Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Validating Wireless Congestion Control and
Reliability Protocols using ProB and Rodin

Jens Bendisposto, Michael Jastram, Michael Leuschel
Christian Lochert, Bjorn Scheuermann, Ingo Weigelt!+?

Computer Science Department
Heinrich Heine University
Diisseldorf, Germany

Abstract

Implicit hop-by-hop congestion control is a novel congestion control paradigm for wireless multihop net-
works. Implemented in the CXCC protocol, it has already proven its performance in simulations and
measurements. Since CXCC makes extensive use of the properties of an inherently unreliable medium, it
is, however, vitally necessary to validate the correctness of the protocol. Indeed, an early version of the
CXCC protocol contained deadlocks. CXCC is complemented by an end-to-end reliability mechanism in
the BarRel transport protocol. In combination, both protocols offer TCP-equivalent service in dynamic
wireless multihop environments, including, e.g., route changes. BarRel relies on properties of CXCC. It
therefore likewise deserves validation.

In this work we attempt to validate the CXCC and BarRel protocols using formal methods. To this end,
we are developing various models in B and Event-B. We are using the ProB tool to animate and model
check the formal models and the Rodin platform to formally prove correctness properties. In this paper we
present first encouraging steps towards a full formal validation of the protocols.

Keywords: Protocol Validation, Wireless Networks, Congestion Control, End-to-End Reliability, CXCC,
BarRel, B-Method, ProB, Rodin

1 Implicit Hop-by-Hop Congestion Control

In previous work we have introduced the Cooperative Cross-layer Congestion Con-
trol (CXCC) protocol and the Backpressure Reliability (BarRel) protocol. CXCC is
a congestion control approach, and BarRel is the corresponding end-to-end reliabil-
ity mechanism. Both protocols in combination provide TCP-equivalent end-to-end
service. In this section, we briefly outline CXCC and BarRel. For a more detailed
discussion, we refer the reader to [6,7].

1.1 CXCC

CXCC is a cross-layer approach, encompassing essentially the MAC and transport
layers. It uses implicitly obtained information for hop-by-hop backpressure conges-

1 Email: {bendisposto ,jasteam,leuschel,lochert, scheuermann}@cs .uni-duesseldorf.de

2 The authors are grateful to the German Research Foundation (DFG) and the EU funded FP7 research
project 214158 DEPLOY for partially funding this research.

©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

BENDISPOSTO ET AL.

tion control and single-hop reliability. The key concept is that, for each end-to-end
connection, an intermediate node may only forward a packet towards the destina-
tion after its successor along the route has forwarded the previous one. This yields
a backpressure mechanism which reacts very rapidly to varying medium conditions
and effectively avoids excessive packet inflow into congested network areas.

The CXCC protocol realizes the implicit hop-by-hop congestion control principle
by overhearing the medium after a transmission. No further packets for the same
connection may be transmitted, until the packet has been forwarded further by the
downstream node. The connection is “blocked” at the first node until the second
node forwards the packet further on (see Fig. A.1). In such a setting, overhearing
the transmission of the downstream node can serve a dual purpose: it constitutes an
implicit acknowledgment, indicating the successful reception of the previous packet
by the downstream node, and at the same time is a signal to unblock the connection,
allowing the next packet to be transmitted.

Link layer acknowledgments as in IEEE 802.11 are, consequently, not neces-
sary. Only at the last hop the packet is acknowledged explicitly. However, wireless
communication is very error-prone. Transmissions may be lost, for instance, due
to a collision. CXCC uses Request For Acknowledgment (RFA) packets in order
to overcome such situations. An RFA is a small control packet, containing just
enough information to identify the packet it refers to. Upon reception of an RFA,
a node checks whether it already has received the respective data packet or not. It
may then provide appropriate feedback, such that, if necessary, the transmission is
repeated. For details see [7].

1.2 BarRel

The CXCC retransmission mechanisms allow to overcome individual transmission
errors between adjacent nodes along the route. Because CXCC limits the number
of packets per hop to one, there will, by construction, also be no packet loss due to
buffer overflows. Hence, there will be no packet loss with CXCC as long as the route
to the destination remains stable. In this situation, a source node can implicitly
obtain information about successful packet deliveries to the destination node: there
is at most one packet per hop in CXCC, and there is neither packet loss nor packet
reodering in the network. Consequently, if the route to the destination is currently
n hops long, after the (i + n)-th packet of a transmission has left the source node,
the ¢-th packet must have arrived at the destination.

In BarRel, this is used in order to realize TCP-equivalent reliable end-to-end
data transport without the need for a continuous stream of end-to-end acknowl-
edgment traffic. In wireless multihop environments, such acknowledgment traffic is
considered a major problem, because it is forwarded over the same wireless medium
as the data traffic (in opposite direction), causing significant overhead and frequent
collisions. Therefore, an ACK-free reliable transport protocol is highly desirable.

However, it may also happen that a wireless link fails permanently. Then, the
above assumptions do not necessarily hold true, and packet loss may happen. If
one node along the route is no longer reachable, the routing protocol used in the
network will discover a new route. In order to guarantee end-to-end reliability also

2

BENDISPOSTO ET AL.

in case of link breaks and re-routing, the BarRel mechanism steps into the breach.
In these cases, a BarRel source node will go back to the first packet for which it
could not yet confirm successful delivery, and retransmit from there.

The delivery of the last n packets of a packet burst can not be acknowledged
as described above. BarRel therefore includes further mechanisms to confirm their
arrival at the destination. One of them adds a number of empty packets at the
end of the transmission. By the implicit delivery confirmation mechanism, when
the n-th such “capacity refill” (CaRe) packet leaves the source node, the last data
packet must have successfully arrived. This allows for a protocol operation without
any oncoming end-to-end control traffic. For details see [6].

2 Validating CXCC and BarRel

The B-method [1] is a formal methodology for the systematic development of safety-
critical software systems, based on the idea of refinement. Event-B (e.g., [4]) is the
successor of the B-method, which is also suitable to model reactive systems. Both
are supported by industrial-strength proving tools. Event-B is supported by the
Rodin platform [2] which enables integrated editing and proving, i.e., reasoning
mathematically about the preservation of system invariants. Our ProB tool [5]
can be used to animate B and Event-B models, as well as validate temporal logic
formulas via model checking.

In this paper, we decided to use the Event-B method to verify the correctness
of BarRel and CXCC; in future work we also plan to investigate the use of the
CSP process algebra (which is also supported by our tool PrRoB). Our goal is to
validate the CXCC and BarRel protocols using animation and model checking, but
also to try and develop a version of the algorithm which is correct by design. We
also intend to evaluate if the B-Method and the tools ProB [5] and Rodin [2] are
appropriate for the design of networks protocols. For the verification we developed
two different sets of formal models. The first version was a set of models used for
animation and model checking rather than for proof. The goal was to get familiar
with the problems that arise from the domain. Also we wanted to gain confidence
in the correctness of the protocols. The second model is used to obtain correctness
by design, by refining a very abstract model towards the CXCC/BarRel protocols.

2.1 First version: models for animation

We specified CXCC and BarRel in two different models. The CXCC model contains
a cycle free sequence of nodes, the route, for an end-to-end connection. The nodes
are equipped with two buffers, one for incoming packets and one to buffer packets
sent. The model can put packets into one end of the route and remove them from
the other end. During transmission we can lose packets and acknowledgements and
it is also possible that the implicit acknowledgment gets lost. The model does not
yet cope with multiple packets on multiple routes. We also developed a graphical
representation that could be used to demonstrate the protocol to domain experts
who are not familiar with the mathematical notation. The absence of deadlocks
was validated using ProB, as were several LTL formulas specifying correct delivery
under certain fairness assumptions.

BENDISPOSTO ET AL.

2.2 Second version: models for proof

A flow in a CXCC enabled network can be abstractly seen as a queue. The sender
adds data packets to it and the receiver removes them. Another constraint resulting
from CXCC and BarRel is that we can divide this queue into different contiguous
sections. Each section contains only data-packets, CaRe-packets or duplicates of
received data-packets. Furthermore CaRe-packets can only form the last section of
the queue and duplicates precede data.

The first model m0 defines a generic queue, mainly modeled after [3]. Methods
to enqueue, dequeue and delete the whole queue have been implemented. This
queue will then subsequently be refined until the detailed behaviour of CXCC and
BarRel is obtained.

m0 is then refined to ml, which maps the queue elements to links along the
route holding data packets. Accordingly the maximum size of the queue is limited
to the route length. The events enqueue and dequeue now represent sending and
receiving data by the source and receiver. The route break event refines the delete
event to additionally reset the counter used by the sender. As another step towards
realistic network conditions, it also nondeterministically changes the route length.
To implement the BarRel mechanism, a number of CaRe packets are appended to
the source file. Their number is also changed by the route break event, since it must
always correspond to the current route length. The events enqueue and dequeue are
also refined by another two events sendCaRe and receiveCaRe, in order to handle
transmissions and receptions of CaRe packets

The route break event in m1 removes all elements in the queue and resets the
senders counter to retransmit exactly the lost packets. In the next refinement, m2,
we remove a number of packets corresponding to the current route length. This
reflects that the sender must assume the worst case. As a result, the receiver now
needs to cope with duplicate packets arriving.

Fig. B.1 shows a ProB animation of the last model. As far as proving is con-
cerned, m0 still contains three unproven proof obligation (POs) out of 46. Models
ml and m2 are fully proven; 48 of 61 and 18 of 25 POs were automatically proven.

References

(1] Abrial, J.-R., “The B-Book,” Cambridge University Press, 1996.

[2] Abrial, J.-R., M. Butler and S. Hallerstede, An open extensible tool environment for Event-B., in:
ICFEM 06, LNCS 4260 (2006), pp. 588-605.

[3] Abrial, J.-R. and D. Cansell, Formal construction of a non-blocking concurrent queue algorithm (a case
study in atomicity), Journal of Universal Computer Science 11 (2005), pp. 744-770.

[4] Abrial, J.-R., D. Cansell and D. Méry, Refinement and reachability in Eventpg, in: H. Treharne, S. King,
M. C. Henson and S. A. Schneider, editors, ZB 05, LNCS 3455 (2005), pp. 222-241.

[5] Leuschel, M. and M. Butler, ProB: A model checker for B, in: K. Araki, S. Gnesi and D. Mandrioli,
editors, FME ’03, LNCS 2805 (2003), pp. 855-874.

[6] Scheuermann, B., “Reading Between the Packets — Implicit Feedback in Wireless Multihop Networks,”
Ph.D. thesis, Heinrich Heine University, Diisseldorf, Germany (2007).

[7] Scheuermann, B., C. Lochert and M. Mauve, Implicit hop-by-hop congestion control in wireless multihop
networks, Elsevier Ad Hoc Networks 6 (2008), pp. 260-286.

4

BENDISPOSTO ET AL.

A Figures

BLOCK

DA&‘
9}
_expl. ACK—

Fig. A.1. Packet forwarding in the CXCC protocol.

B Screenshots

| E5~ S Qv | 2% 5% b i wog fj [ProB Persp... *

E Project Explorer 32 = O|(@ JavaBCO @ mil @ mo Q@ m3 T =0 =0
J]
&8 & | & o ¥ D 4% @ [enddatd [false ¥| lordinary ¥ || constants
» = AbrialBook [Name [value]
> h7B BarRelvd = % @ [sendDatabmpty] ffalse ¥ |ordinary Null N1
p =8 Deploy mini Bosch 1 care |3 |
p (=8 Deploy mini Basch 2 [> REFINES m file <D1.D2>
p =8 Deploy mini Bosch 3 filesize |2 |
p =8 Deploy mini Bosch 4 D any
p =B Graphlso | |
» =B JavaBC =7 WHERE
v =8 Queue ® ¢
> @ ctxt Variables
> @ ctxtCaRe =@ prag ;o mlmee) Jf] | Name | Value 11
Head N1
> @ mo o & [ordZ : [Queve = {NuT1} [/ m
» @ m l 1 L 1 1 Next |{}
> % m2 o & [ordd sc<filesize] [/ Queue N1}
> @ - ')) | Tail N1 <
el = ry =
» g8 cxces o @ [ordd : [card{Queue\{NuTT}) + queuedtares.; buf {1 v
b GE test —————— R ———— R
Pretty Print@] S\mthesis| Dependencies Invariant OKI |
[Z Problems (Z, Tasks ﬂfl Operations &2 =0
receiveData
receiveDataEmpty
SendData
v SendDataEmpry
SendDataEmpty(N2) e
¥ reset v
=== ———

| o* | Y

Fig. B.1. Third refinement animated with PROB for Rodin

	Implicit Hop-by-Hop Congestion Control
	CXCC
	BarRel

	Validating CXCC and BarRel
	First version: models for animation
	Second version: models for proof

	References
	Figures
	Screenshots

