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Abstract— The search for free parking places is a promising
application for vehicular ad hoc networks (VANETs). In order
to guide drivers to a free parking place at their destination, it
is necessary to estimate the occupancy state of the parking lots
within the destination area at time of arrival. In this paper,
we present a model to predict parking lot occupancy based
on information exchanged among vehicles. In particular, our
model takes the age of received parking lot information and
the time needed to arrive at a certain parking lot into account
and estimates the future parking situation at time of arrival.
It is based on queueing theory and uses a continuous-time
homogeneous Markov model. We have evaluated the model in
a simulation study based on a detailed model of the city of
Brunswick, Germany.

I. INTRODUCTION

Searching for free parking places in urban traffic conditions
is a serious mobility problem. A study in [1] provides results
regarding the parking situation in Schwabing, a district of
Munich, Germany. For this area, an annual total economical
damage of 20 million Euros (about 25 million US dollars)
has been estimated, caused only by the traffic searching for
free parking lots. It would thus be a great benefit for the
driver of a vehicle to have up-to-date knowledge on the traffic
situation, particularly information on free parking places near
the destination area.

Vehicular ad hoc networks present a promising way to
build up a decentralized parking guidance system. Designing
such an application can be decomposed into three major
issues: (1) Which information on a parking place needs to
be known by the vehicles and thus has to be distributed in
the vehicular ad hoc network? (2) How should the protocol
for the dissemination of parking place information look like?
And finally, (3) how can this information be used to maximize
the benefit for the driver? The second question is relatively
disjoint from the others, while number one and three need
to be considered conjointly. A bandwidth efficient protocol
for disseminating parking place information in VANETs has
already been proposed in [2]. Here we concentrate on the other
two parts, with a focus on the third aspect: how should the
information received through the VANET be interpreted?

We use the model depicted in Figure 1 for a decentral-
ized parking guidance system: the occupancy information
is collected at the respective parking lot, e. g. by parking

meters or parking fee payment terminals. This information
is broadcasted, received by vehicles within communication
range, and then disseminated within the vehicular ad hoc
network. Vehicles on their way to some destination area can
then use it to make their decision amongst several possible
parking opportunities.

There is significant latency in the network, mostly because
of temporary partitioning. This is particularly serious during
the initial rollout phase of VANETs, when the number of
equipped vehicles is small. Also, the time between receiving
the information and arriving at a particular parking place must
be considered. Thus, simply distributing the occupancy of
parking lots and hoping that this information is still valid at
the time the driver arrives at the parking lot is not an optimal
solution. Instead, we propose to estimate the future parking
lot occupancy from the information that is available in the
VANET.

Our contributions in this paper are (1) a mathematical
model for parking lot occupancy prediction in a vehicular ad
hoc network, (2) a concept how this model can be applied
in practice, and (3) a simulative evaluation of the proposed
approach using a detailed simulation model.

The remainder of this paper is organized as follows. The
next section discusses work related to decentralized parking
place search. Section III introduces our prediction algorithm
in detail. Section IV describes our evaluation methodology
comprising the utilized simulation environment and the model
used to verify our algorithm. The results are presented and
discussed in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORK

There are a number of projects and proposals that use wire-
less communication to alleviate the parking place problem.
Here, we discuss these approaches. However, none of them
considers the problem of outdated occupancy information.
Thus, our contributions here are complementary to these
approaches.

An approach for distributing parking place information is
planned in the project SmartPark [3]. The project focus—
besides distribution of information—is on using wireless sen-
sor and actor networks in order to allow convenient parking
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Fig. 1. Information flow in predicting parking lot occupancy.

for drivers. This comprises hardware solutions for detecting
free parking lots [4] and information distribution.

The authors in [5] propose also a scenario of wireless ad hoc
networks for finding free parking places. They use multi-hop
dissemination of information only among interlinked parking
meters, and not among vehicles. Requests from vehicles for
parking places are received and handled by such a parking
meter via single-hop communication.

ParkSens [6] presents an approach to sense the occupancy
status of a parking place by using magnetic sensors that can
detect small fluctuations in the earth’s magnetic field. Sensors
send their information to a central database, or they distribute
them via wireless communications. According to their web
page, their sensors are close to being brought into market.

In [2] we concentrate on the dissemination of parking
place occupancy information via multi-hop vehicular ad hoc
communication, i. e., the second of the three issues mentioned
in the introduction. We have used the dissemination protocol
presented in that paper for the evaluation of our prediction
model.

III. THE ALGORITHM

In this section, we introduce our algorithm for the prediction
of future parking place occupancy, and we show how it can be
implemented in a vehicular ad hoc network. Our approach is
based on results from queueing theory and applied stochastics.
We model a parking lot as a queue and use a Markov chain to
describe it. Since vehicles can park or leave at arbitrary times,
we use a continuous-time model [7], [8].

A. Dissemination of Parking Lot Information
In our approach, five values for each parking lot are dis-

tributed in the network, namely timestamp, total capacity of
the parking lot, number of parking places that are currently
occupied, and finally, two rates: the arrival rate of vehicles,
and the parking rate. The parking rate is the inverse of the
average time for which a vehicle stays on its parking lot before
it leaves again. These rates are measured at the parking lots.

B. Mathematical Foundation of the Prediction Model
For the queue representing the parking lot we use a homo-

geneous Markov model with exponentially distributed inter-
arrival and parking times. Thus, the flow of incoming vehicles

Fig. 2. Markov chain corresponding to our model.

is a Poisson process. Since the space on each parking lot
is finite, the queue has the same capacity as the number of
parking places on the parking lot. Each state of the Markov
model represents the respective number of vehicles currently
parking on the parking lot. If a vehicle arrives at a fully
occupied parking lot, it is rejected. In Kendall notation, we
deal with an M/M/m/m queue, where m is the number of
parking places on the parking lot. This special type of queue
is also called a loss system.

Because of the homogeneity we can use the following
notation. For all times t, τ ∈ R+

0 ,

pij(t) := P (Xτ+t = j | Xτ = i) = P (Xt = j | X0 = i).

pij(t) denotes the probability that the Markov chain is in state
j at t time units in the future, given that its present state is i.
For ease of notation the state set is from now on assumed to
be {0, 1, 2, . . . ,m}.

In the theory of continuous-time Markov chains, the concept
of the Q-matrix is used in order to be able to calculate the
transition probabilities for all t ∈ R+

0 . The transition rate qij

from state i to state j is defined as the right-hand derivative
of pij(t) at t = 0:

∀i 6= j : qij := lim
t↘0

pij(t)
t

.

By conservation of probability, the probability of staying in a
certain state i decreases with rate

qii = −
∑
j 6=i

qij .

The Q-matrix is then defined by Q = (qij); its dimension is
(m + 1)× (m + 1).

If the parameter of the arrival Poisson process is denoted
by λ, and µ is the parking rate, this results in a Q-matrix with
the following tri-diagonal pattern:

Q =

0BBBBBBB@

−λ λ
µ −(λ + µ) λ

2µ −(λ + 2µ) λ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(m− 1)µ −(λ + (m− 1)µ) λ
mµ −mµ

1CCCCCCCA
The corresponding Markov chain is depicted in Figure 2.

C. Application of the Prediction Model in a Vehicle

When information on a parking lot’s λ (arrival rate), µ
(parking rate), occupancy status and total capacity is received
from the vehicular ad hoc network, a vehicle knows the corre-
sponding Q-matrix. Utilizing this knowledge it can calculate



the probabilities for the Markov model being in some state
at any point in time in the future. For a driver in search of
a parking place, one probability is of particular interest: the
probability that at least one parking place is free upon arrival.
We denote the timestamp of the occupation data of the parking
lot by T0, the number of occupied parking places at this point
in time by n, the total capacity of the parking lot by m and
the estimated arrival time by Ta. Then, in terms of our model,
we are interested in calculating

P (XTa
< m | XT0 = n) = 1− pnm(Ta − T0).

We can expect that the higher this probability is, the better
it is to choose the respective parking lot. In combination
with information from the navigation system on the distance
between the respective parking lot and the destination, user
preferences and, optionally, other factors like the parking fee
etc., the vehicle can provide recommendations to the driver.

The question that now arises is whether the calculation of
the probability is computationally feasible in a vehicle’s on-
board unit. In order to evaluate the model and to obtain the
probability of being in some state at t = Ta−T0 time units in
the future, an initial value problem of the form π̇(t) = π(t)·Q,
π(0) = π0 needs to be solved, where π : R+

0 → [0, 1]m+1

is a function mapping the time t to the vector of predicted
probabilities, and π0 is the vector representing the model’s
state probabilities at time T0. Since we know for sure that
the model is in state n at time T0, π0 is simply the vector
with one entry with value one at position n, and zeros at all
other positions. The solution of this initial value problem is
π(t) = π0e

tQ. Like evaluating the matrix exponential operator
in general, calculating π0e

tQ is non-trivial.
In [9] a survey on different techniques for approximating

the matrix exponential is provided. Two approaches seem
particularly well-suited for our specific problem structure.
Scaling and squaring with rational Padé approximation in
combination with Krylov subspace approximations [10] seems
very promising for the specific structure of our tri-diagonal
Q-matrix. There exist ready-to-use libraries for this. A more
common alternative are general ordinary differential equation
(ODE) solver algorithms, which are also widely available.

We have made comparative performance measurements
with these approaches. It turned out, that the combination of
Padé approximation and Krylov techniques provides superior
performance. For a parking lot with a capacity of 100 vehicles,
the necessary computation time is in the order of 10−2 seconds
on a 2 GHz x86 CPU. Due to the computational power that
can be expected for on-board computers by the time of the
rollout of VANETs, the computational effort seems feasible.

IV. EVALUATION METHODOLOGY

A. Simulation Environment

We have evaluated our prediction model in an extensive
simulation study. This study has been carried out using a
simulation environment consisting of several runtime-coupled
simulators, which allows for a realistic simulation of VANETs.
This simulation environment has been presented in [11].

The vehicular movements are generated by the microscopic
traffic simulator VISSIM [12]. It includes, e. g., multi-lane
traffic, traffic lights, many types of vehicles, and takes driver
psychologies into account. For the evaluation we have used
a model of the city of Brunswick, Germany, with a size
of approximately 16× 19 km, 522 road kilometers, and up
to 10 000 vehicles. The vehicular traffic pattern is based on
measurements taken by the city of Brunswick for the purpose
of traffic planning and models the time from 06:00 am to
10:00 am. The model includes the locations of 129 real parking
lots. In our simulations, each one generates its occupancy and
broadcasts its data into the VANET.

VISSIM is coupled with the ns-2 [13] network simulator
in order to simulate the network traffic. MATLAB libraries
are employed for the necessary numerical calculations, and
a navigation suite estimates realistic arrival times in each
vehicle. All components continuously exchange data and adapt
their behavior at runtime, according to the events occurring
in the integrated simulation environment. This environment
allows us to evaluate our algorithm in a realistic setting.

For the purposes of this study, we took the specifications
from the ORiNOCO 11b [14] client PC card which complies
with the IEEE 802.11b specifications and adopted them to
the network simulator ns-2. The data transmission rate used
for the simulations is 11 Mbps with a transmission range
of 300 m. The two-ray ground propagation model has been
used in conjunction with the modelling of radio obstacles in
the Brunswick scenario. Obstacle modelling allows to discard
transmissions at the physical layer, if an obstacle prevents two
cars from communicating. To analyze worst case connectivity
and long prediction times, every object except for streets and
junctions is considered as an obstacle.

At first, only a small fraction of vehicles will be able
to participate in a VANET. Thus, in our simulations, only
five percent of the vehicles are equipped with Wireless-LAN.
Each vehicle caches and disseminates the parking lot data.
The prediction model in a vehicle is re-evaluated whenever it
receives new parking lot information.

B. Simulation of Parking Lot Occupancy

Our data on Brunswick’s parking lots is taken from a
study carried out by the city’s transportation officials [15].
However, it is not detailed enough to provide us with exact
occupation data of the parking lots. Thus, based on this
data we have developed a simulation model for parking lot
occupancy. We have intentionally designed this simulation
model very different from the modelling assumptions made
in our prediction algorithm: we do not want to evaluate the
algorithm using a simulation model that is the same as in our
prediction.

The occupancy is modelled as an autoregressive Gaussian
process. We define a parameter Nref that determines the
expected occupation level per vehicle in the scenario. The ratio
between the current number of vehicles in the simulation N
and Nref yields the expected percentage of occupied parking



places. Furthermore, we introduce a parameter σrel that deter-
mines the “noisiness” of the occupation.

For a parking lot with capacity m, the initial occupancy is a
Gaussian random sample with mean m ·Nref/N and standard
deviation m · σrel. Every 60 seconds a new sample from this
distribution is drawn, and a new occupancy O′ is calculated
by an exponential sliding average with smoothing parameter
γ from the random sample x and the old occupation O:

O′ = γ · O + (1− γ) · x

Initially as well as after each iteration the new occupancy is
rounded to the next integer. In case the new value is below
zero or greater than the parking lot’s capacity, it is set to the
respective border value.

This process exhibits the desired properties. It is of increas-
ing order, has varying coefficients and an embedded stochastic
process as its mean. Adjusting the parameters allows to fine-
tune the model. In our experience, Nref = 10 000, σrel = 0.1,
and γ = 0.9 yield sensible occupation values. Therefore we
will use these settings to evaluate our approach.

C. Estimation of Arrival and Parking Rates

To complete our simulation model, we need an estimation
algorithm for the arrival and parking rates. The occupancy
simulation model provides us only with the parking lot’s occu-
pation. From this information, the simulated parking automats
need to derive the arrival and parking rates. The information
available from the municipality of Brunswick says that the
expected parking time µ−1 is 51 minutes. Therefore, in our
simulations, we have fixed µ at this value.

We then use a relatively simple estimation scheme for the
arrival rate. Just like a real parking automat could do, the
calculation of λ is done by analyzing the past occupancy over
some time period, it is fixed to five minutes in our simulations.
First, the number of vehicles that have left the parking lot
during the simulation interval is estimated. This includes
vehicles that have been replaced by newly arriving ones. For
the estimation, the process of leaving vehicles is approximated
by a Poisson process. Then the number of leaving vehicles can
be estimated by taking the expected value. From the number
of departing vehicles and the new occupancy the number of
arrivals can be determined. We consider the new occupancy
prior to limiting it to the total capacity of the parking lot in this
calculation. Therefore we also account for vehicles that have
been rejected because of the parking lot being full. From the
departure and arrival counts a maximum likelihood estimation
of λ is performed.

V. EVALUATION RESULTS

All equipped vehicles perform predictions based on the
mathematical model presented in Section III-B. Each such
prediction is a probability vector. It denotes the estimated
probability of all possible occupancy states at the time of
arrival. Figures 3, and 4 depict probability vectors as estimated
by our model, for one of the parking lots with a capacity of 70
vehicles. The prediction time, which lies between 0 and 300
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Fig. 3. Probability density of predictions with 0 < tpr ≤ 300.
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Fig. 4. Probability density of predictions with 900 < tpr ≤ 1200.

seconds in Figure 3 and between 900 and 1200 seconds in
Figure 4, consists of the age of the parking place information
in the vehicles cache, plus the arrival time for each vehicle at
this particular parking lot and is denoted by tpr .

The x-axis denotes the simulation time and the y-axis
the occupancy states of a parking lot. The occupancy curve
represents the simulated parking lot real time occupancy. The
grey shaded area in the background represents the predictions
of the model. The darker the color at a particular point in
the diagram, the higher is the predicted probability of the
occupancy state at the respective time. This means that for one
specific time, the vector of predicted probabilities is plotted
vertically using different shades of grey.

Since each vehicle has its own prediction of the parking lot,
depending on the information that it has, we had to choose one
for each value on the x-axis. At each time value on the x-axis,
the drawn probability vector belongs to the vehicle with the
lowest prediction time tpr within the prediction time interval
considered in the respective figure.

Our prediction algorithm is most effective for prediction
times tpr ≤ 15 minutes, even though the simulated occupancy
can vary quite significantly over this timespan. With increasing
prediction time, the uncertainty of the model—visible by a
more blurred grey area—increases.
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The model fits very well for the most important prediction
time interval: parking lots, at least in Europe, are densely
located in city centres (many hundreds in an area of less than
10 square kilometers), and each parking lot can be reached
within a few hundred seconds. Therefore, the vast majority of
predictions is for prediction times less than fifteen minutes.

In Figure 5, we show another evaluation of our simulation
data. It shows the relative error of the model’s estimate,
depending on the prediction time tpr. Recall that the prediction
model’s output is not a single occupancy status, but a proba-
bility for each possible occupancy. Therefore we calculate the
mean deviation from the true value relative to the capacity of
the parking lot, weighted with the respective probability. Let
πi denote the probability assigned for occupancy state i, m
the capacity of the parking lot, and O the actual occupancy at
the predicted time. The mean relative deviation is then given
by

m∑
i=0

πi ·
|i−O|

m
.

As an example, this means that if the model predicted some
state i to occur almost surely (i. e., with probability 1), then
this sum would yield the relative deviation of this state from
the correct occupancy.

There is one gray dot in the background of the figure for
each prediction. The bold, dashed line shows the average errors
of each 300 s interval. The results show that the deviation of
the predicted occupancy from the real value grows slowly
with increasing prediction time. So, although the model’s
uncertainty increases, the predictions remain quite close to
what happens at the parking lot. Note that here the prediction
relies on a rather simple rate estimation algorithm in the
simulated parking automates. Without modifying the algorithm
employed in the vehicle, it could be increased further with
more accurate rate estimates, e. g., if the parking lot takes
past experience or additional knowledge into account. Thus,
our algorithm can assist the driver to select the best suitable
parking lot out of many options received through a VANET.

VI. CONCLUSION

In this paper, we have considered an application for ve-
hicular ad hoc networks. We have proposed an algorithm that
uses parking lot data disseminated in a VANET to estimate the
future occupancy of parking lots. This enables each vehicle to
choose an appropriate parking lot. We have introduced a model
based on queueing theory and continuous-time Markov chains,
and evaluated it using an integrated simulation environment
with realistic vehicular movements. Moreover, we have pre-
sented mathematical tools to make the necessary calculations
possible on resource-constrained on-board computers.

The results of our evaluation prove that our approach is well
suited to estimate the parking place situation, and can serve
well to minimize the effort of searching for a free parking lot
in a real world VANET application.

From a macro-perspective, an initial orientation of vehicles
requires only coarse information about the parking place
situation in different areas around the destination. Hence,
our future work will focus on aggregating information about
individual parking lots within the network, in order to build
area information. Since for such aggregates, the need for
predicting the situation at the time of arrival, is of same
importance as for predicting single parking lot information,
we will extend our proposed prediction model and show its
applicability for aggregates.
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