstrates all routed mes-
sage types and their average hop count measured by time.
As we use recursive routing the FindSuccessor’s graph
value of 5.02 at the end of the simulation has to be
halved in order to get the path length (2.51). Due to the
disabled dynamics this complies with and even fall below
the theoretical path length of 1

2 ∗ log2 50 = 2.82.
5) Response Time: In our scenario for the most mes-

sage types the hop count is two and the speed of the
access is 1 GBit/s, thus the response time is roughly
the crypto time plus a small RTT. Figures 9 and 10
show that the response time averaged over all operations
is 1.4 seconds. Response times for operations, which a
user initiates through a GUI interaction and waits for its
response, are most critical, like all those operations, which
use the Send Message operation. Those operations only
take around one second for the feedback, so users get a
reasonably fast feedback on a GUI interaction.

V. CONCLUSION AND FUTURE WORK

This paper introduces a way to use a browser-based
peer-to-peer network without installing any third-party
software. The presented implementation is a modular
and secure browser-based social communication platform,
which uses the WebRTC standard to realize direct com-
munication via browsers. We use an heavily modified
OpenChord version for our p2p overlay, which now
offers certificate-based user search, security for commu-
nication and DHT entries and a few chat platform fea-

tures like sending application layer messages and starting
audio / video streams. Evaluation shows our platform’s
resource consumption is low compared to average user’s
available resources, thus, N4 is fulfilled.

In the future, we plan to further increase the overall
performance of the platform in order to cope with a
more dynamic scenario. This contains delta-updates for
buddy list savings, the extension to or the use of a
more churn-resistant overlay and web workers to process
crypto methods on weak CPU’s without blocking the
GUI. Additionally, we plan to extend the number of
users in our scenario by using a distributed testbed like
PlanetLab. Also, we consider to perform an evaluation
and extension of our security basis with regard to route
poisoning and end-to-end encryption.

REFERENCES

[1] D. Burnett, A. Narayanan et al., “WebRTC 1.0: Real-
Time Communication Between Browsers,” Tech. Rep., 2013,
http://www.w3.org/TR/2013/WD-webrtc-20130910/.

[2] S. Buchegger and A. Datta, “A Case for P2P Infrastructure for
Social Networks - Opportunities & Challenges,” in IEEE WONS,
2009.

[3] T. Paul, B. Greschbach et al., “Exploring Decentralization Dimen-
sions of Social Networking Services: Adversaries and Availabil-
ity,” in ACM HotSocial, 2012.

[4] A. Bielenberg, L. Helm et al., “The Growth of Diaspora - A
Decentralized Online Social Network in the Wild,” in IEEE
INFOCOM, March 2012.

[5] J. Golbeck and M. Rothstein, “Linking Social Networks on the
Web with FOAF: A Semantic Web Case Study,” in AAAI, 2008.

[6] R. Baden, A. Bender et al., “Persona: An Online Social Network
with User-defined Privacy,” in ACM SIGCOMM, 2009.

[7] G. Mega, A. Montresor et al., “Efficient Dissemination in Decen-
tralized Social Networks,” in IEEE P2P, 2011.

[8] L. A. Cutillo, R. Molva et al., “Safebook: A Distributed Privacy
Preserving Online Social Network,” in IEEE WoWMoM, 2011.

[9] A. Datta and R. Sharma, “GoDisco: Selective Gossip Based Dis-
semination of Information in Social Community Based Overlays,”
in IEEE ICDCN, 2011.

[10] G. Mega, A. Montresor et al., “On Churn and Communication
Delays in Social Overlays,” in IEEE P2P, 2012.

[11] K. Graffi, S. Podrajanski et al., “A Distributed Platform for
Multimedia Communities,” in IEEE ISM, 2008.

[12] K. Graffi, C. Gross et al., “LifeSocial.KOM: A P2P-Based Plat-
form for Secure Online Social Networks,” in IEEE P2P, 2010.

[13] ——, “LifeSocial.KOM: A Secure and P2P-based Solution for
Online Social Networks,” in IEEE CCNC, 2011.

[14] S. Buchegger, D. Schiöberg et al., “PeerSoN: P2P Social Network-
ing: Early Experiences and Insights,” in ACM SNS, 2009.

[15] R. Sharma and A. Datta, “SuperNova: Super-peers based Ar-
chitecture for Decentralized Online Social Networks,” in IEEE
COMSNETS, 2012.

[16] D. I. Wolinsky, P. St. Juste et al., “OverSoc: Social Profile Based
Overlays,” in IEEE WETICE, 2010.

[17] D. Boldt and S. Fischer, “Return the data to the owner: A browser-
based peer-to-peer network,” in IARIA ICIW, 2014.

[18] G. Lawton, “Web 2.0 Creates Security Challenges,” IEEE Journal
on Computer, vol. 40, no. 10, 2007.

[19] J. Leskovec and E. Horvitz, “Planetary-scale views on a large
instant-messaging network,” in ACM International WWW, 2008,
pp. 915–924.

[20] S. Guha, N. Daswani et al., “An Experimental Study of the Skype
Peer-to-Peer VoIP System,” in IPTPS, 2006.

