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Abstract

V2X applications are an important current and future part of road traffic safety. But,
testing and evaluating these applications in real world scenarios is expensive, time con-
suming and even small application errors can invalidate whole scenarios. Thus, simu-
lation opens up new possibilities for the testing and evaluation of such applications and
use cases. The V2X Simulation Runtime Infrastructure (VSimRTI) provides an open
framework for the coupled simulation of different processes. While it contains many
simulation models for 802.11 wireless networks in both mobile and stationary situations,
mobile cellular networks are more complex to simulate and not included in most network
simulators.

The existing Trace Based UMTS Simulation (TBUS) model enables a fast, easy, reliable
and precise simulation of mobile cellular networks with regards to selected and mea-
sured simulation scenarios. This thesis ports the TBUS model into the network simula-
tor OMNeT++, providing an additional simulation model to be used for mobile cellular
network use cases. Therefore, parts of the VSimRTI have been extended, modified and
fixed to fully support the TBUS. A verification of the ported TBUS model to the origi-
nal implementation demonstrates full functionality of the ported version. Extensions to
process cellular network interferences and simulation input data from different measure-
ments were defined and simplified implementations of those show their possibilities. A
base framework for V2X applications using TBUS functionalities is introduced.

The ported simulation model and new extensions are evaluated using real-world recorded
data and demonstrate the suitability of the TBUS model used in coupled simulation.
Simulation results are compared to European Telecommunications Standards Institute
(ETSI) standards and definitions. An emergency vehicle warning application has been
developed to test the coupled simulations’ functionality. The final evaluation verifies
the capability of coupled simulation to compete with ETSI standards for a sufficient
probability and proposes directions for adapted standards to be used in mobile cellular
networks.
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Chapter 1

Introduction

Computer simulators are highly sophisticated programs that help understanding real
world processes by emulating them in software. If high simulation precision is needed,
simulation models become more and more complex. Highly specialized simulators are
capable of estimating real-world processes within a defined error range. They allow the
calculation of new components or small changes to existing ones in a fast, cheap, repeat-
able, reproducable and easy manner. These simulators exist for various use cases, there
are network simulators, traffic simulators, environment simulators, application simula-
tors, simulators for biological and chemical reactions, and many more. Simulators are
given input data, on which they calculate the simulation outcome. This outcome can then
be analyzed or used as input for other simulators.

While this process of forwarding simulation results into other simulators is serialised,
many use cases require parallel feedback between simulators of different real-world pro-
cesses. One of this use case is the development of Vehicle-to-X (V2X) applications and
communication models. Vehicles have a high and complex mobility, mobile networks
between vehicles add even more complexity. Extension of specialized simulators leads
to convoluted code, unmaintainable structures and require additional work on in-depth
simulation of extension processes. For example, network simulators and frameworks
like Objective Modular Network Testbed in C++ (OMNeT++) and INET framework for
Mobile Ad-Hoc Networks (INETMANET), which are specialized on network traffic sim-
ulation, include mobility extensions. But these extensions are by far not as precise as mo-
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Chapter 1 Introduction

bility simulators, such as the output of the traffic simulator Simulation of Urban Mobility
(SUMO). Mobility models are often pre-defined and inflexible, whereas SUMO allows
input data changes at runtime and is extremely flexible in terms of simulation control.
To combine the advantages of highly specialized simulators and enable the parallel and
interactive usage of these, the Daimler Center for Automotive Information Technology
Innovations (DCAITI) [DCA] and Fraunhofer Institut für offene Kommunikationssyste-
me/Fraunhofer Institute for Open Communication Systems (FOKUS) [FOK] introduced
the V2X Simulation Runtime Infrastructure (VSimRTI) in [Sch12]. This simulation in-
frastructure connects different simulators and enables the direct usage of simulation out-
comes as the parallel input for other simulators. This thesis investigates the combined
simulation of road traffic, mobile cellular networks and V2X applications with the cor-
responding simulators SUMO, OMNeT++ and application_NT. In addition, a the simu-
lation model introduced in [GKMG14] is ported to the network simulator OMNeT++.

Therefore, chapter 2 outlines the existing research on coupled simulation of wireless
mobile and cellular networks with road traffic and other simulators, and presents unique
features of this thesis’ implementation. In chapter 3, the used simulators and simulation
techniques are introduced. The ported simulation model is defined in chapter 4, where all
new components and changes to existing simulators are presented. Then, the combined
simulation with the ported model is utilized to generate results of simulation scenarios
according to the European Telecommunications Standards Institute (ETSI). Finally, the
ported simulation model together with the combined simulators and the calculated re-
sults is summarized and analyzed in chapter 6, which also concludes future work on this
topic.

1.1 Terms and Definitions

Terms, that can be found exactly as written in this thesis, are set in a typewriter font.
Definitions of new terms are emphasized on their first occurrence and used as regular
words in the following context. All acronyms and definitions can found in the glos-
sary on page 65. Mathematical definitions will either be introduced before the equation
containing them is placed, or in the sentence directly after the equation is given.

2



Chapter 2

Related work

This chapter gives an overview on related work and other simulators achieving similar
goals. It also outlines the difference between the presented concepts and the Trace Based
UMTS Simulation (TBUS) model.

2.1 TBUS

Introduced in [GKMG14], the TBUS forms the base for the simulation model used by
this thesis. A verified implementation of this simulation model already exists and has
been used for simulations presented in the defining paper. It simulates mobile cellu-
lar network conditions by utilizing real world network characteristics. The simulation
model is further explained in 3.2.1, as many parts of this thesis’ simulation model are
based on the TBUS model. Implementing the TBUS model within the VSimRTI enables
the coupling of this model with other simulators. This thesis further extends TBUS by
introducing a cell-share model to simulate the influence of different mobile nodes within
the same mobile cellular network cell. It also enables the usage of different real world
network characteristic measurements within the same simulation scenario.

3



Chapter 2 Related work

2.2 CCMSim

Similar to this thesis, C2X Channel Model Simulation (CCMSim) utilizes the VSim-
RTI to add another simulation model within existing simulators. CCMSim is a MAT-
LAB1-based expansion to OMNeT++. It uses OMNeT++ as the network simulator for
upper layers and places lower layer calculations into a MATLAB extension. Presented
in [PMOR12], it introduces an interface between OMNeT++ and MATLAB within the
VSimRTI. CCMSim operates on real world measured channel characteristic data, ob-
tained via specialized hardware. It utilizes this data to model the channel for mobile,
wireless network transmission via 802.11p2. Using empirical simulation methods and
data, CCMSim is able to simulate a node on every position inside the measured sim-
ulation area. The TBUS implementation used for this thesis uses a different approach
and processes mobile cellular network data. Network characteristics are measured for
discrete positions in the simulation area, positions in between receive optimized chosen
network characteristics. Physical channel characteristics are not used for this thesis, as
all needed mobile cellular network characteristics have already been gathered from mea-
surement drives. The TBUS model adapted by this thesis utilizes data that can be gath-
ered with simpler methods than the hardware and techniques CCMSim requires. Only
roads that the simulation takes place on have to be measured, while the measurement
drive is an ordinary ride through regular traffic. The overall complexity of the TBUS
model compared to the CCMSim is lower.

2.3 MiXiM

Mixed Simulation (MiXiM) is a combination of various simulation models and frame-
works in OMNeT++ and aims at simulating mobile wireless networks. In [KSW+08],
the authors describe MiXiM in detail and also explain the simulated layers in wireless
802.11 networks. MiXiM offers an in-depth simulation framework which also uses the
Mobility Framework (see [Mob]) for node movements with predefined or random routes.

1 http://www.mathworks.com/products/matlab/
2 https://www.standards.its.dot.gov/Factsheets/Factsheet/80
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2.4 VSimRTI_Cell

Wireless communication is calculated precisely and can be thoroughly configured. The
TBUS simulation model does not make any use of the calculation models available in
OMNeT++ and its frameworks. Instead, it utilizes its own simulation model and calcula-
tions, which have a lower complexity but maintain precise simulation results. There is no
interface to couple MiXiM with any other simulator, let alone a traffic simulator. While
MiXiM also implements precise calculation and a realistic projection of how wireless
communication in 802.11 networks works in reality, TBUS cannot make use of these
modules and instead introduces its own.

2.3.1 Veins

Vehicles in Network Simulation (Veins) combines OMNeT++ and MiXiM with the road
traffic simulator SUMO. As presented in [SGD11], Veins provides a bidirectional cou-
pling with possible feedback and reactions on simulated events and values. To obtain
this strong coupling, Veins uses Traffic Control Interface (TraCI) (see [WPR+08]) as the
control protocol. TraCI offers a broad interface to read all available SUMO values and
change some values by e.g. requesting a vehicle to brake or change its route. This enables
Veins to integrate vehicular traffic data and send feedback to SUMO for possible changes
in how the vehicles behave, but restricts its use to only a bidirectional coupling between
SUMO and itself. Veins is not easily extendable to include other simulators, because no
general standardized protocol for communication between simulators is defined.

2.4 VSimRTI_Cell

VSimRTI includes an integrated cellular network simulator, namely VSimRTI_Cell since
version 0.13.0. In the current version 0.14.0, VSimRTI_Cell offers a configurable delay
simulation. Based on delay regions and a given delay type (constant delay, random delay
with simple and gamma distributions, and a random delay with a gamma distribution
including the current node speed), the network’s transport delay is calculated. VSim-
RTI_Cell acts on probabilistic models, thus the simulation area has to be measured and

5



Chapter 2 Related work

divided into delay regions. Depending on the size of delay regions and quality of mea-
sured or estimated data, the simulation outcome might differ significantly from reality.
Packet ordering is not preserved and the backbone delay is assumed as a constant value
and thus not simulated. TBUS, on the other hand, preserves packet ordering and takes
backbone delay of the measured mobile cellular network provider’s infrastructure into
account. It also allows a more precise simulation of the measured network characteris-
tics while maintaining a low complexity.

6



Chapter 3

Fundamentals

This chapter presents the fundamentals of this thesis. Showing the differences between
trace-based Global Positioning System (GPS) and graph simulation and the methods used
for each case. By outlining the used and modified software and libraries, it introduces
the technologies used for this thesis.

3.1 Terminology

This thesis uses the term V2X and provides a framework suitable for every kind of ve-
hicle that can be simulated using the traffic simulator SUMO coupled with VSimRTI.
Vehicle-specific functions and methods can be modelled on top of it, so that Car-to-X
(C2X) applications, belonging to a superset of vehicle-specific applications, can take
full advantage of functions and methods provided by TBUS. Simulations utilize posi-
tion based network characteristics, for this thesis defined as bit rate, loss probability and
backbone delay.

7



Chapter 3 Fundamentals

3.2 Trace-based simulation model

Trace-based simulation, as introduced in [GKMG14], uses data gathered in real world
scenarios rather than data generated by probabilistic models. This ensures a result closer
to reality than probabilistic models because the gathered data, although it might have
been processed, represents a snapshot of reality. The next sections explain the Trace
Based UMTS Simulation (TBUS) simulation in section 3.2.1 and compare two possibil-
ities of trace-based simulation in sections 3.2.2 and 3.2.3.

3.2.1 Trace Based UMTS Simulation

TBUS simulation is based on the paper Trace-based Simulation of C2X-Communication

using Cellular Networks by Norbert Goebel, Dr. Markus Koegel, Prof. Dr. Martin
Mauve and Jun.-Prof. Dr. Kálmán Graffi (see [GKMG14]). While regular network
simulators for wireless and cellular networks use mathematical probabilistic models to
estimate network characteristics, the TBUS simulator uses real world measured posi-
tion based network characteristics to model the mobile cellular network. Mobile cellular
network providers do not offer lots of information about their networks. Although net-
work protocols are standardized and physical parameters are known, exact mathematical
models of mobile cellular networks are very complex. In addition, the exactness of
their results varies with the quality of input data such as environmental interference, net-
work interference and bandwidth. Parameters of every antenna like available bandwidth
ranges, transmit and receive power, alignment and many more have to be gathered as in-
put for the mathematical model of the simulation. Small changes of input data can have
a huge impact on simulation results and have to be verified before their usage.

Simulations using traces, on the other hand, allow an easy and realistic measurement of
the simulation area. Multiple measurements can be merged using various methods and
can be selected for only parts of the simulation area. This idea is investigated further
in [Sku15]. Additional research on how concurrent nodes in one cell influence each
other’s network characteristics is done in [Kar15].

8



3.2 Trace-based simulation model

Information on mobile cellular network characteristics is collected by using the Rate
Measurement Framework (RMF) as presented in [Wil12]. An additional measuring al-
gorithm is discussed in [Kra14]. Measurement can either be done on x86 hardware
with GPS- and Universal Mobile Telecommunications System (UMTS)-modules, as ex-
plained in [Lan13], or on Android3devices, as described in [Olf13].

3.2.2 Simulating with GPS-based traces

By default, node movement is simulated by using two dimensional Cartesian coordinates
on an even plane. When applying measured traces onto Cartesian coordinates, GPS in-
accuracy has to be taken into consideration: Network characteristics measured and posi-
tioned by a GPS system are inaccurate by ±6m in every direction, explained in [DG08].
Measured traces do not follow roads exactly but are merely distributed within a specific
range around the real world coordinate, influenced by environmental and other interfer-
ences.

They can be mapped onto streets and lanes, but as they belong to a point in a two di-
mensional plane with x and y axes, it can eventually happen that two distinct network
characteristics, even measured from different vehicle headings, are mapped onto the
same point in space and cannot be differentiated during simulation. While this error
is unlikely to occur, another problem arises: If network characteristics from one mea-
surement drive, visiting a road on different directions, have been measured and mapped
onto one road, simulation methods may only differentiate between both directions if the
heading is saved in addition to the vehicle’s position and can be calculated within the
simulator later on. The exact definition of this problem and the solution are presented in
the next section.

3http://www.android.com/
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Chapter 3 Fundamentals

3.2.3 Simulating with graph-based traces

As proposed by Norbert Goebel4, using directed graph-based traces enables easier posi-
tion to data matching. Although graph-based traces contain a tuple of data just as GPS-
based data, the informational content is greater. A GPS tuple (x,y) contains information
on a point in a two-dimensional plane. No additional information can be extracted from
a single tuple and there might be network characteristics from measurement drives along
different directions mapped onto one tuple.

In contrast, a graph tuple (r, l), with r being the current road id and l being a continuous
position on the edge represented by r, contains more information than just the tuple’s
elements. Let P = {(r, l) | r ∈ E, l ∈ R+ }, with E being the graph’s edge set, be the set
of all graph-based positions. Then I is our information space – a three dimensional space
where every point is associated with its three rotation angles:

I =
{
(c,ϕ)

∣∣∣c = (x,y,z) ∈ R3, ϕ = (α,β ,γ) ∈ [0,2π[3
}

(3.1)

Using P and the underlying graph G = (V,E) with V being the graph’s vertices set, the
following function provides more information than there is contained in P by mapping P

to I:
fG : P→ I, (r, l) 7→ (c,ϕ) (3.2)

While this mapping is not bijective, it is injective and as such, it enables the distinct
mapping to a six dimensional information from a two dimensional input space – and it
could be even more, if I is expanded with more information mapped on G.

For this thesis, the exact position of a vehicle is now given through the road id and lane
position tuple. There is no need to map this tuple onto a greater information space and
then retrieve network characteristics, and so the information space is exchanged with the
following:

ITBUS =
{
(rbit, rdrop, d, c)

∣∣rbit ∈ R+, rdrop ∈ [0,1], d ∈ R+, c ∈C
}

(3.3)

where rbit is the bit rate in ns, rdrop is the drop rate, d the delay of the packet travelling

4goebel@cs.uni-duesseldorf.de
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through the mobile cellular network provider’s backbone network and c the id of the
currently connected cell with C representing all available cell ids. The mapping of P,
extended with a simulation time variable t used to differentiate between multiple mea-
surement inputs, onto ITBUS with the underlying graph G is realised by a database query
outlined in section 4.3.7, represented by

f TBUS
G : P×N+→ ITBUS, (r, l, t) 7→ (rbit,rdrop,d,c). (3.4)

Having these prepared data, an accurate simulation of mobile cellular data depending on
position and direction towards the network’s antennas is possible. The mapping of vehi-
cle positions to network characteristics, belonging to the vehicle’s position and heading,
has been reduced from input data of dimension six with six continuous and finite com-
ponents to input data of dimension three with data of all components being finite, two of
these having continuous data and one component, the set E, being discrete.

Using graph-based simulation requires special data preparation. This raw data has to be
map-matched to the used route, as the GPS positions from measured traces are inaccu-
rate, and the graph used for the graph-based simulation does not represent the road net-
work exactly – corners and other shapes can only be approximated. Using map-matching,
the measured network characteristics have to be mapped onto the graph’s corresponding
edge and distance on the edge. Mapping recorded data to edges and logging additional
information is presented in [Sku15].

3.3 The VSimRTI framework

The VSimRTI, as explained in [Sch12], is used as the base framework for simulator
coupling. It provides a High Level Architecture (HLA), which is standardized in [IEE10]
and described in [KDW00], with already predefined ambassador and federate modules
for

Traffic simulators: VISSIM and SUMO
Communication simulators: ns-3, OMNeT++, JiST/SWANS and VSimRTI_cell

11
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Application simulator: application_NT

VSimRTI does not interact with connected simulators directly, instead a pre-defined
interface for communication with a simulator’s ambassador is used. This ambassador
connects to the simulator’s federate and finally the federate translates all given com-
mands into simulator-native actions. This can be seen in figure 3.1. This section gives

Figure 3.1: Interaction between VSimRTI and a simulator through an ambassador and
federate structure

an overview of VSimRTI and the three simulators and frameworks used for coupled sim-
ulation – namely OMNeT++ and INETMANET in section 3.3.2 as well as SUMO in
section 3.3.3.

3.3.1 VSimRTI

VSimRTI exchanged the default OMNeT++ scenario manager with its own, enabling
a synchronized simulation time advance with other simulators coupled with VSimRTI.
Also, dynamic node creation and removal at runtime as well as node movement given
by other simulators is integrated into the OMNeT++ simulation core. Applications sim-
ulated with the application simulator application_NT can send messages through VSim-
RTI which are forwarded to OMNeT++ either via their length or content, depending on
needed information and whether a faster or slower but more in-depth simulation is de-
manded. Sending nodes can add headers and information to messages before the physical
layer routes and simulates network characteristics on them. Receiving nodes are able to
inspect and modify incoming messages before they are delegated to the corresponding
application simulated by applicationNT.

12
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3.3.2 OMNeT++

OMNeT++ is a network simulation framework originally written and still maintained
by András Varga at the Department of Telecommunications of the Technical University
of Budapest. It consists of a library of C++ modules and a simulation manager, form-
ing the foundation for network simulations. Network structures are defined in so-called
Network Description (NED) files which can also be hierarchically ordered and support
inheritance, and simulation settings are placed in an Initialization (INI) file. This enables
a quick and easy change of network characteristics without the need of compilation. Parts
of the network such as Network Interface Cards (NICs), network layers as User Datagram
Protocol (UDP) or Transmission Control Protocol (TCP), or even wholly equipped nodes
can be modelled in a reusable manner. Some modules are interchangeable which allows a
simple comparison of the simulation results of two components within the same scenario.
Because OMNeT++ is written in C++, the memory usage is low and the compiler can take
full advantage of Central Processing Unit (CPU) extensions to speed up simulation ex-
ecution. Then again, single-threaded execution is given by the event-based simulation
management and OMNeT++ without multi-threading extensions does not scale with the
number of used cores. In addition to these modular simulation tools, OMNeT++ offers
various aggregation methods and visualization of statistical data collected through every
simulation run.

The INETMANET framework

The INETMANET framework is a collection of community-developed modules written
for OMNeT++ (see [INEa]). It contains an implementation of the internet stack, Mo-
bile Ad-Hoc Network (MANET) protocols, physical link protocols, application models
and network devices. Basing on OMNeT++’s modular structure, INETMANET allows
an easy construction of new devices and protocols while relying on existing parts of the
framework. It is thoroughly tested and under constant development with new protocols
and features added with every version. Part of this framework is the Mobility Frame-

work [Mob], which enables the usage of moving nodes. Various movement models such
as random movement, pre-defined movement or following models are implemented and

13
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allow the simulation of mobile networks with changing network characteristics and se-
tups.

3.3.3 SUMO

SUMO is a microscopic traffic simulator. Based on a two-dimensional road graph,
SUMO simulates public transport, all kinds of vehicles and traffic lights. Vehicle types
can be defined in detail – external vehicle parameters such as the vehicle’s length and its
minimum gap towards the next vehicle ahead and internal parameters like acceleration
and deceleration, its maximum speed and car-following models are only a few exam-
ples of the many options SUMO offers – and are simulated with in-depth output, too.
Simulated vehicles follow pre-defined routes given as a list of graph edges, but it is also
possible to change routes dynamically during runtime by interacting with SUMO. The
protocol used for simulation control, besides configuration values, is the Traffic Control
Interface (TraCI). It can be used to control the simulation flow or to interact with vehicles,
traffic lights and any other configurable and changeable items simulated by SUMO.

Road graphs can be generated using SUMO’s netconvert. It supports many map file for-
mats with OpenStreetMap5being the most popular one. Mapping the three-dimensional
real world simulation onto a two-dimensional plane is achieved by SUMO using the proj
library6, a cartographic projection library provided by the Open Source Geospatial Foun-
dation (OSGeo). By default, SUMO configures libproj to use a Universal Transversal
Mercator (UTM) projection on the standardized WGS84 ellipsoid (see [Nat00]). Cal-
culations can then be done on the two-dimensional plane and are mostly vector-based,
there is no need for taking the earth curvature into consideration. This speeds up cal-
culations while maintaining a reasonable low error towards the exact three-dimensional
coordinates.

Within VSimRTI, SUMO takes a special position as it has no need for a federate but
is directly controlled via TraCI. The ambassador abstraction layer does not include ev-
ery command TraCI supports, but VSimRTI offers the possibility to directly interact

5 https://www.openstreetmap.org/
6 https://github.com/OSGeo/proj.4
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with SUMO by using so-called SumoTraciBinaryMessages which support the full
TraCI. SUMO is also no event-based simulator and as such would not require time ad-

vance messages, because it returns simulated data if given a timestamp until which it
simulates to. VSimRTI sets a fixed interval for SUMO updates which provides SUMO’s
resolution and can be freely configured.
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Chapter 4

Implementing TBUS for VSimRTI

This chapter explains the changes made to existing VSimRTI components and introduces
new components necessary for TBUS simulations. While VSimRTI offers simulator
coupling through time synchronization between simulators and exchange of simulation
data on demand, the introduction of TBUS for OMNeT++ required additional data for a
more precise simulation. The adapted simulation model is verified against the original
implementation. Finally, an installer script is introduced to provide an easy installation
method.

4.1 Extending VSimRTI

VSimRTI is distributed and licensed by the DCAITI and FOKUS. The infrastructure
core and simulators like application_NT and VSimRTI_Cell are closed-source, while
the framework structure and a well-documented interface for the integration of new sim-
ulators into the infrastructure are open-source and enable the use of TBUS with a broad
variety of different simulators. VSimRTI offers information needed for graph-based sim-
ulation delivered by SUMO, but only in application_NT as part of a vehicle’s informa-
tion. To obtain this information, the OMNeT++ ambassador and federate have been
extended to submit additional data needed for graph-based simulation. This can be seen
in 4.1. Some parts of the INETMANET needed alterations to comply with the TBUS
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implementation. Those changes are explained in section 4.2. One of the greater parts of
this thesis, the implementation of TBUS in the VSimRTI, is outlined in section 4.3

Edge value retrieval With friendly support of the DCAITI and FOKUS, graph-based
trace simulation is implemented in VSimRTI’s OMNeT++ ambassador and federate. The
existing protocol is extended in such a way that backward compatibility is given. Ex-

tended information refers to the new position model based on directed graph-based po-
sitions and introduced with TBUS for VSimRTI as described in 3.2.3. Regular infor-

mation identifies the commonly used position model based on Cartesian coordinates on
a two-dimensional plane. Already existing projects are not affected by this extension,
as only a new base class called TbusMobileNode receives extended information up-
dates. Nodes with extended information can co-exist with regular information nodes in
the same simulation – this enables the parallel usage of INETMANET modules with
TBUS modules (although there are some restrictions, see section 4.2.1).

It has to be noted that occasionally vehicles provide an empty road id but correct lane
position. This is due to the algorithm SUMO uses to simulate vehicle movements: Move-

Figure 4.1: Graphical representation of SUMO edges

ments around corners or other special shapes for example across intersections are sim-
ulated on internal edges which are not represented in the graph – see figure 4.1 for an
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example, spaces between edges are each filled with an internal edge. Also, if a vehicle
joins the simulation but its starting point is blocked by another vehicle already being
there, the vehicle is joined with an empty road id and a lane position value of 0 until the
starting point becomes available.

4.2 Patching the INETMANET framework

OMNeT++ provides the simulation platform, while the INETMANET framework intro-
duces implementations of various network components, protocols and tools. It enables
OMNeT++ to extend nodes with mobility and movement capabilities, includes a publish-
subscribe-messaging module and many more. Most of its components are incorporated
into TBUS as they are, but two of them required more attention and patching. The
following sections 4.2.1 and 4.2.2 introduce patches for altered implementations of IN-
ETMANET modules, which still preserve their functionality.

4.2.1 ARP

Because OMNeT++ and parts of the INETMANET framework are designed for pre-
defined wired and wireless networks, most of its components do not handle dynamic
node adding and removing at runtime, as well as moving nodes, the right way. Espe-
cially the Address Resolution Protocol (ARP) module crashed when used in combination
with dynamic node creation. ARP is not necessary when using the TBUS simulation
model, the connection between a mobile node and a base station is merely a point-to-
point-connection and addressing is carried out by the corresponding provider. Further
delays caused by ARP in the providers backend or other networks are included in the
measured delay values. Thus, the TBUS implementation in VSimRTI makes use of IN-
ETMANET’s so-called global ARP (see [INEb, line 84]), enabling instantaneous address
resolution and disabling ARP delay.

Attention had also be given to the destructor of the global ARP cache. Upon removing
entries, this module checked each Internet Protocol (IP) address for its existence to pre-
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vent logical errors within protocols. VSimRTI divides a part of the IPv4 address space
from 0.0.0.0 to 3.255.255.255 into four parts as follows in table 4.1. The first
vehicle for example is assigned with the IP 0.0.0.0, the second with 0.0.0.1 and so
on. An overflow in a low byte results into an increment of the next higher byte, excluding
the highest byte which is only used for categorization of the modules. This way, VSim-
RTI can assign IP addresses to 2553 = 16581375 nodes in each category. The IP address

Address range Category

0.0.0.0 to 0.255.255.255 Vehicle
1.0.0.0 to 1.255.255.255 Road Side Unit (RSU)
2.0.0.0 to 2.255.255.255 Traffic light
3.0.0.0 to 3.255.255.255 Charging station

Table 4.1: IP address distribution from VSimRTI’s IPResolver

assigned to the first vehicle leads to an error with INETMANET’s IP and ARP imple-
mentations upon removing IP addresses on vehicle removal. The IP address 0.0.0.0
is internally defined as <unspecified> and is therefore not recognized as a valid IP ad-
dress. Even if compared to the same instance, the comparison operator returns false and
leads to the logical assumption of this IP address not being assigned to any vehicle at
all. This results in an exception thrown by the INETMANET framework and crashing
the simulation at the point at which the first vehicle left the simulation. The VSimRTI
developers have been informed of this problem and will provide a fix by restructuring
the IP address distribution within the next releases.

4.2.2 ChannelAccess and ChannelControl

Connections between nodes in OMNeT++ are usually designed as connections between
gates, that means physically available one-to-one connections. Because the wireless in-
terface offers a one-to-many connection, INETMANET uses a different and loosely cou-
pled design approach. Vehicles equipped with wireless interfaces use a physical layer
derived from ChannelAccess (or ChannelAccessExtended respectively, if ex-
tended functionality is required) which interacts with ChannelControl (or Chan-
nelControlExtended respectively), acting as the physical medium. To comply
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with VSimRTI’s Wireless Locale Area Network (WLAN) equipped vehicles design,
the TBUS implementation extends INETMANET’s ChannelAccessExtended by
TbusMobilePHY and ChannelControlExtended by TbusChannelControl.
Because ChannelControlExtended lacks some of the functionality available in
ChannelControl, especially null-pointer checks, this functionality was introduced
into ChannelControlExtended as a patch. More recent versions than the one
VSimRTI requires have already worked out this error. This patch enables the switch
between WLAN- or TBUS-equipped vehicles by only changing OMNeT++’s configura-
tion file.

4.3 Implementing TBUS in OMNeT++

Having all necessary extensions and adaptions to the VSimRTI, the following sections
introduce the most important modules and classes developed for the TBUS implemen-
tation in VSimRTI. All of these classes are written in C++ and modules are designed in
OMNeT++’s NED language. The TBUS extension is then compiled as a library which is
linked into VSimRTI’s OMNeT++ adaption. Figure 4.2 ranges the TBUS extension for
OMNeT++ in VSimRTI into the whole infrastructure.

Figure 4.2: Overview of VSimRTI components
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4.3.1 TBUS mobile node

A mobile node using TBUS methods is modelled similar to VSimRTI’s Vehicle mod-
ule. To comply with the International Organization for Standardization/Open Systems
Interconnection (ISO/OSI) model as described in [Zim80], an analogous layer struc-
ture for the network stack is implemented. A combination of INETMANET, TBUS and
VSimRTI modules are used to model the corresponding layers as can be seen in table 4.2.
The resulting module is designed as a compound module in OMNeT++ and is presented
in figure 4.3, with Medium Access Control (MAC) and Physical layer (PHY) layers inte-
grated into the TBUS radio TbusMobileRadio displayed in figure 4.4. The structure
of a TbusMobileNode is kept simple, as the logic and more complex structures are
encapsulated in the TbusMobileRadio module, which is explained in section 4.3.3.
Therefore, the TbusMobileNode is merely a compound module combining and con-
necting all necessary modules.

Layer Module Source

5 Application VSimRTIUnreliableApp VSimRTI
4 Transport UDP INETMANET
3 Network NetworkLayer INETMANET
2 Data link TbusMobileMAC TBUS
1 Physical TbusMobilePHY TBUS

Table 4.2: TBUS layer concept

4.3.2 TBUS inet node

The TbusInetNode represents a wired server that is able to connect to mobile nodes
via the TbusChannelControl. It also implements the network stack as specified in
the ISO/OSI model, but has no delays or packet loss on its own connections. These delays
are already included in the measured backbone delays and need no additional simulation.
The inet node allows applications to run on top of it via the application_NT simulator and
provides lower network layers as well as an theoretically unlimited bandwidth access.
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Figure 4.3: TbusMobileNode NED structure

4.3.3 TBUS mobile radio

The TBUS radio module TbusMobileRadio represents the connecting layer between
a node and the physical transmission medium. It therefore combines the MAC and PHY
modules TbusMobileMAC and TbusMobilePHY via four TBUS simulation queues
and one TbusQueueControl module. MAC and PHY layers are further explained in
section 4.3.4 and the simulation queues and queue control are introduced in section 4.3.5.
The TbusMobileRadio module is meant to be exchangeable with other radio mod-
ules, so that mobile nodes can be equipped with different radios for different purposes.

4.3.4 TBUS MAC and PHY layers

Connecting the network layer with the physical access medium, these layers play an
important role during simulation. The MAC module TbusMobileMAC allows upper
network layers to send a packet correctly addressed into the network, the PHY layer
module TbusMobilePHY connects the mobile node with the air interface represented
by TbusChannelControl, which is introduced in section 4.3.6.
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Figure 4.4: TbusMobileRadio NED structure

Following INETMANET’s concept, the TBUS MAC layer module TbusMobileMAC
initialises the NIC with a simulation-wide unique MAC address as well as standard val-
ues for the options listed in table 4.3. To assign calculated delays or timestamps used for

Option Value

Name tbus0
Multicast true
Broadcast true
Down false
MTU 1500
Data rate 100.0a

aThis value is only used as a dummy value and is overwritten by TBUS values during simulation

Table 4.3: TBUS NIC options

further calculations, a control info is appended to each packet before entering queues and
removed after leaving all queues in one node. This is done for each packet because the
delays differ depending on network characteristics, packet size and the time of a packet
entering the simulation. Control infos are OMNeT++’s way of storing information on
a packet readable for every layer or module accessing it. This TbusControlInfo
contains three time values:

queueArrival Simulation time of packet arrival in queue
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earliestDelivery Simulation time of earliest queue dispatch
headOfQueue Simulation time of when the packet became head of queue

While queueArrival and headOfQueue timestamps are used for the calculation of
queue delays, earliestDelivery is given to OMNeT++ as the event time of queue
dispatch.

4.3.5 TBUS queue design

As introduced and explained in detail in [GKMG14], network characteristics in the
TBUS simulation model are realised with the use of queues and events. The TBUS
model utilizes four queues on each node, their setup is shown in figure 4.5. Queues ex-
ist for calculations on the down- and upstream side of bit rate and loss, and backbone
delay. Those calculations result in delays representing the packets’ transmission time
over the air interface or through the network’s backbone, or in a loss probability for the
packet they are calculated for. Because nodes influence each other while connected to the
same mobile cellular network, network characteristics are processed to meet the current
networks’ state by the cell-share model introduced in section 4.3.8. The C++ implemen-
tation makes heavy use of inheritance and template classes, as large parts of the queue’s
code relay on the same structure. This leads to a clean and easy-to-maintain code base.
Network characteristics are assigned for each queue with an on-demand push and pull
model, which is explained in the following.

Push model For the push model, a queue’s state can maintain one of the following
three states:

INACTIVE The queue has no packets enqueued and does not need to store any network
characteristics. Used by all queues.

ACTIVE The queue has packets enqueued and stores assigned network characteristics.
Used by backbone delay queues (CDRQ and CDSQ).

CELL_ACTIVE Same as ACTIVE, but the queue’s and as a result the node’s bit rate
usage influences other node’s behaviour. See section 4.3.8. Used by bit rate delay
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Figure 4.5: TBUS queue connections, taken from [GKMG14]

and packet loss queues (CRRQ and CRSQ).

Active queues are now defined as queues either in the ACTIVE or CELL_ACTIVE state.
To improve performance for the push-model and prohibit unneeded network characteris-
tics requests to the data source, only active queues receive push value updates at update
triggers. This update triggers is identified as node movement, network characteristics
for the new position are retrieved from the data source. The network characteristics are
then processed by the cell-share model and assigned to active queues. In addition, an
update trigger used by the cell-share model, is the activity change from INACTIVE to
CELL_ACTIVE state. It results in an update of the queues’ processed network character-
istics, but not the network characteristics from the data source as no node movement has
taken place.

Pull model Pull updates only occur on a queue’s activity change from INACTIVE

Queues pull new network characteristics when a packet enters the queue and no pre-
vious network characteristic has been stored because the queue has previously been in an
INACTIVE state. This pull results in an update from the data source, additional updates
triggered by the cell-share model might also occur afterwards.

Processed network characteristics are then used to calculate transmission and backbone
delays and loss probability for each packet. Calculated delays are stored in a packet’s
control info, introduced in section 4.3.4.
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Each queue, as well as every other component of the TBUS C++ implementation, was
thoroughly tested and is equipped with assertion clauses to warn of runtime errors. As-
sertions are compiled into OMNeT++ and the TBUS extension and have to be explicitly
disabled by using the compilation flag -D NDEBUG. The C++ implementation from this
thesis has been compared with the original Java implementation from [GKMG14] and
evaluated with the original simulation model in section 4.4.

4.3.6 TBUS Channel Control

To coordinate the physical medium access on the air interface, a singleton instance of a
Channel Control module based on INETMANET’s ChannelControlExtended is
introduced. It has an omnipotent view of all nodes and their interfaces and thus controls
message routing between mobile nodes as well as inet nodes. Supporting unicast and
broadcast to all nodes within the mobile cellular network, it provides basic functions to
maintain a reliable network structure.

4.3.7 Data source

For an easy retrieval of position based network characteristics to be used in the simula-
tion, a data source interface is defined in the TBUS implementation. A SQLite7 imple-
mentation is included with this thesis, though the interface allows implementations of
other data sources to be used in the TBUS implementation. The corresponding Struc-
tured Query Language (SQL) table structure is shown in appendix A.3. As OMNeT++ is
an event-based simulator, the database is only accessed sequentially, thus no precautions
on threaded and concurrent access have been taken. The query, constituted from the
mapping in equation 3.4, works as follows. The road id r is mapped one-to-one onto the
corresponding road id in the database column. This works because road ids are discrete
values from a finite set, whereas the lane position l and simulation time t are continuous
values from a theoretically infinite space, which is restricted by its digital representation.
Also because of the measurement resolution, network characteristics are only available

7https://www.sqlite.org/
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for discrete distances on the road and timestamps. The selection of the right network
characteristics for this input is explained in the following.

When taking measurement drives for a simulation area, some nodes can be measured
more than once, resulting in value groups with different network characteristics for the
same edge. A simplified example measurement drive is shown in figure 4.6, where the
lower middle edge is visited two times and has two value groups, whereas every other
edge only has one value group. Each set of network characteristics belonging to one
value group is identified by a group id. If a network characteristics is only chosen by the

Figure 4.6: Network characteristics mapped onto a simplified road graph

shortest distance to the current simulated position, the data source would return network
characteristics from either value group in an oscillating way. Thus, taking simulation
time as a strictly monotonically and continuous increasing unit into account, the id of a
value group to be used is chosen depending on the current simulation time as follows.
The group id is chosen as the group id of a network characteristic whose timestamp is not
placed in the future, relative to the current simulation time, and whose time gap between
the current simulation time and the network characteristics’ timestamp is the overall
minimum. If no such entry exists, the group id of an overall network characteristic with
a timestamp closest to the current simulation time is chosen. This identifies a group id g,
so that

min{‖t− τ‖} : τ ∈ Tg, t ≥ τ, g ∈ Gr, (4.1)

with ‖. . .‖ as the euclidean distance, Tg the finite set of measurement timestamps for
group g and Gr the set of all group ids for edge r. If no such g can be found, the restriction
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t ≥ τ is removed so that at least one group id can be used if any have been mapped onto
the edge. This way, if there are network characteristics mapped onto an edge, there is
always at least one value group returned, defined as network characteristics measured
within the group id g. It is then to be further restricted by the position on the edge as
shown in equation 4.2. As only the first value group is accessed by timestamps from
before the group measurement started, no invalid network characteristics are chosen.
Without having this relaxation of equation 4.1, there would be no network characteristics
for some timestamps and with this relaxation only the beginning timestamp of when the
first value group’s network characteristics are valid is corrected to the simulation start
time.

Having the group id g, choosing the correct network characteristic for a given lane po-
sition l is different: Network characteristics with the given group id g are chosen by
the smallest distance towards the given lane position l. With g as the group id of the
measured value group and λ being a measured lane position within Λg, the set of all
measured lane positions of group g, the following condition has to be met:

min{‖l−λ‖} : λ ∈ Λg. (4.2)

With the resulting values r, λ and g the correct network characteristic can be chosen from
the data source. The queries for retrieving the group id with and without the restriction
given in equation 4.1 are shown in pseudo-SQL in listings 4.1 and 4.2, while listing 4.3
shows the pseudo-SQL query for network characteristics retrieval.

SELECT groupid, (t− τ) AS diff FROM table WHERE roadid = r AND τ <= t
↪→ ORDER BY diff ASC LIMIT 1;

Listing 4.1: Pseudo-SQL restricted query for the group id

SELECT groupid, (t− τ) AS diff FROM table WHERE roadid = r ORDER BY

↪→ diff ASC LIMIT 1;

Listing 4.2: Pseudo-SQL unrestricted query for the group id

SELECT *, abs(λ − l) AS dist FROM table WHERE roadid = r AND groupid =

↪→ g ORDER BY dist ASC LIMIT 1;

Listing 4.3: Pseudo-SQL query for network characteristics
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4.3.8 Cell-share simulation

First, the term cell used for this thesis’ cell-share model has to be defined. It is merely
a real mobile cellular network cell but a set of points having the same cell properties
recorded as the simulation input. The placement of real network cells is not taken into
account for this value, only the measured data is used. This enables the grouping of
network characteristics from the same cellular characteristic, and, as a result, enables the
grouping of simulated nodes using the same cellular characteristics.

Network characteristics gathered from measurement drives represent real data between
the measurement node and the mobile cellular network provider’s cell. During simula-
tions, multiple nodes can be situated in the measured cell. Assigning every simulated
node the same bandwidth would result in a large error, because the mobile cellular net-
work cell’s maximum network characteristics can be overestimated. Thus, a cell-share
model was introduced, distributing the measured network characteristics according to
network cell’s loads. To create a cell-share model, situations that trigger a change in bit
rate distribution are identified as node movement and node activity change (start/stop of
sending/receiving). While node movement is triggered centrally by VSimRTI’s simula-

tion manager, node activity change is triggered by each node’ bit rate queues individ-
ually. These two triggers result in a cell change, which is a change in the situation of
simulated nodes within the measured network cells as shown in figure 4.8. A cell change
affects all nodes situated in changing cells and every active queue in each affected node.
Thus, a new omnipotent management class TbusWorldView, which coordinates the
cell-share models’ actions, was introduced. The calculation of bit rate distribution with

TbusWorldView TbusQueueControl

1.1. Update position

1.2. Update raw values if active

2. Adapt raw values to CellShare model if active

same round

Figure 4.7: Round-based cell-share model

the cell-share model is round-based: While nodes can move and update their raw net-
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work characteristics from a data source independently, they need the final amount of ac-
tive nodes in the same cell (see figure 4.8) to let the cell-share model calculate their share
of the current network characteristics. These leads to two update rounds. The Tbus-

(a) Node distribution before movement (b) Node distribution after movement

Figure 4.8: Node movement in different cells

TbusWorldView

... TbusQueueControl

CRSQ CDSQ CDRQ CRRQ

TbusQueueControl

CRSQ CDSQ CDRQ CRRQ

...

Figure 4.9: Hierarchical structure of TBUS

WorldView module, ranged into the TBUS structure as shown in figure 4.9, knows the
amount of present nodes and receives and forwards position updates to them. It coordi-
nates the update process, which is displayed in figure 4.7 and consists of the following:
During the first round, active nodes receive their updated position and query the data
source for unprocessed network characteristics and the updated position’s cell id. The
cell-share model is informed on nodes changing their cell id and keeps track of cell be-
longing for each node. Eventually, every node has updated its position and informed the
cell-share model of a possible cell change. The cell-share model now has a complete
view on the division of nodes into cells and the actual cell-share algorithm can be used
in the next round. In round two, every node updates its processed network characteristic,
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Chapter 4 Implementing TBUS for VSimRTI

that was adapted by the cell-share model according to the implemented algorithm.

The cell-share model is implemented against a simple interface included in appendix A.5.
For this thesis, a simplified cell-share implementation is already included. It only adapts
the available bit rate, as backbone delays should be independent from the amount of
nodes per cell. Loss probability division is not taken into account and the loss probabil-
ities remain unchanged. The cell-share interface allows other implementations to adapt
all network characteristics. With N being the number of all active nodes in the cell of the
node for which the cell-share distribution is calculated for, and b as the bit rate retrieved
from the data source, equation 4.3 outlines the implemented cell-share division:

CS(N,b) =

b if N = 1

110% · b
N otherwise

(4.3)

This simplified model approximates an ideal division given by scrambling and spreading
codes. As the research on this division is done in [Kar15], this implementation only gives
an ideal share for each node. Thus, the 110 % were chosen for this thesis.

4.4 Verification of the adapted TBUS model

The implementation of the TBUS model for OMNeT++ in VSimRTI is redesigned from
scratch because some paradigms and calculations could not be transferred from Norbert
Goebel’s Java implementation. Therefore, efficiency and an easy-to-integrate modular-
ity is the goal for TBUS in VSimRTI, but calculations and simulation outcomes had to
be close or equal to the already verified and extensively tested Java implementation. To
compare both models, the same situations are tested with the same input data on both
implementations. The TbusChannelControl implementation therefore provides a
testing mode to compare the network C++ implementation with the original Java version
based on simulation time updates only. This testing mode can be enabled via the compile
flag -D TBUS_DEBUG. Using similar sets of input data from Tram 2 of [GKMG14] with
both implementations, the difference between simulation outcomes is presented in fig-
ure 4.10 as the simulated delay of packets over the simulation time. The input data used
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(a) Java implementation
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(b) C++ implementation
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(c) Implementation difference

Figure 4.10: Implementations and difference

by the Java implementation was processed with an error in the backbone delay during
times with high packet loss after times with packet loss above 0 % and below 100 %. The
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Chapter 4 Implementing TBUS for VSimRTI

graphs in 4.10a and 4.10b also do not show an one-to-one comparison between packets,
this is due to the loss probability combined with different random number generators.

By taking a closer look at the difference between simulated packet delays, they can be
explained with diverse sources of error. First of all, it has to be noted that more than 98 %
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Figure 4.11: CDF of implementation differences from figure 4.10c

of all errors are within the range of 2700ns = 2.7µs. With UMTS/High Speed Downlink
Packet Access (HSDPA) bit rates at 7.2 Mbit/s maximum (see [ETS15, table 5.1a]), a
single bit has an airtime of

1bit
7.2Mbit/s

= 139ns.

This explains smaller errors in both directions: Different rounding functions have been
used and, because the maximum bit rate is only available at good network conditions and
not on average, the average airtime of a single bit is longer than 139 ns. As can be seen in
the Cumulative Distribution Function (CDF) in figure 4.11, the amount of negative and
positive errors is equally distributed as 50 % of all errors are smaller than or equal zero
and the other 50 % are above or equal zero. This, once again, is due to rounding errors
between both implementations.

Inspecting the larger errors, positive errors can be greater by the order of some mag-
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nitudes than negative errors. The smallest negative error is −270000ns = −270µs,
whereas the highest positive error has a value of 8.10455 ·109 ns ≈ 8.104s. The dif-
ference between both implementations has been calculated as jt − ct where jt is the
simulated delay of the Java implementation at time t and ct the simulated delay of the
C++ implementation at time t. Negative errors occur when the C++ implementation has
greater simulated packet delays than the Java implementation. With the maximum error
in this direction at 270 µs, this is still due to rounding errors with bad network conditions
and thus high delays.

For the positive errors, where the Java implementation had larger delays than the C++

implementation, the greater errors can be traced back to the processed input data. As
mentioned above, the C++ implementation used differently processed input data. The
data processing adapts bit rates and backbone delays during loss intervals to compensate
bit rate values for high loss probabilities. Because the loss probability is high does not
mean that the data rate was low, resulting in an extrapolated data rate during these events.
While this is correct for the bit rate, the same had also been done to the backbone delay.
Because the backbone delay is independent of the mobile cellular networks’ loss prob-
ability, this is incorrect and has been corrected. Whereas the Java implementation used
adapted backbone delay values, the C++ implementation does not.

Figure 4.10c shows that the spikes in delay differences take place when the loss probabil-
ity is at 100 % and has been above 0 % shortly before. Right there, the wrongly adapted
values result in larger delays from the Java implementation, whereas the C++ implemen-
tation utilizes the correct backbone delay and simulates lower delays. In conclusion, the
two implementations operate the same within the error range given by different rounding
methods and random number generators.

4.5 The TBUS installer

For an easy installation of all needed components and patches and to enable the direct
usage of test scenarios used in this thesis, the TBUS installer, a bash8 script packed with

8Bourne Again SHell, see http://www.gnu.org/software/bash/
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Chapter 4 Implementing TBUS for VSimRTI

installation archives of necessary sources and binary files, is introduced. It covers the
installation of a vanilla VSimRTI as of version 0.14.0, SUMO 0.21.0 and OMNeT++

4.4. The INETMANET framework as well as VSimRTI’s OMNeT++ patch and project
are included, too. TBUS patches are applied and sources installed, scenarios copied
into the corresponding folders and a virtual environment starter is generated. Featuring
dependency checks, usage of all processor cores for compilation, a freely configurable
installation folder and a virtual environment script to keep the original paths and environ-
ments clean, the installer has been tested on Debian Wheezy (7.8) and Jessie (8.1)9. The
only dependencies are a reasonably state-of-the-art machine, internet access for down-
loading additional dependency packages, a bash shell with root privileges (direct or via
sudo) and the apt-get package installer with the default Debian lists.

9https://www.debian.org
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Simulations and Results

This chapter introduces a simulation scenario with regard to ETSI standards and spec-
ifications. A use case suited for the TBUS model is chosen accordingly, an example
application following the use case is defined in section 5.2. Message routing for mobile
cellular networks based on geographical positions is outlined in section 5.3. The simula-
tion scenario used for the evaluation is then presented in section 5.5, information on how
such a simulation scenario is created can be found in section 5.4.

All applications introduced in this chapter are written for the application_NT simulator of
VSimRTI 0.14.0. They are all configurable via JavaScript Object Notation (JSON) files
on three layers: Every application has default values for configurable variables which
allow the direct usage of applications with a correct behaviour. These default values can
be overridden by a simulation-wide configuration, which then again can be overridden
by per-vehicle configurations.

5.1 ETSI Standards and definitions

The ETSI specifies V2X communication in terms of message standardization, use cases
and applications, network structure and node design, and many more. Relevant defini-
tions for this thesis are message format, use cases and applications. Network structure

37



Chapter 5 Simulations and Results

and node design are abstracted by the simulators. The two main message types, the Co-
operative Awareness Messages (CAMs) and Decentralized Environmental Notification
Messages (DENMs), are used for position propagation and message broadcasting in this
thesis.

CAMs are defined in [ETS11a] and offer information on node presence, position and
additional data which can be of interest for neighbouring nodes. This type of message
should be send periodically all the time, either when vehicle data changed above a thresh-
old or if a timeout occurs. Receiving nodes can act upon these CAMs and calculate their
own conclusion from what they received. DENMs, on the other hand, contain informa-
tion on environmental events or predictions like traffic jams, passing emergency vehicles
or emergency brakes. The message format and usage is specified in [ETS10]. DENMs
are only send if a certain event occurs and are repeated periodically until the event is
over. Receiving nodes are instructed on which actions to take as for every event a corre-
sponding reaction is defined.

With Ad-Hoc networks, DENMs can simply be broadcasted locally and no actions on
message routing have to be taken into account. In mobile cellular networks, message
routing has to be used because local broadcasts are not possible with conventional mobile
cellular networks. This message routing is introduced with a GeoServer in section 5.3.

5.2 Choosing an application

Given the use cases provided by the ETSI in [ETS12], the use case C.1.2.1, Emergency
Vehicle Warning, was chosen. From all available use cases, it differs by having a low
complexity but huge impact on everyday emergency situations. It requires no specific
environmental circumstances, resulting in a simple and reasonable simulation scenario
creation which can easily be reproduced with few resources. The size of the simulation
area has a low significance which leads to easier trace measurement of the simulation
area.
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The EmergencyWarningApp According to ETSI use case C.1.2.1, the Emergency
Vehicle Warning application was implemented using DENMs over mobile cellular net-
works. It is configurable via a JSON file in means of emergency vehicle status, the
DENM sending interval, message timeout, application start offset, the maximum dis-
tance ahead of the emergency vehicle in which nodes should be warned, the speed nodes
should slow down to and the duration of the slow down. The configured emergency ve-
hicles send their DENMs periodically after the application start offset until they leave
the simulation. Other vehicles slow down to the given speed for the given duration as
soon as they receive a DENM, the send interval and message timeout should be chosen
in a way so that receiving nodes get messages within the timeout window with a high
probability. The right of way, as it is implemented in SUMO, is not changed by the ap-
plication, as there is no possibility to do so with TraCI or other VSimRTI functionalities.
Non-emergency vehicles should stop far enough from intersections and driveways so that
the emergency vehicle does not consider the other vehicle as one with the right of way.
This enforces that an emergency vehicle has the right of way while being in an active
emergency state during the simulation. The default values assure this behaviour.

5.3 Message routing

To enable applications running on moving and stationary nodes to broadcast messages to
a set of vehicles positioned in a specific area, two types of GeoServers and -Clients have
been implemented. The GeoServer is a singular instance of a service which coordinates
message routing, GeoClients connect to this instance via its known and static address.

The GeoServer therefore maintains a database of every registered vehicle’s position and
metadata as, for example, a last seen timestamp. This is realised by GeoClients sending
periodic position updates containing all necessary information with CAMs to the well-
known IP of the GeoServer. Whenever a GeoClient wants to send a broadcast message,
it is sent as a DENM to the GeoServer, which duplicates the message as often as needed
for every node present in the affected broadcast area. This reduces the network load
on the mobile cellular network and saves bandwidth on the mobile node’s side. This
type of message broadcast and amplification is now defined as geo-broadcast or geo-
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broadcasting and referenced as such further on.

While VSimRTI offers an own implementation of a GeoServer and -Client, this imple-
mentation only utilizes GPS data for vehicle position updates and message broadcasts tar-
get areas. Though this data is still available within the TBUS extension, a new GeoServer
and -Client are introduced to take advantage of graph-based positions. They can already
be used as simple applications for basic position update transmission and message geo-
broadcasting or, just as VSimRTI’s classes, provide a base class for further inheritance
to create more complex applications.

The following sections introduce the TbusGeoServer and TbusGeoClient, both
of which are implemented in VSimRTI’s application_NT simulator. The VSimRTI con-
nects them with either one of the urapp module, representing an unreliable application

that utilizes UDP on the transport layer, in TBUS’ OMNeT++ implementation of Tbus-
MobileNode and TbusInetNode.

5.3.1 TbusGeoServer

The TbusGeoServer provides an already usable base class of a GeoServer. It gath-
ers vehicle position information as a pair of the current road id and lane position from
regularly sent CAMs. A simplification towards the CAM and DENM specifications is
made, as only the message lengths of 200B, see [BBM13], and 40B, defined in [ETS10,
6.2.3] respectively and not their full contents are implemented, only information pro-
cessed from the TbusGeoServer is included in the messages. While the ETSI defines
the shape of the affected geo-broadcast area as either rectangular, circular or elliptical
(see [ETS11c] and [ETS11b, section 4]), the area covered by the TBUS graph structure
results in a complex polygon. This suffices for all TBUS-enabled nodes and guarantees
an even more precise geo-broadcast method, but differs from ETSI standards. To comply
with the ETSI standard, an additional circular area with the geo-broadcasting vehicle’s
position and the given maximum distance on the road graph can be chosen to cover every
affected node.

The TbusGeoServer has one configurable variable, the path to the SUMO graph file
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used for the simulation and is the only mandatory configuration value. The internal
graph structure is generated from this SUMO net file and provides a consistent mapping
between geo-broadcast messages and the edges nodes are on. More complex applications
can inherit TbusGeoServer’s functionalities and extend or adapt to their own needs.

5.3.2 TbusGeoClient

The TbusGeoClient is this thesis’ implementation of a GeoClient. It is capable
of sending CAMs for periodic position updates as well as receiving and sending geo-
broadcasts meant for nodes positioned in a specific area via DENMs. Configuration
options are the message interval for CAMs, an application start offset, the possibility
to disable message sending, and values for default road ids and lane positions, if none
are available from the traffic simulator. Message receiving cannot be disabled, if the
network conditions allow the transmission of data, a TbusGeoClient receives it. An
extended application can inherit from TbusGeoClient and use its interface for geo-
broadcasting. This enables further applications to send messages via geo-broadcast with-
out knowing the GeoServer and GeoClient structure.

5.4 VSimRTI scenario creation

This section gives general instructions on how to create a new scenario. As TBUS sce-
narios are extended VSimRTI scenarios, consult the in-depth documentation on creating
VSimRTI scenarios found in VSimRTI’s manual and documentation, if needed.

Prerequisites A valid VSimRTI licence is mandatory for using the framework. Simu-
lated applications and the vehicle types they are assigned to are selected. The simulation
area has to be known and a suitable OpenStreetMap (OSM) map file of the selected
simulation area is obtained via the official website10 or other sources.

10 https://www.openstreetmap.org/
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Data preprocessing The map’s contents have to be checked for consistence and in-
clusion of all necessary road segments. Measured and mapped mobile cellular network
characteristics have to be checked for measurement errors; as errors in the input data
can have a great impact on the simulation outcome. It then has to be exported into a
data source having a suitable connector available in the TBUS library as mentioned in
section 4.3.7. An example SQL database schema is given in A.3.

Importing data into VSimRTI Then, using VSimRTI’s scenario-convert, the
navigation database and SUMO files are generated. Routes can be generated using the
same tool, but have to be verified and maybe edited as they are chosen randomly and
might not fit the simulation’s needs. If necessary, additional routes can be created but
have to be re-imported into VSimRTI’s navigation database. Consult scenario-con-
vert’s help output for further information.

Setting up the scenario The scenario has to be set up for the given simulation in
VSimRTI’s configuration files and in addition in TBUS’s omnetpp.ini file. This
file, read by OMNeT++ and the TBUS implementation, is the configuration file with
necessary values explained by comments in the line above them. Vehicles can then be
defined, routes assigned to them and applications equipped on them. The suited log-
levels for VSimRTI can be set. Please keep in mind, that verbose output generates a
large overhead containing no information on the simulation outcome. This data is often
not necessary for the evaluation.

Starting the simulation OMNeT++ has to be started and deployed manually, as VSim-
RTI currently cannot start OMNeT++ with the additional TBUS library. VSimRTI is then
started given the scenario’s configuration file and licence information.
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5.5 Choosing a scenario

The choice of a scenario area depends on requirements defined by the measuring com-
plexity, the geometric size and applicable scenes for the simulated application, and the
simulated use case. It had to be close to the measuring person’s workspace to enable
simple and frequent measurement drives. Measurement drives have been conducted
by Norbert Goebel and simulation data was map-matched and preprocessed by Adrian
Skuballa11.

Taubental scenario The industrial area around the Im Taubental street located in
Neuss, Germany and shown in figure 5.1, was chosen as the simulation area for the
scenario this thesis investigates. All green marked roads have been measured and are
used as the foundation for simulated routes, the red arrows point to start and end points
of the simulated routes. An interesting part of the simulation area is highlighted with a
red ellipse, the equipped emergency vehicle takes most of its actions within this field.
This area includes two four- and two three-way intersections as well as all streets navi-
gable in both directions. With a high enough vehicle flow, the emergency vehicle obtains
the right of way many times within a small time and space interval. Based on this sce-
nario, message delays can be measured and compared to ETSI standards for message
timeout. This allows a conclusion the usability of this simulation model for this specific
simulation scenario and input data.

5.6 Simulation

The VSimRTI scenario was created using the whole area presented in figure 5.1. Mea-
surement data for the simulation area was gathered on August 3rd 2015 between 9:12:29
and 9:22:31 a.m. Central European Summer Time (CEST). A total of 11942 entries, each
containing the three network characteristics, were recorded. Preprocessing has kindly
been conducted by Adrian Skuballa as shown in [Sku15].

11Adrian.Skuballa@uni-duesseldorf.de
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Figure 5.1: Excerpt from the simulation area (Taken from OSM)

Vehicles are equipped with TbusGeoClient and EmergencyWarningApp appli-
cations introduced in sections 5.3.2 and 5.2. The exact configuration files can be found
in appendix A.2. An overview of the used simulation hardware is presented in A.1.

A RSU acts as the GeoServer and has an instance of a TbusGeoServer application
assigned. The maximum duration of each simulation scenario was given as 5500s ≈
90min. For both scenarios, vehicle 4 was chosen as the emergency vehicle. It also takes
the same routes during both simulations. Other vehicle’s behaviour depends on received
DENMs and their reactions, as well as their obedience to traffic rules. As the simulation
results heavily rely on the simulation input and settings, the following statements are not
made for the simulation model in general, but explicitly for the given scenarios.

5.6.1 Metrics

As a metric, we compare simulated network loads and single node performance with
regards to ETSI-defined standards. Therefore, the main requirements of ETSI use case
C.1.2.1, except CAM authentication and protection as no malicious nodes are simulated,
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Figure 5.2: Screenshot of VSimRTI’s visualizer during simulation (Image copyright by
Google Maps)

have been met. All vehicles broadcast their position via CAMs with a frequency of
1 Hz. The emergency vehicle broadcasts DENMs with the minimum required frequency
of 10 Hz. Because the original ETSI use case is designed for MANETs, some timeout
values have to be reconsidered, as MANETs have a lower latency and perhaps a higher
loss probability than mobile cellular networks. Especially, as we have mobile to server to
mobile connection instead of mobile to mobile connections, the critical time requirement
for the transmission of DENMs has been relaxed. The ETSI-defined value of 100 ms
has been changed to 300 ms to achieve a greater amount of vehicles obeying DENMs.
300 ms were chosen, because this value was high enough as a timeout compared to delays
simulated in previous scenarios not listed in this thesis. The original timeout is still
compared to the measured delays. As for the simulation scenario I only one, and for
scenario II only ten messages were dropped, packet loss probability is not plotted.

The delays of CAMs and DENMs have been collected for every active vehicle in both
up- and download directions. Upload and download directions are from a GeoClient’s
point of view, because there are no simulation queues on the GeoServer. The delay of
messages for the upload directions and the total delay has been recorded as follows:
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Upload delay This is the application to application message delay on its way from a
GeoClient to the GeoServer and has thus been recorded on the GeoServer. Upload delays
were recorded for CAMs and DENMs separately to distinguish between the delays of
those different sized messages.

Message delay The message delay is only measured for DENMs that have been for-
warded by the GeoServer to corresponding GeoClients. Thus, this delay includes the
upload delay of a DENM from the sending GeoClient to the GeoServer as well as the
download delay from the GeoServer to the receiving GeoClient. It is measured on each
receiving GeoClient.

Both delays are then plotted against the simulation duration. Conspicuities are further
explained. To enable a simple comparison to ETSI standards, the delays are also pre-
sented as CDFs. The suitability of simulation results, regarding the ETSI use case, can
then be read as a percentage of all transmitted messages.

5.6.2 Scenario I: Taubental

For the small simulation scenario, five vehicles with different routes each between the
same end and origin were simulated. The simulation took 1307s ≈ 22min to complete
and simulated 3042400000000ns = 50min 42.4s.

Upload delay The message upload delays, as shown in figure 5.3a, mostly remain
below 1 s. There is one spike between 500 to 1000 s, where the upload delays of the
emergency vehicle, vehicle 4, of both CAM and DENM rise rapidly. Over the simulation
time from 689 to 700 s, congestion occurs on vehicle 4’s upload direction. This is due
to a low sending rate of 2.029297 kB/s assigned between 27.5 to 30.5 m on the road
segment 1037164_1103483136_1103483070_110348313. Figure 5.4 show the position
based upload data rate of two traces along the former mentioned road segment.
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(a) Message upload delays

(b) Detailed excerpt of message upload delays

Figure 5.3: Message upload delays and excerpt
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Figure 5.4: Upload data rate along road segment
1037164_1103483136_1103483070_110348313

Figure 5.3b shows message delays below 0.6 s. As can be seen, a large number of mes-
sages have a delay below 0.1 s, while also a greater number of message delays resides
between 0.2 to 0.3 s and other groupings exist.

Figure 5.5: Message delays

Message delay The message delay of DENMs is shown in figure 5.5 and is overall
well below 0.5 s. Because only two vehicles received DENMs and the loss during this
scenario affected just one message, only two out of all four vehicles were about to cross
the emergency vehicle’s way at the presented times. Vehicles 2 and 3 received DENMs
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forwarded to them by the GeoServer. Most of the received DENMs were delivered within
the ETSI specification of 100 ms.
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(a) CDF of upload delays
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(b) CDF of message delays

Figure 5.6: CDFs of upload and message delays with ETSI and relaxed timeout marked

By examining figures 5.6a and 5.6b, one can compare the simulated message delays to
the ETSI standards given for the selected use case. On the upload direction, close to
90 % of all messages delivered to the GeoServer arrived within the ETSI-defined 100 ms
timeout. By raising the timeout to 250 ms, more than 95 % of all received messages
would be able to have a lower delay than the given timeout. For the message delay,
the 100 ms timeout can still be met by around 60 % of all delivered messages. Again,
by raising it to 250 ms, around 90 % of all received messages would match the given
criteria.

5.6.3 Scenario II: Taubental-large

For the large simulation, 50 vehicles were simulated in the same simulation area. The
same route has been assigned for ten vehicles each and new vehicles spawned every two
minutes per route. The simulation took 8110s ≈ 2h 15min to complete and simulated
3655900000000ns = 1h 55.9s.

Upload delay Figure 5.7a shows the overall message upload delays. As one would
expect, the emergency vehicle once again has a large spike from 689 to 700 s, as it took
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(a) Message upload delays

(b) Detailed excerpt of message upload delays

Figure 5.7: Message upload delays and excerpt
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the same route during scenario II as for scenario I and the same vehicles joined the
simulation before the emergency vehicle did. It was also given the right of way if other
vehicle’s successfully processed DENMs. Other spikes can be traced back to a higher
network load and the cell-share model dividing available data rate to all members of a
cell.

What remains suspicious are gaps in between the emergency vehicle’s message during
delays of above 30 s. This occurs from 1166 to 1191 s and 1597 to 1783 s. At first,
it seems that messages in between these intervals have been dropped by the simula-
tion. Further investigation of message transmissions through the implemented simula-
tion model showed, that messages during these intervals were correctly simulated by the
TBUS model and not dropped. The error occurred within VSimRTI’s application_NT
simulator: Instead of message objects, null objects were delivered to the GeoServer
in these timespans. Because for these null-messages no information other than the
receiving timestamp is available and the messages cannot be identified anymore, only
assumptions on this error can be made.

Figure 5.8: Vehicle 4 messages and null messages

Concluding from figure 5.8, where all received null messages fit seamlessly into the
gaps of vehicle 4’s message delays, the following statement describes the validity of the
simulation results: As the implemented simulation model evidently drops no more than
the correctly simulated messages, the shown figures are valid but incomplete. How mes-
sage delays for vehicle 4 during phases of null messages behaved is neither described
nor considered for the rest of this thesis. It can only be assumed, that these messages
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have a simulated delay above 30 s, as this is the lower delay limit for messages to be
turned into null messages. Because this error was first encountered during the very last
days of this thesis, it has not yet been further investigated or patched.

By examining figure 5.7b, the message upload delay distribution can be analyzed. De-
lays rise with a larger number of simulated nodes, as the cell-share model divides the
available data rate according to the number of active nodes within the same cell. With
a stagnating number of simulated nodes, the message upload delay becomes lower. The
overall message upload delay is higher, but still a large part of the messages reach the
GeoServer in less than 200 ms.

Figure 5.9: Message delays

Message delay Message delays, as shown in figure 5.9, can only be evaluated for mes-
sages other than null messages forwarded by the GeoServer. Because null messages
contain no data, there were no DENMs to forward to GeoClients during these phases.
Instead, only valid DENMs are investigated. In contrast to the message delays from
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scenario I, those in scenario II vary by a larger amount of time. Also, due to the higher
number of vehicles in the scenario, more vehicles received DENMs. This lead to a higher
network load, too, because DENMs were send to the GeoServer at 10 Hz and forwarded
to the corresponding nodes with this frequency each.
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(b) CDF of message delays

Figure 5.10: CDFs of upload and message delays with ETSI and relaxed timeout marked

The CDFs shown in figure 5.10 confirm the previously made assumptions. While still
around 40 % of all messages reach the GeoServer within 0.1 s, not even 10 % of DENMs
have been transmitted to GeoClients within the ETSI-defined timeout. Figure 5.10b only
shows delays of up to 0.8 s as the highest increase of message percentage happens in
this interval. It has to be noted, that 90 % were reached at around 20 s message delay.
The network load was high and because many vehicles were simulated on the same road
segments, the cell-share model only left small amounts of the originally available data
rate to be used for simulated nodes. As in scenario I, raising the timeout value to 250 ms
would allow around 80 % and 50 % of all transmitted messages, for upload and download
respectively, to meet the timeout requirement.

5.6.4 Conclusion

The presented simulation scenarios give an impression on how the implemented simu-
lation model behaves while coupled to other simulators and processing their input. The
following is only valid for the given set of input data, but may be transferable to similar
scenarios and input data.
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For both scenarios, message loss was surprisingly low. Surprisingly, because 138 out
of all 11942 data entries contains a loss probability higher than 0, and 58 of those had a
loss probability of 100 %. There is no great difference in the loss rates for both scenarios,
as the same routes were used in both cases. Also, these routes did not take place on a
road segment with high loss probability. Once again, this might be different for another
simulation input or the same input but different routes.

Message delays recorded for both simulation scenarios show an expected connection
between the number of simulated GeoClients and the recorded message delay. The used
cell-share model reduced the overall available data rate for GeoClients situated in the
same cell. Because messages are send via UDP and no precautions on how to avoid
network congestion have been made, peak values of network congestion can become
large. But, as soon as the congested GeoClient’s data rate rises again, the congestion was
relieved and lower delays were achieved.

On the application side of the simulation, the emergency vehicle was able to broadcast
its DENMs, and, depending on the current network load, most of the receivers took the
mandatory action and gave the emergency vehicle the right of way. This was due to the
relaxation of the timeout value from 100 to 300 ms. With this value, more than 50 %
of all DENMs were recognized by GeoClients. This allowed the emergency vehicle to
obtain the right of way most of the time it was necessary, because the sending frequency
of 10 Hz and every other message meeting the relaxed ETSI requirements informed Geo-
Clients early enough to not hinder the emergency vehicle. Because the ETSI use case
is not defined for mobile cellular networks, but rather suggests the message formats that
should be used for these networks, timeout and frequency values have to be reconsidered.
Directions on how these new values can be chosen have been presented by the conducted
simulations.

Altogether, the simulation scenarios proved that the coupled simulation reaches a certain
amount of reliability for the EmergencyVehicleApp for the given input data.
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Summary

Coupled simulation of road traffic, V2X-applications and V2X-communication via mo-
bile cellular networks is a complex process. This thesis utilized the V2X simulation
framework VSimRTI to transfer the TBUS model into a greater simulation infrastruc-
ture. Implementing an OMNeT++ extension and integrating it into the VSimRTI, a new
possibility for the trace-based simulation of mobile cellular networks is introduced. Fu-
ture users can reliably build their own V2X applications, based on the TBUS model,
and simulate network traffic while being applied on mobile nodes. There is no need to
consult complex mathematical simulation models and the overall entry barriers are low-
ered, allowing a larger group of users to utilize the coupled simulation of road traffic,
V2X-applications and V2X-communication via mobile cellular networks.

6.1 Conclusion

The modification of VSimRTI and implementation of the TBUS model within OMNeT++

allows the simulation of V2X applications by utilizing data gathered from measurement
drives. Additionally, a base framework for V2X applications used for TBUS simulations
is introduced. These new components have then been tested and evaluated using pro-
cessed real-world network characteristics within two simulation scenarios. It has been
concluded, that the simulated applications meet a certain level of reliability, depending
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on given input network characteristics. The implementation provided by this thesis is
extendable to include even more functionality; and it contains a verified core simulation
model to enable reliable extensions.

Everything considered, the coupled simulation of road traffic, V2X-applications and
V2X-communication via mobile cellular networks has been investigated, extended as
needed to enable a general simulation process and evaluated using suitable network char-
acteristics input.

6.2 Future work

This thesis brought the TBUS model into the VSimRTI. It provides interfaces for new
functionalities, simplified implementations of those and opens up new opportunities for
TBUS. In the following, some parts that require future work to be fully explored, and
some suggestions concerning existing components, are listed.

6.2.1 Stronger coupling between application_NT and OMNeT++

VSimRTI provides an extensive framework for coupled simulation. Especially SUMO as
a road traffic simulator is strongly coupled with the application_NT simulator. It allows
V2X applications to retrieve the current state of and control the vehicle they are assigned
to. A similar coupling between OMNeT++ and application_NT would allow information
on the current network state to be utilized within an application’s logic. Applications
for this thesis assume a connected and stable network condition. They are not informed
on the available network state or for example, congestion delaying packets or the type
of mobile cellular network cell they are connected to. This information would allow
applications to respond to a network’s load, adapt to network characteristics and provide
an overall better usage of the mobile cellular network. The protocol used for coupling
OMNeT++ to VSimRTI has to be modified in order to achieve this extension. Other
simulators would then be able to access these data and draw their own conclusion on
how to react or respond.
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6.2.2 null message investigations

As the error with null messages occurred only during the last simulation and within
the last days of this thesis, only assumptions on how it arises and how it can be fixed are
made. An error description and log files of the affected scenario will be made available
to the Fraunhofer Institute. A fix of this error should be included in one of the next
VSimRTI releases.

6.2.3 Extended research on the cell-share model

The cell-share model introduced with this thesis provides an interface that precise and
complex cell-share models can be implemented against. A simple implementation of
a cell-share model is included with this thesis, but in-depth research is required. Field
measurements and evaluation of the newly gathered data have to be concluded to define
a precise and more realistic cell-share model. Franz Kary currently investigates the in-
fluence of multiple nodes within the same mobile cellular network cell in his Master’s
Thesis [Kar15].

6.2.4 Further research on graph-based geo-routing

The graph-based geo-routing introduced for the GeoServer and GeoClients used in this
thesis, enables a more directed approach on message routing. While it needs a supporting
road graph structure and the mapping of vehicle’s positions onto corresponding edges
and position on the edge, it reduces message overhead. It also ensures message delivery
only to vehicles heading in the direction relevant for the geo-broadcast. As this thesis
only utilizes a simple implementation of graph-based routing, further research on the
real-world usability of this technique is needed.
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6.2.5 Additional simulation scenarios

Simulation creation requires a large amount of time, as a suitable simulation area has
to be found, measurement drives have to be conducted and recorded data has to be pro-
cessed before the simulation can be run. For further evaluations, this has to be fin-
ished before one can retrieve additional results of the coupled simulation with the TBUS
model. Also, additional use cases and applications have be implemented, but can be
evaluated on existing and new simulation scenarios.
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Appendix A

Appendix

A.1 The testing server

The professorship for Computer Networks of the Heinrich-Heine-University Düssel-
dorf12 provided a Linux virtual server for testing and simulation purposes. The ex-
act specifications are shown in table A.1. To run a graphical interface and make use
of OMNeT++’s and VSimRTI’s visualisation options, a virtual framebuffer using xvfb

(see [XVF]) accessed by VNC was installed. A modified version of VSimRTI 0.14.0

CPU Intel® Xeon® E5-2620 v2 2.10GHz
Number of cores 6
Memory 52GB ECC
Linux distribution Debian 7.8 (wheezy) 64bit
Linux kernel 3.2.0-4

Table A.1: Virtual machine specifications

was used, providing all additions and changes introduced in chapter 4. Other compo-
nents of VSimRTI or the underlying system were not modified.

12 http://www.cn.uni-duesseldorf.de
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A.2 Taubental and Taubental-large scenarios

This section includes important configuration files of the Taubental and Taubental-large

scenarios.

applicationNT

1 {

2 "messageCacheTime": 30000000000,

3 "behaviorActive" : "false",

4 "minimalCamLength" : 1500,

5 "minimalDenmLength" : 1500,

6 "v2XMessageCacheSize": 2147483647

7 }

Listing A.1: Taubental/applicationNT/applicationNT_config.json

1 {

2 "_isEmergencyVehicle": "",

3 "isEmergencyVehicle": false,

4 "_interval": "",

5 "interval": 1000000000,

6 "_timeout": "",

7 "timeout": 300000000,

8 "_offset": "",

9 "offset": 4000000000,

10 "_radius": "",

11 "radius": 5.0,

12 "_slowDownSpeed": "",

13 "slowDownSpeed": 0.0,

14 "_obeyTime": "",

15 "obeyTime": 200

16 }

Listing A.2: Taubental/applicationNT/emergencyWarningApp.json

1 {

2 "_isEmergencyVehicle": "",

3 "isEmergencyVehicle": true,
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4 "_interval": "",

5 "interval": 100000000,

6 "_timeout": "",

7 "timeout": 200000000,

8 "_offset": "",

9 "offset": 4000000000,

10 "_radius": "",

11 "radius": 5.0,

12 "_slowDownSpeed": "",

13 "slowDownSpeed": 1.0,

14 "_obeyTime": "",

15 "obeyTime": 2000

16 }

Listing A.3: Taubental/applicationNT/emergencyWarningApp–veh_4.json

1 {

2 "_sumoNetFile": "SUMO net file path",

3 "sumoNetFile": "scenarios/Taubental/sumo/Taubental.net.xml"

4 }

Listing A.4: Taubental/applicationNT/GeoServerConfig.json

1 {

2 "_interval": "",

3 "interval": 1000000000,

4 "_offset": "",

5 "offset": 5000000000,

6 "_defaultRoadId": "",

7 "defaultRoadId": "defaultroadid",

8 "_defaultLanePos": "",

9 "defaultLanePos": 0.0,

10 "_shouldTransmit": "",

11 "shouldTransmit": true

12 }

Listing A.5: Taubental/applicationNT/GeoClientConfig.json

mapping3
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1 {

2 "prototypes":[

3 {

4 "applications":["de.hhu.tbus.applications.nt.emergencywarning

↪→ .EmergencyWarningApp"],

5 "name":"PKW",

6 "accel":1.5,

7 "decel":4.5,

8 "length":5.00,

9 "maxSpeed":0.5,

10 "minGap":2.5,

11 "sigma":0.5,

12 "tau":1

13 },

14 {

15 "applications":["de.hhu.tbus.applications.nt.geoserver.edge.

↪→ server.TbusGeoserver"],

16 "name":"RSU"

17 }

18 ],

19 "rsus":[

20 {

21 "lat": 51.1640075,

22 "lon": 6.7527653,

23 "name": "RSU"

24 }

25 ],

26 "vehicles":[

27 {

28 "startingTime":6.0,

29 "route":0,

30 "maxNumberVehicles": 1,

31 "types":[{"name":"PKW"}]

32 },

33 {

34 "startingTime":23.0,

35 "route":1,

36 "maxNumberVehicles": 1,

37 "types":[{"name":"PKW"}]

38 },
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39 {

40 "startingTime":40.0,

41 "route":2,

42 "maxNumberVehicles": 1,

43 "types":[{"name":"PKW"}]

44 },

45 {

46 "startingTime":57.0,

47 "route":3,

48 "maxNumberVehicles": 1,

49 "types":[{"name":"PKW"}]

50 },

51 {

52 "startingTime":74.0,

53 "route":4,

54 "maxNumberVehicles": 1,

55 "types":[{"name":"PKW"}]

56 }

57 ]

58 }

Listing A.6: Taubental/mapping3/mapping_config.json

1 {

2 "prototypes":[

3 {

4 "applications":["de.hhu.tbus.applications.nt.emergencywarning

↪→ .EmergencyWarningApp"],

5 "name":"PKW",

6 "accel":1.5,

7 "decel":4.5,

8 "length":5.00,

9 "maxSpeed":0.5,

10 "minGap":2.5,

11 "sigma":0.5,

12 "tau":1

13 },

14 {

15 "applications":["de.hhu.tbus.applications.nt.geoserver.edge.

↪→ server.TbusGeoserver"],

16 "name":"RSU"
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17 }

18 ],

19 "rsus":[

20 {

21 "lat": 51.1640075,

22 "lon": 6.7527653,

23 "name": "RSU"

24 }

25 ],

26 "vehicles":[

27 {

28 "startingTime":6.0,

29 "route":0,

30 "targetDensity": 30,

31 "maxNumberVehicles": 10,

32 "types":[{"name":"PKW"}]

33 },

34 {

35 "startingTime":23.0,

36 "route":1,

37 "targetDensity": 30,

38 "maxNumberVehicles": 10,

39 "types":[{"name":"PKW"}]

40 },

41 {

42 "startingTime":40.0,

43 "route":2,

44 "targetDensity": 30,

45 "maxNumberVehicles": 10,

46 "types":[{"name":"PKW"}]

47 },

48 {

49 "startingTime":57.0,

50 "route":3,

51 "targetDensity": 30,

52 "maxNumberVehicles": 10,

53 "types":[{"name":"PKW"}]

54 },

55 {

56 "startingTime":74.0,
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57 "route":4,

58 "targetDensity": 30,

59 "maxNumberVehicles": 10,

60 "types":[{"name":"PKW"}]

61 }

62 ]

63 }

Listing A.7: Taubental–large/mapping3/mapping_config.json

vsimrti

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-- file version: 2015-01-22 -->

3 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance

↪→ "

4 xsi:noNamespaceSchemaLocation="https://www.dcaiti.tu

↪→ -berlin.de/research/simulation/download/get/scenarios/

↪→ scenarioname/vsimrti/vsimrti_config.xsd">

5 <simulation>

6 <id>Taubental</id>

7 <starttime>0</starttime>

8 <!-- you will want to set this to a value that covers the

↪→ whole time frame you want to simulate -->

9 <endtime>5500</endtime>

10 <!-- set the center coordinates to roughly the center of

↪→ your target area -->

11 <!-- the offset can be found in the generated network file

↪→ for your traffic simulator, e.g. the .net.xml file for sumo

↪→ -->

12 <!-- <location netOffset="-342488.08,-5670384.60" convBoundary="0

↪→ .00,0.00,839.52,706.16" origBoundary="342488.08,5670384.

↪→ 60,343327.60,5671090.77" projParameter="!"/> -->

13 <WGS84UTMTransformConfig>

14 {

15 "centerCoordinates": {

16 "longitude": 6.0,

17 "latitude": 51.0

18 },
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19 "cartesianOffset": {

20 "x": -342488.08,

21 "y": -5670384.60

22 }

23 }

24 </WGS84UTMTransformConfig>

25 <threads>1</threads>

26 </simulation>

27 <federates>

28 <!--

29 Be aware that are all network simulators (excluding

↪→ cell) are exclusive.

30 Do NOT set multiple to true!

31 -->

32 <!-- Cellular network simulator -->

33 <federate id="cell" active="false"/>

34 <!-- V2X (ad hoc) network simulators -->

35 <federate id="sns" active="false"/>

36 <federate id="swans" active="false"/>

37 <federate id="omnetpp" active="true"/>

38 <federate id="ns3" active="false"/>

39 <!-- Traffic simulators -->

40 <federate id="sumo" active="true"/>

41 <federate id="vissim" active="false"/>

42 <!-- Electric vehicle simulator -->

43 <federate id="battery" active="false"/>

44 <!-- Navigation component -->

45 <federate id="navigation" active="true"/>

46 <!-- Application simulator -->

47 <federate id="applicationNT" active="true"/>

48 <!-- Mapping -->

49 <federate id="mapping3" active="true"/>

50 <!-- Environment simulator -->

51 <federate id="eventserver" active="false"/>

52 <!-- Visualization -->

53 <federate id="visualizer" active="true"/>

54 <!-- Emission dispersion -->

55 <federate id="hefei" active="false"/>

56 </federates>

57 </configuration>
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Listing A.8: Taubental/vsimrti/vsimrti_config.xml

A.3 Database structure

The following is the SQL table structure used in TBUS’s SQLite database:

1 CREATE TABLE upload (

2 id INTEGER PRIMARY KEY,

3 groupid INTEGER NOT NULL DEFAULT 1,

4 timestamp INTEGER NOT NULL,

5 roadId TEXT,

6 lanePos REAL,

7 cellId INTEGER NOT NULL DEFAULT 1,

8 datarate REAL,

9 droprate REAL,

10 delay INTEGER

11 );

12
13 CREATE TABLE download (

14 id INTEGER PRIMARY KEY,

15 groupid INTEGER NOT NULL DEFAULT 1,

16 timestamp INTEGER NOT NULL,

17 roadId TEXT,

18 lanePos REAL,

19 cellId INTEGER NOT NULL DEFAULT 1,

20 datarate REAL,

21 droprate REAL,

22 delay INTEGER

23 );

Listing A.9: tbus_edge.sql
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A.4 Database Handler interface

The following listings introduce the TbusDatabaseHandler interface used as the
data source by this thesis:

1 /*

2 * DatabaseHandler.h

3 *

4 * Created on: 13.10.2014

5 * Author: bialon

6 */

7
8 #ifndef DATABASEHANDLER_H_

9 #define DATABASEHANDLER_H_

10
11 #include "TbusQueueDatarateValue.h"

12 #include "TbusQueueDelayValue.h"

13 #include "TbusCellShareTypes.h"

14 #include "omnetpp.h"

15
16 /**

17 * Abstract base class for all database handlers to be used in TBUS

↪→ .

18 * Provides an interface for accessing data-/droprate and delay

↪→ from data source.

19 */

20 class TbusDatabaseHandler {

21 private:

22 /**

23 * Private copy constructor

24 * @param

25 */

26 TbusDatabaseHandler(const TbusDatabaseHandler&);

27 void operator=(const TbusDatabaseHandler&);

28
29 simtime_t offset;

30
31 protected:

32 /**

33 * Protected Constructor.

78



A.4 Database Handler interface

34 * Only inheriting is possible.

35 */

36 TbusDatabaseHandler();

37
38 simtime_t getSimulationTimeWithOffset(simtime_t time = simTime

↪→ ());

39
40 public:

41 /**

42 * Template function for instantiation of a singleton with

↪→ given type T.

43 * This is used for an easy interface throughout the using

↪→ classes and easy instantiation and maintenance of the

↪→ belonging data source.

44 * @return Singleton instance of type T

45 */

46 template<class T> static TbusDatabaseHandler* getInstance() {

47 static TbusDatabaseHandler* instance = new T(); ///< static

↪→ local variable used for singleton cleanup

48
49 return instance;

50 }

51
52 /**

53 * Destructor.

54 * Database cleanup, query finalization and database closing

↪→ should be handled here by derived classes.

55 */

56 virtual ~TbusDatabaseHandler() {};

57
58 /**

59 * Return the cellid at position roadId and lanePos

60 * @param roadId Current road id

61 * @param lanePos Lane position

62 * @return Cell id

63 */

64 virtual cellid_t getCellId(const char* const roadId, const

↪→ float lanePos, simtime_t time = simTime()) = 0;

65
66 virtual uint64_t getUploadGroupId(const char* const roadId,
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↪→ simtime_t time = simTime()) = 0;

67 virtual uint64_t getDownloadGroupId(const char* const roadId,

↪→ simtime_t time = simTime()) = 0;

68
69 virtual TbusQueueDatarateValue* getUploadDatarate(const char*

↪→ const roadId, const float lanePos, simtime_t time = simTime

↪→ ()) = 0;

70 virtual TbusQueueDelayValue* getUploadDelay(const char* const

↪→ roadId, const float lanePos, simtime_t time = simTime()) =

↪→ 0;

71 virtual TbusQueueDatarateValue* getDownloadDatarate(const char*
↪→ const roadId, const float lanePos, simtime_t time = simTime

↪→ ()) = 0;

72 virtual TbusQueueDelayValue* getDownloadDelay(const char* const

↪→ roadId, const float lanePos, simtime_t time = simTime()) =

↪→ 0;

73 };

74
75 #endif /* DATABASEHANDLER_H_ */

Listing A.10: database/TbusDatabaseHandler.h

1 /*

2 * DatabaseHandler.cc

3 *

4 * Created on: 16.07.2015

5 * Author: bialon

6 */

7
8 #include "TbusDatabaseHandler.h"

9
10 Register_GlobalConfigOption(CFGID_TBUS_OFFSET, "tbus-offset",

↪→ CFG_INT, 0, "Timestamp offset used for value retrieval")

11
12 TbusDatabaseHandler::TbusDatabaseHandler() {

13 offset = SimTime(ev.getConfig()->getAsInt(CFGID_TBUS_OFFSET, 0),

↪→ SIMTIME_NS);

14 };

15
16 /**

17 * Returns the given simulation time (or now, if none) plus offset
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18 * @param time Simulation time

19 * @return Time plus offset

20 */

21 simtime_t TbusDatabaseHandler::getSimulationTimeWithOffset(

↪→ simtime_t time) {

22 return time + offset;

23 }

Listing A.11: database/TbusDatabaseHandler.cc

A.5 Cell-share interface

The following listing contains the C++ interface for the cell-share model used by this
thesis:

1 /*

2 * TbusCellShare.h

3 *

4 * Created on: 17.02.2015

5 * Author: bialon

6 */

7
8 #ifndef TBUSCELLSHARE_H_

9 #define TBUSCELLSHARE_H_

10
11 #include "omnetpp.h"

12 #include "TbusQueueDatarateValue.h"

13 #include "TbusQueueDelayValue.h"

14 #include "TbusCellShareTypes.h"

15
16 #include <map>

17 #include <set>

18
19 /**

20 * Representation of a TBUS cell share module.

21 */

22 class TbusCellShare {

23 protected:
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24 /**

25 * Protected constructor for inheriting.

26 */

27 TbusCellShare() {};

28
29 typedef std::set<TbusHost*> HostSet; ///< Set of hosts in cell

30 typedef struct TbusCell {

31 uint64_t numActiveHosts;

32 HostSet hosts;

33 };

34
35 /**

36 * Returns the number of active hosts in the given cell.

37 * @param cellId Cell id of cell

38 * @return Number of active hosts

39 */

40 uint64_t getActiveHostsInCell(cellid_t cellId) {

41 return idToCell[cellId].numActiveHosts;

42 }

43
44 /**

45 * Get a set of all hosts currently connected to a cell with

↪→ cell id cellId.

46 * @param cellId Cell id

47 * @return Host set

48 */

49 HostSet& getHostsInCell(cellid_t cellId) {

50 return idToCell[cellId].hosts;

51 }

52
53 private:

54 TbusCellShare(const TbusCellShare&);

55 void operator=(const TbusCellShare&);

56
57 /**

58 * Maps a cell id to the number of connected hosts.

59 */

60 std::map<cellid_t, TbusCell> idToCell;

61
62 /**
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63 * Update the number of cell active hosts.

64 * @param cellId

65 */

66 void updateNumActiveHostsInCell(cellid_t cellId) {

67 uint64_t numActiveHosts = 0;

68 HostSet::iterator it;

69 HostSet& hosts = idToCell[cellId].hosts;

70
71 for (it = hosts.begin(); it != hosts.end(); ++it) {

72 if ((*it)->callback->getQueueStatus() == CELL_ACTIVE) {

73 numActiveHosts++;

74 }

75 }

76
77 idToCell[cellId].numActiveHosts = numActiveHosts;

78 }

79
80 public:

81 /**

82 * Singleton instantiation for every model.

83 * @return A TbusCellShare of model T

84 */

85 template<class T> static TbusCellShare* getInstance() {

86 static TbusCellShare* instance = new T(); ///< Static local

↪→ variable used for singleton cleanup

87
88 return instance;

89 }

90
91 /**

92 * Update cell model.

93 * Host host changed cells between from and to.

94 * @param from Cell host was in

95 * @param to Cell host is in

96 * @param host Optional host reference

97 */

98 void hostMoved(cellid_t from, cellid_t to, TbusHost* host) {

99 if (from != TBUS_INVALID_CELLID) {

100 idToCell[from].hosts.erase(host);

101
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102 updateNumActiveHostsInCell(from);

103 }

104
105 if (to != TBUS_INVALID_CELLID) {

106 idToCell[to].hosts.insert(host);

107
108 updateNumActiveHostsInCell(to);

109 }

110 }

111
112 /**

113 * Makes every host in cell cellId adapt its queue values.

114 * @param cellId Cell id

115 */

116 void cellActivityChanged(cellid_t cellId) {

117 HostSet& hosts = idToCell[cellId].hosts;

118 HostSet::iterator it;

119
120 // First, update the number of cell active hosts

121 updateNumActiveHostsInCell(cellId);

122
123 // Second, let all hosts adapt active queue’s value

124 for (it = hosts.begin(); it != hosts.end(); ++it) {

125 (*it)->callback->adaptQueueValues(ALL);

126 }

127 }

128
129 /**

130 * Adapt the given value in a new returned value to the current

↪→ cell model.

131 * The optional parameter host can be used for additional

↪→ information.

132 * @param cellId Cell to adapt on

133 * @param value Given TbusQueueDatarateValue

134 * @param host Optional host reference

135 * @return Adapted queue datarate value

136 */

137 virtual TbusQueueDatarateValue* adaptDatarateValue(cellid_t

↪→ cellId, TbusQueueDatarateValue* value, TbusHost* host = NULL

↪→ ) = 0;
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138
139 /**

140 * Adapt the given value in a new returned value to the current

↪→ cell model.

141 * The optional parameter host can be used for additional

↪→ information.

142 * @param cellId Cell to adapt on

143 * @param value Given TbusQueueDelayValue

144 * @param host Optional host reference

145 * @return Adapted queue delay value

146 */

147 virtual TbusQueueDelayValue* adaptDelayValue(cellid_t cellId,

↪→ TbusQueueDelayValue* value, TbusHost* host = NULL) = 0;

148 };

149
150 #endif /* TBUSCELLSHARE_H_ */

Listing A.12: cellshare/TbusCellShare.h

85





Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die
aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 11. August 2015
Raphael Bialon





Place DVD cover

here

This DVD contains:

• a README file

• a pdf -version of this Master’s Thesis

• the LATEX and graphics sources of this thesis including all used scripts

• the source files of the developed software

• simulated scenarios and used data

• simulation results

• websites of the used internet sources


	Title page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Terms and Definitions

	2 Related work
	2.1 TBUS
	2.2 CCMSim
	2.3 MiXiM
	2.3.1 Veins

	2.4 VSimRTI_Cell

	3 Fundamentals
	3.1 Terminology
	3.2 Trace-based simulation model
	3.2.1 Trace Based UMTS Simulation
	3.2.2 Simulating with GPS-based traces
	3.2.3 Simulating with graph-based traces

	3.3 The VSimRTI framework
	3.3.1 VSimRTI
	3.3.2 OMNeT ++
	The INETMANET framework

	3.3.3 SUMO


	4 Implementing TBUS for VSimRTI
	4.1 Extending VSimRTI
	4.2 Patching the INETMANET framework
	4.2.1 ARP
	4.2.2 ChannelAccess and ChannelControl

	4.3 Implementing TBUS in OMNeT ++
	4.3.1 TBUS mobile node
	4.3.2 TBUS inet node
	4.3.3 TBUS mobile radio
	4.3.4 TBUS MAC and PHY layers
	4.3.5 TBUS queue design
	4.3.6 TBUS Channel Control
	4.3.7 Data source
	4.3.8 Cell-share simulation

	4.4 Verification of the adapted TBUS model
	4.5 The TBUS installer

	5 Simulations and Results
	5.1 ETSI Standards and definitions
	5.2 Choosing an application
	5.3 Message routing
	5.3.1 TbusGeoServer
	5.3.2 TbusGeoClient

	5.4 VSimRTI scenario creation
	5.5 Choosing a scenario
	5.6 Simulation
	5.6.1 Metrics
	5.6.2 Scenario I: Taubental
	5.6.3 Scenario II: Taubental-large
	5.6.4 Conclusion


	6 Summary
	6.1 Conclusion
	6.2 Future work
	6.2.1 Stronger coupling between application_NT and OMNeT ++
	6.2.2 null message investigations
	6.2.3 Extended research on the cell-share model
	6.2.4 Further research on graph-based geo-routing
	6.2.5 Additional simulation scenarios


	Bibliography
	Abbreviations
	A Appendix
	A.1 The testing server
	A.2 Taubental and Taubental-large scenarios
	A.3 Database structure
	A.4 Database Handler interface
	A.5 Cell-share interface

	Declaration
	DVD

