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Abstract. Live user-generated video streaming platforms like Twitch.tv
generate a large portion of the Internet traffic. Millions of viewers daily
watch user channels, although roughly 85% of all channels have less than
200 views during one session. Due to latency, Twitch.tv provides one or
more servers for each of Twitch.tv’s supported countries. An alternative
approach could enable peer-to-peer communication in order to utilize the
capacities of the user devices. Solutions up to now, mainly offer only best
effort delay guarantees on the distribution speed from initial seeders to
all peers. In this paper, we present Chunked-Swarm, a swarm-based ap-
proach, which aims to offer predictable streaming delays, independently
of the number of peers. Evaluation shows the various impact of the num-
ber of peers, number of video parts and chunks on the streaming delay.
Being able to hold specific deadlines for up to 200 peers, predestines our
solution to be suitable for the majority of Twitch.tv’s channels.
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1 Introduction

Traditional video streaming applications are mostly based on the client / server
model, where the server only responds to client requests and the clients do not
know each other. In case of real-time video streaming, content delivery dead-
lines are crucial to meet in order to provide a satisfying quality of experience.
Naturally, single servers or server clusters are limited in their bandwidth and
thus application providers have to upgrade their servers in order to cope with
increasing bandwidth requirements leading to high operational costs. Instead
of continuously upgrading servers, unutilized resources of their clients could be
used to improve this imbalance.

Twitch.tv is a good example for a growing streaming application for user-
generated content with hundreds of thousands of streamers and millions of spec-
tators requiring high operational investments. Other examples are the streaming
of live-lectures in universities, which are becoming increasingly important as stu-
dents are used to online resources and e-learning [2]. In case of Twitch.tv, Zhang
and Liu present in their measurement study [20] a model for the distribution
from viewer to streamer using a Weibull and / or Gamma function. The mea-
surements show that around 85% of all streamers have less than 200 viewers
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during their live streaming session. Although viewers are free to start and to
switch to other channels, Nascimento et al. [12] modeled the behavior of viewers
in Twitch.tv and concluded that ’the content is mainly consumed by a small
fraction of very assiduous streamers’.

Based on these observations of these stream characteristics, namely being
user-generated, having mainly less than 200 viewers and very low churn, we
propose our fully decentralized streaming solution in which the viewers use their
own upload capacity to help the streamer to distribute streaming content within
a given transmission deadline. In specific, we present a peer-to-peer (p2p) system
which provides guarantees on the delivery time and performs best on networks
with up to 200 peers. All peers (viewers) predictably receive continuous video
parts, while the seeder (streamer) uploads parts only once (in case there is no
churn). Our solution, in contrast to solutions from literature, emphasizes on the
real-time requirements of the content distribution and meets specific distribution
deadlines to achieve a certain level of quality of service (QoS).

In Section 2 we discuss related work and point out that our approach in aim-
ing at clear content delivery timings is in contrast to the majority of solutions in
literature. In Section 3, we elaborate the theory and concept of our approach. In
this section, we also model the transmission time using our approach. We con-
duct an extensive simulation study of the proposed system. Section 4 introduces
our evaluation setup and the obtained results. In specific, we highlight four sce-
narios that we used to analyze the impact of the number of peers, the number of
chunks and number of parts on the performance of our content delivery strategy
and its overhead. Evaluation shows that the desired real-time characteristic is
reached. In Section 5, we conclude our work.

2 Related Work

In this paper, we propose a novel real-time streaming protocol for p2p net-
works, which provides delivery delay guarantees in relation to the slowest node’s
bandwidth. Therefore, we review related work in the field of p2p (live) video
streaming and highlight first, that this desired guarantee on the delivery delay
is novel. Three main solution categories have emerged for live video streaming:
content delivery networks, p2p networks and IP multicast. Content delivery net-
works assist in the delivery of media content through a worldwide network of
data centers. IP multicast is limited to a few Internet Service Providers (ISP)
only and typically is not reaching beyond their networks. P2P networks offer the
option to stream video to a large number of users with small operational costs,
thus taking a serious impact on the media industry [9]. The content delivery
is mainly operated by the end devices of the users, sharing storage, computing
time and bandwidth.

For p2p live video streaming three main solution classes have been identified:
centralized schemes, clustering recursive schemes and full-distributed schemes,
which are further sub-subcategorized in swarm-based schemes and tree-based
schemes. Tree-based schemes can be further sub-categorized in structured, network-
driven and data-driven. To ease the p2p exchange of parts, each part is split in
chunks or pieces. Typical chunk sizes range from 8 KB, over 256 Kb, to 1 Mb.
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In centralized approaches, a central element is coordinating the transmis-
sions between the peers. In ALMI [15] a central element defines an explicit
bi-directional fat-tree topology, which is optimized for low delays and high band-
width. The information towards the root lists the position of the nodes in the
tree and their free capacities. The information flow towards the leafs contains
the video content. CoopNet [13] is a more flexible tree and uses a delay-based
metric space, in which nodes are placed according to their delay distances to
each other. In Graffi et al. [6], the DHT supports to match ideal transmissions
between the peers based on a variety of node characteristics. Centralized ap-
proaches can reach a low delay at the costs of high load at the essential central
element. Due to the tree structure of height O(log(N)) with N being the number
of peers, the leafs have to wait O(log(N)) submission rounds in order to receive
the full video part. A submission round is hereby the time needed to download
the video part once. Here, we aim at a maximum of two submission rounds.

Clustered approaches organize nodes in multi-layered topologies. On each
layer, the nodes are organized in clusters or mini-swarms in which they exchange
data and elect a cluster-head which is representing them at the higher layer.
While this layering scheme is similar to a tree structure, the topology is more
complex as nodes on the same ’tree-level’ also share data among each other.
Examples for this are NICE [1] and THAG [17]. Due to the hierarchical layering,
a tree of height O(log(N)) emerges which involves each chunk of the video to
be transmitted at least O(log(N)) times. So, O(log(N)) submission rounds are
needed to transfer the video part, we aim at two rounds.

The two main categories for fully distributed schemes are tree-based solu-
tions and swarm-based solutions. Tree-based solutions aim at creating a tree
structure which allows to share the video content from the seeding root to all
nodes in a hierarchical manner. One option for trees is to rely on a distributed
hash table, reusing the routing table or the capability to have responsible nodes
for given IDs. Examples for this are SplitStream [3] and Bayeux [23]. Using a
DHT involves besides the advantages also a considerable amount of maintenance
overhead. Trees can be network-driven or data-driven. Network-driven trees are
optimizing for having peers with high bandwidth capacities in high layers of the
tree, and thus avoiding bottlenecks in the early steps of the video dissemination.
Examples are mTreebone [18] and TreeClimber [21]. They support the dynamic
rearrangement of nodes in the tree in order to support changes in the nodes’
network conditions. Finally, data-driven tree-based solutions organize the nodes
according to their current position in the video. Parent nodes are chosen in a
way that their are ahead of the playback position of the considered node and
thus are guaranteed to have the desired video chunks. As a results each layer in
the tree is a time step behind in the video position than its parent peer. Exam-
ples are CoolStreaming [19], Substream Trading [10] and SPANC [4]. Also here,
O(log(N)) submission rounds are needed to transfer the video part, while we
aim at a maximum of two submission rounds.

Swarm-based schemes are the second large group of solution for p2p-based
live video streaming. In these, peers exchange information on the chunks they
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(a) Initial distribution of
chunks

(b) Parallel distribution of
chunks in full mesh

(c) Live video streaming: Dis-
tribution of max. 2 parts

Fig. 1. Chunked-Swarm Distribution

share with their neighbors and either push or pull then further chunks to com-
plete their video part. Swarms use the network capacities of all nodes in contrast
to several tree-based solutions which omit the upload potential of the leaf nodes.
Examples are BTLive [16], Chainsaw [14] and LayerP2P [11]. Nodes exchange
small bitmaps on their chunk offerings and use a small share set with typically
four nodes to exchange individual chunks. While most large-scale p2p-based live
video streaming solutions use a swarm-based scheme, they are reported [22] to
have a playback delay between 5s and 20s, which allows a lost packet to be
re-transmitted once or twice in case of errors. The playback delays are by this
significantly longer than in tree-based schemes.

In this paper, we present a p2p-based live video streaming scheme which
is fully-distributed, swarm- and pull-based. Our approach aims to distribute a
video stream with a fixed and predictable start-up and streaming delay for a set
of roughly 200 peers in a low churn environment like 85% of Twitch.tv’s streams.
For the delay we aim at a maximum of twice the transmission time of the seeder
to one peer, which is not supported by previous work due to their tree-based
core with a minimum delay of O(log(N)) or swarm-based core with arbitrary
delays between 5s and 20s. In contrast to other (swarm-based) p2p solutions,
our approach manages that the seeder uploads the video part only once, thus
even weak peers like smartphones are perfectly suitable to be a seeder. Next, we
present our approach.

3 Our Approach: Chunked-Swarm

In Chunked-Swarm we use a full mesh topology, in which all peers (viewers) in
the swarm are connected to each other, thus the suggested limit of 200 peers.
The seeder (streamer) splits the video stream into parts, which are then split
into chunks and announced to all connected peers, see Fig. 1(a). Therefore, the
chunk count should always be equal to or greater than the number of peers.
Peers request a random chunk from the seeder, but are rejected when requesting
a chunk, which has already been requested by another peer. Those peers remove
this chunk from their interest set and start a new request. This procedure is
repeated until all peers have found an unique chunk to download. Thus, the
seeder delegates the responsibility for distributing chunks to the peers. If a peer
goes offline, the initial chunk received from the seeder might also leave the swarm.
The seeder detects those leaving peers and announces the lost chunk again. After
downloading a chunk from the seeder, peers announce their own chunk to all
other peers in form of a space-efficient bitmap. After this step, each peer owns
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a chunk, which is of interest for the other peers. This strategy gives every peer
the ability to participate equally in the distribution of each part. Therefore, the
seeder does not have to participate anymore in sharing, unless chunks are lost,
e.g. due to churn in the rather short period of a part. In the following, all peers
download in parallel from all other peers in a pull-based manner, see Fig. 1(b).

To inform peers about available chunks, an accumulative and space-efficient
bitmap-state is announced regularly to all peers. While this involves O(logN2)
messages in the network, for small and medium sized swarms the overhead is
manageable and the start-up delay is below 2 ∗ T0, where T0 is the time needed
to transfer an entire video part from the seeder to the slowest peer. This limit
is fixed and independent of the number of peers. Therefore, our solution can
theoretically distribute a video part between an arbitrary number of peers in
the same time as it would take a server, to serve only two clients. If a new peer
connects to the seeder, it gets an address list of all other peers in the swarm to
which it connects then. The joining peer only participates for the exchange of
the next part, to not induce churn in the current part exchanging clique.

3.1 Analysis of the Transmission Time of One Part

Fig. 1(a) and 1(b) show an example of the Chunked-Swarm model with one
seeder and three peers distributing two video parts. Each part is of size (s) and
consists of three chunks, but for now, we only concentrate on the first part,
whose chunks are visualized with solid arrows. For reasoning, we assume the
seeder and the peers have the same upload and download bandwidth (b). Each
of the remaining peers request one unique chunk of the first part, which is a third
of the whole video part (13 ∗ s), from the seeder in parallel. Therefore, each peer
also gets 1

3 of the seeder’s upload bandwidth, so it takes 3 ∗ ( 13 ∗ s) ∗
1
b = s

b = T0

seconds to upload all chunks once to the swarm, in specific one distinct chunk
to each peer in parallel.

This is the same time span it would take a server to upload the video part
to one client. At this point, the entire first video part is present in the swarm,
where each peer has exactly one unique chunk (13 of the part). Therefore, the
chunks can be distributed by the peers among themselves in parallel. Since each
peer has to upload one third of the first video part (13 ∗ s) to 2 peers, it takes
each peer 2 ∗ ( 13 ∗ s) ∗ 1

b = 2
3 ∗ T0 seconds, to upload its own chunk to the two

other peers. Now, every peer contains the first video part after T = T0 + 2
3 ∗ T0

seconds. Analogously, a variable number of peers (n) needs T (n) = T0+
n−1
n ∗T0

seconds to finish a single video part. Since 0 ≤ n−1
n ≤ 1 is always true, T never

exceeds 2 ∗ T0. When the chunk count (c) is doubled, the model behaves better,
as the peers can start to upload their own chunks while they are downloading
the next unique chunk from the seeder. In theory, following formula applies:

T (n, c) = T0 +
n

c
∗ n− 1

n
∗ T0 = (1 +

n− 1

c
) ∗ T0 < 2 ∗ T0 (1)

with c = a ∗ n, a = 2i ∈ N0 as chunk count and n the peer count.

3.2 Live Video Streaming: Distribution of several Parts

So far, we have only discussed the distribution of a single video part, which
can only be watched by viewers after completion. For live video streaming, we



6 Probst, Disterhöft, Graffi

use multiple video parts, each containing a consecutive time interval of the live
stream. Naturally, the peers have to download and distribute the first video
part completely, in order to start watching the live video stream continuously.
The time needed to distribute the first video part across all peers, termed start-
up streaming delay, is predictable and can be calculated using Equation 1. To
provide a continuous flow of video parts, the seeder publishes the next video,
while the peers distribute the last part. Therefore, the seeder and peers are
never halted. Fig. 1(b) shows the collection and distribution phases, which run
in parallel, after the first video part has been published.

To guarantee that multiple video parts do not interfere with each other, we
evaluate the usage of 20 video parts in Scenario 4, which is presented in Sec-
tion 4.4. Please note, that this scenario implements a form of video on-demand
streaming, since the video parts remain in the network; late peers are able to
watch the video stream from the beginning. However, as presented in Fig. 1(c),
live video streaming only requires two video parts to be available at any given
time. While the seeder is distributing the video part Pi, peers are busy distribut-
ing part Pi−1 and finish their job before the seeder announces part Pi+1, since
the 2∗T0 limit is respected. Older parts are not meant to be distributed, so they
can be dropped by both, the seeder and peers. Therefore, the overhead caused
by live video streaming based on Chunked-Swarm is very manageable. A real-
istic live video streaming use case, which also elaborates the relation between
payload and announcements overhead, is presented in Section 4.6.

3.3 Churn
The time model in Section 3.1 disregards the influence of churn. A streaming
start-up delay of 2 ∗ T0, with T0 being the time to transfer one video part, is
only guaranteed if all peers participate in the chunk distribution. When peers
leave during the transmission of a part, the time limit might be violated. In
which extent depends on the number of concurrent leaving peers during the
short time T0. As T0 is considered to be short, only very few peers are expected
to leave within this time. Joining peers do not participate in the distribution of
the current, but only of the next part. The seeder adjusts the number of chunks
to the current number of peers, when a new video part is published.

4 Evaluation
An analysis of the efficiency of the Chunked-Swarm model with its live streaming
option is given in Section 3.1. Here, we aim to stepwise evaluate the performance
of live video streaming while looking at whether the 2∗T0 start-up delay limit is
fulfilled in practice. The first step applies the distribution performance with only
one video part and a variable number of viewers, while the second step evaluates
the live video streaming with more than two parts. The second step is manda-
tory as two adjacent video parts may interfere with each other as mentioned
in Section 3.2. We implemented and evaluated our approach in a standalone
application, which is more accurate than the evaluation in a p2p simulator [5,8].

4.1 Evaluation Setup
We performed four scenarios in total using our Java implementation and com-
pared their results and overhead caused by announcement messages. Each sce-
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nario is run ten times. The results are merged by calculating the mean and the
95% confidence interval. The first scenario is considered the default, in the re-
maining scenarios we vary one parameter at a time to measure the influence of
this parameter. All scenarios ran in real-time on a server with 14 Intel Xeon
2.1 GHz cores and 38 GB main memory. For benchmarking, we reduced the
upload bandwidth of each peer to 16 384 byte

sec , which might seem unrealistic.
However, the upload bandwidth does not matter in our case, since we calculate
the video part size according to the upload bandwidth and the desired start-up
delay. This gives us the freedom to pick an arbitrary upload bandwidth for the
evaluation, without being unrealistic.

4.2 Scenario 1: Default

Scenario 1, also called default scenario, simulates 63 peers and 1 seeder owning
only one video part, performing our first step towards live video stream. This
scenario is used to evaluate the distribution of only one video part during a
stream of user-generated content. The size (s) of the video part is calculated
from the simulated upload bandwidth (b) of 16 384 byte

sec , such that a single transfer
from the seeder to one peer takes exactly 10 minutes (T0 = 600 sec):

s = 600 sec ∗ 16 384 byte
sec = 9830 400 byte. This implicates a target start-up

delay of 20 minutes (2∗T0 = 1200 sec). While video streams should usually start
within seconds, such a long start-up delay can help to evaluate the behavior
of each peer during the start-up phase in more detail. Also, a higher upload
bandwidth or smaller part would certainly decrease the start-up delay, but it
is important to note, that the results gathered with a large start-up delay can
easily be transferred to scenarios with a smaller start-up delay. The single video
part is split into twice as many chunks as there are peers except the seeder, which
makes 63∗2 = 126 chunks. Since the video part size is adjusted to the decreased
upload bandwidth, the meta data size should be proportionally reduced as well.
The meta data size represents the size of an announcement packet, transferred
between all peers. In reality, the meta data would require approximately 64 bytes,
as it contains a SHA-1 hash and a bit set or differential vectors. If we assume,
that a peer with an upload bandwidth of 1 048 576 byte

sec = 1MiB
sec is realistic, our

simulated upload bandwidth of 16 384 byte
sec would be a 64× decrease. Therefore,

the meta data size should be decreased by the same amount, which results in
simulating a meta data size of 1 byte. While this value arguably might seem too
low, only the proportion is important to gain meaningful results.

Fig. 2(a) shows the mean completion graph for each peer, where the x-axis
represents the time and the y-axis the completion of the video part. After 1.5 ∗ T0

seconds every peer has the entire video part available. In contrast, Equation 1
shows: T (63, 126) = 1.49 ∗ T0, which is almost equal to the measured duration.
Fig. 2(b) shows the mean seeder upload bandwidth usage. For T0 seconds, the
seeder uploads at full speed after which it stops uploading, because the Chunked-
Swarm model forbids uploading the same chunk twice. Figures 2(c) and 2(d)
present the mean upload and download bandwidth usage of all remaining peers
in average. Since there are twice as many chunks as peers, each peer can start
uploading chunks after 0.5 ∗ T0 seconds. It is important to note, that the seeder
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Fig. 2. Scenario 1 - 63
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(+1) Peers

 0

 0.2

 0.4

 0.6

 0.8

 1

T0 1.7*T0 2*T0

C
om

pl
et

io
n

Time

Conf. Interval
Mean

(a) Sc.3: Completion

 0

 4096

 8192

 12288

 16384

 20480

T0 2*T0

U
pl

oa
d 

[b
yt

e/
se

co
nd

]

Time

Conf. Interval
Mean

(b) Sc.3: Seeder Upload
Bandwidth

 0

 4096

 8192

 12288

 16384

 20480

T0 1.7*T0 2*T0

U
pl

oa
d 

[b
yt

e/
se

co
nd

]

Time

Conf. Interval
Mean

(c) Sc.3: Peer Upload
Bandwidth

 0

 4096

 8192

 12288

 16384

 20480

T0 1.7*T0 2*T0

D
ow

nl
oa

d 
[b

yt
e/

se
co

nd
]

Time

Conf. Interval
Mean

(d) Sc.3: Peer Download
Bandwidth
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Fig. 5. Scenario 4 - 20
Parts

Scenario Payload
[KiB]

Chunks
in total

Size per
chunk [KiB]

Overhead
[KiB]

Overhead
share [%]

1 (63 peers) 9600 126 76.2 36.4 0.38
2 (127 peers) 9600 254 37.8 168.8 1.73
3 (191 peers) 9600 382 25.1 451.1 4.49
4 (63 peers) 9600 2520 3.8 1172.8 10.89
5 (31 peers) 9600 62 154.8 11.9 0.12
6 (255 peers) 9600 510 18.8 1212.4 11.2
7 (63 peers - chunk x4) 9600 252 38.1 79.1 0.8
8 (63 peers - chunk x8) 9600 504 19.0 153.6 1.6
9 (63 peers - chunk x16) 9600 1008 9.5 320.5 3.2

Table 1. Overhead tradeoff (download)
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and the remaining peers upload in parallel after this time. The results show, that
this model behaves as predicted and even undercuts the initial start-up delay
limit of 2 ∗ T0 seconds by far. The ensuing scenarios in Sections 4.3 and 4.4
modify the default scenario by using more peers and multiple video parts.

4.3 Scenario 2, 3: Higher Peer Count
These scenarios are used to observe the performance impact of using 127 and 191
peers, instead of 63 peers in a live video stream scenario with one part. There
is still only one seeder. The results are shown in the vertically aligned Figures 3
and 4, which show a minor decrease in performance. While the default scenario
takes about 1.5 ∗ T0 seconds, these scenarios take 1.6 ∗ T0 (with 127 peers) and
1.7 ∗ T0 seconds (with 191 peers) respectively. Though both scenarios do not
exceed 2 ∗ T0 seconds, the performance drops when using more peers.

If a peer downloads its chunk too fast, it might download a second chunk,
which should have been distributed by another peer. Thus it distributes two
chunks instead of one, as shown in Fig. 3(c), 3(d) and 4(c), 4(d). Some peers
start distributing their own chunks before 0.5 ∗ T0 seconds, while others seem
to upload chunks even after 1.5 ∗ T0 seconds. While these small effects lead to
an increased download time, the aim of 2 ∗ T0 is met.

If n is the number of peers, the whole p2p network consists of n2 connec-
tions. Simulating in real-time on one machine might induce this effect. If the
peer count is doubled, the chunk count is doubled as well, so the number of an-
nouncements actually quadruples, because every peer notifies other peers about
available chunks while downloading them. Theoretically, the Chunked-Swarm
model works for any number of clients, in practice the overhead introduced by
the growing number of chunks, and thus announcements, is just too high at some
point. In reality, every announcement would also increase the latency caused by
the RTT (Round Trip Time). In the considered user-generated live streaming
scenario, such as Twitch.tv, 85% of all streams have less than 200 users. We
simulated up to 191 peers. The benchmark server actually runs in that case
191 ∗ 192 = 36.672 connections at once, which has a great impact on CPU
and main memory usage. However, in reality the overhead is distributed evenly
among all peers, so a single peer should be able to connect to more peers. We
aim to prove the last statement with a setup of real peers in future work.

4.4 Scenario 4: Multiple Video Parts
In our second step towards live video streaming, which involves the distribution
of two parts in parallel as shown in Fig. 1(c), we evaluate whether two adjacent
video parts interfere with each other. For this reason we performed Scenario 4
which uses 20 video parts to multiply the effects of parallel part distributions.
Please note, that this scenario represents more than a live video stream as the
whole video, from the begin to the live time, is distributed by the peers. To
maintain consistent notation, the meaning of T0 = 600s remains, now repre-
senting the time needed to distribute all video parts across all peers. Therefore,
we introduce a new variable Tpart = 30s, which is the time needed to transfer
a single video part from the seeder to a peer and the rate at which the seeder
publishes the video parts, so the streaming delay limit is now 2 ∗ Tpart = 60s.
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Fig. 5(a) shows the average video part completion graph of all peers. Inter-
estingly, this graph almost represents a bisector, which indicates, that all peers
finish each video part roughly at the same time. The reason is, that the down-
load and the distribution phases of each video part ran in parallel. So the seeder
starts uploading the next part while peers are still distributing the last part but
they do not interfere with each other, because every peer is uploading one chunk
to n− 1 peers and downloading one chunk from n− 1 peers plus one new chunk
from the seeder. After an improved 1.2 ∗ T0 seconds, each peer has all 20 parts
available, although each video part still only has a chunk count factor of two as
in the previous scenarios. This means that our delay limit of 2 ∗ Tpart = 60s has
been undercut, thus the average delay for each video part is 1

20 ∗ 1.2 ∗ T0 = 36s.
The higher confidence intervals in Figures 5(b), 5(c) and 5(d) are caused by the
large amount of chunks, which arise from using multiple video parts. When sim-
ulating ten runs, it is very unlikely, that all results are equal. As the confidence
intervals show, it is still very likely that a further run will be similar. There-
fore, we can conclude that a live video stream can be achieved by distributing
and announcing only the latest two parts of the video stream. Next, we discuss
the overhead in Section 4.5 and in Section 4.6 our results with a real live video
streaming application in mind: Twitch.tv.

4.5 Overhead
Compared to other approaches, where the overhead partially depends on the
actual payload size, the overhead of our Chunked-Swarm approach only depends
on the number of chunks and peers. To fulfill the 2 ∗ T0 start-up delay limit
reliably, we recommend to use twice as many chunks as peers, so an increase
of peers always causes an increase of chunks. The overhead of using more peers
grows quadratic, while more chunks cause only a linear growth of overhead.

To reduce protocol overhead we use accumulated announcements, but we
still encounter an asymptotically quadratic relationship. To determine the influ-
ence of using more peers and chunks more reliably, further scenarios were taken
into account. The performance in these scenarios was not considered during the
evaluation, as their results did not deliver more insight into the performance
characteristics than the other four scenarios did.

Table 1 shows the overhead for these scenarios. When comparing Scenario 1
to 7, 8 and 9, where the chunk count was modified, the overhead seems to grow
linearly, as shown in the Overhead column, which is what the model predicted.
Scenarios 2, 3, 5 and 6 increase the peer count comparing to Scenario 1, thus
the overhead should grow quadratically. Since the chunk count is increased as
well due to the coupling with the peer count, additionally the overhead should
be further increased. Interestingly, the results certainly show an exponentially
growth, but it is not quite quadratic. This is due to the internal optimizations,
so the quadratic growth can be seen as an upper limit, it is far less in practice.

4.6 Realistic live video streaming use case: Twitch.tv

To conclude, we transfer our work’s results to the well-known live video streaming
platform Twitch.tv and calculate the needed bandwidth of a streamer for a
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certain start-up delay. To provide similar delays, as occurring in Twitch.tv [20],
we choose a delay limit of 10s, so 2 ∗ Tpart = 10s and Tpart = 5s. In a swarm of
191 nodes with one video part, 382 announcements (see Table 1) has been sent,
resulting in 764 packets for two video parts distributed at the same time. The
size of the 764 announcements (each 64 byte) with network headers (20+20+18
bytes for TCP+IP+Ethernet header) is 764 ∗ (64 + 58) byte = 93.2 kByte.

The maximum supported bitrate streamers are allowed to stream via Twitch.tv
is 3500kBit

s = 438kByte
s currently – as of 26th February 2015. Thus, viewers

send each 5s traffic with 438 ∗ 5 = 2190 kByte video payload and 93.2 kByte
announcement overhead, which results to 2283.2 kByte, thus our announcements
introduce a 4.3% overhead. Finally, all participants need an upload bandwidth
of 2283.2∗8

5
kByte

s = 3.65MBit
s , which is below the global broadband upload band-

width with 10MBit
s (see Ookla – http://www.netindex.com/upload/). Thus the

Twitch.tv scenario is well supported and our solution would allow private users
to stream their content to up to 200 viewers with a small local bandwidth con-
sumption and with reliable delay guarantees.

5 Conclusion
In this paper, we presented our approach for live video streaming, termed Chunked-
Swarm. It uses a full mesh topology and a p2p chunk distribution algorithm that
guarantees the distribution of the video to all connected peers under 2∗T0, where
T0 is the time needed to transfer the desired data from the seeder to the slowest
peer. If the number of chunks is chosen wisely, which is coupled with the number
of peers, we are able to undercut the 2 ∗T0 mark, which is novel as related work
introduces a delay of at least O(log(N) ∗ T0). With a small modification, this
model is also capable for streaming applications with a predictable start-up delay.
In the evaluation we analyzed the implementation of our model, confirmed our
expectations on the analysis of the distribution time mentioned in Equation 1.
We evaluated the overhead and calculated a realistic use case. The injected over-
head, caused by announcement messages, depends on the chunk count and also
peer count, which are fixed for some distribution scenarios but may vary during
a live video streaming. If the number of peers is doubled, the chunk count is also
doubled and leads to an quadratic upper bound for the overhead. Nevertheless,
the overhead share is still reasonable for file sharing and live video streaming
applications for small and medium sized scenarios up to hundreds of nodes. As
long as the transmission time aim is reached and the seeder has to upload the
video only once, the overhead for the peers is considered bearable. Thus, we
summarize that our solution is suitable for 85% of Twitch.tv’s streamers and
would decrease the operational costs of Twitch.tv by utilizing unused resources
of the spectators.
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