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Abstract

The main goal of this bachelor thesis is to develop an implementation of a local-based protocol

Geodemlia and to ensure that this implementation works properly. The overlay is considered to be

implemented in modules, so that they can be extended or removed without high expense. To generate

the real-world conditions, the PeerfactSim.KOM simulator was used.

In order to manage this task, a detailed description of the theoretical functionality of the protocol

is introduced. An overview of the practical implementation in Java is also given in this bachelor thesis.

To ensure the correctness of the protocol’s implementation, the overlay is tested and the test results

are evaluated.
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Chapter 1

Introduction

In Section 1.1, the motivation for this bachelor thesis is given. Section 1.2 gives a brief overview of

the structure of this thesis.

1.1 Motivation

Information has always played an important part in our society. And as the life is becoming increas-

ingly faster, live communication and efficient information exchange are becoming more important

every day. Writing letters have already sunk into oblivion, as computer networks have opened a new

page in the history of an information exchange. They make the whole process easier, faster and a lot

more efficient.

Speaking about computer networks, it is necessary to mention that there are two types of computer

network organisation: client-server architecture and Peer-to-Peer (P2P) architecture.

Client-server models are centralized. It means that all the data is stored on the powerful comput-

ers called servers which makes them responsible for managing the whole infomation and resources

[JFK12], [Wikb]. These computers provide information for other less powerful computers called

clients (desktops, laptops, smartphones, and so on). In order to get some information from the Inter-

net, a client have to send a response message to a server which in its turn will proccess the response,

find the appropriate information and send it back to the client.

Peer-to-Peer networks are, on the contrary, mostly or completely decentralized. All computers are

connected with each other in the way, so that they can access the information and share the resources

stored on multiple hosts (peers) [JFK12], [Wikd]. Each and every peer is a client and a server at the

same time which makes it possible for the computers to directly exchange the information with each

1



Chapter 1 Introduction

other even if one of the peers, holding some piece of the information needed, is offline at the moment.

Though client-server type of computer network organisation makes it easy to store and back up in-

formation, P2P networks gain in popularity in the last years. Lots of traffic-intensive applications

are based on P2P architecture, including file sharing (e.g., BitTorrent) and Internet Telephony (e.g.,

Skype) [JFK12]. The main reason for such popularity is that client-server computer networks are

prone to congestions. If a server crashes, the whole network will go down, as it happened, for in-

stance, in the USA on October, 21 2016. On that day much of the American Internet was brought

down as a result of an DDOS attack on the Dyn servers [Woo]. The P2P networks are, on the con-

trary, more reliable. If you are, for example, downloading a file and the peer distributing it suddenly

goes offline, there are other peers distributing the same file.

The P2P overlays make use of the numerous protocols and routing algorithms, such as Chord, Nap-

ster, Kademlia or Gnutella.

In recent years, mobile communications are gaining in popularity. Cell phones have changed the

lifestyle of a whole generation. Nowadays, it is almost impossible to imagine our life without Face-

book, Twitter or other social networks. Almost everyone wants to share the information with their

friends and relatives as fast as possible, which requires an immidiate Internet access and appropri-

ate location-based technologies on the smartphones. And as current devices are equipped with GPS,

position-aware applications are conquering the market with the speed of light [LYH13]. This allows

users to share not only small pieces of information, but also large size files, such as high resolu-

tion pictures and short videos [GRS+13]. Such popularity results in a variety of approaches for

location-aware search, such as the hierarchical tree-based concept or the approach of space filling

curves [KW06a], [KW06b], [GSR+12]. The main disadvantages of these approaches are either

load-balancing and scalability problems or the impossibility to preserve the directionality and locality

[GSR+12]. In order to overcome these difficulties, a robust P2P overlay called Geodemlia was devel-

oped.

The goal of this bachelor thesis is to implement this protocol and to test its functionality. While

writing this thesis, the PeerfactSim.KOM simulator was used, which made it possible to generate, test

and analyse the overlay.

2
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1.2 Structure of the Thesis

In Chapter 1 the motivation for this thesis, as well as its structure are presented.

Chapter 2 includes the description of the PeerfactSim.KOM simulator used for the simulations. The

main properties of such protocols as Chord and Kademlia are also shown in this chapter. Considera-

tions about basic modules used for applications and overlays are presented at the end of this chapter.

In Chapter 3 theoretical concepts of the Geodemlia protocol are given. The main operations in

Geodemlia are also presented in this chapter.

The implementation of the Geodemlia protocol in Java is given in Chapter 4.

Chapter 5 presents the data to be analysed. The evaluation of this data is also given in this chap-

ter.

Finally, a short summary, as well as the ideas for future work are presented in Chapter 6.
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Chapter 2

PeerfactSim.KOM And Basic P2P Routing

Protocols

The first step towards an implementation of the proposed protocol is to understand, what makes

Geodemlia differ from other existing protocols. It is also necessary to understand the functionality

of the simulator, the protocol will be developed under. For this reason, this chapter provides a brief

overview of the functionality of basic P2P routing protocols, such as Chord and Kademlia. The main

principles and properties of the PeerfactSim.KOM simulator, used to generate the overlays, are also

described in this chapter. Conclusively, the main basic modules, that can be found in each overlay, are

presented.

2.1 PeerfactSim.KOM

PeerfactSim.KOM has been developed in Java by the working group of Prof. Dr.-Ing. Ralf Steinmetz at

the TU Darmstadt at the Multimedia Communications Lab (KOM) [Pee] in order to test and analyse

the dependencies in large scale P2P networks. This simulator is not a static project and can be further

extended by other working groups, as it has been done, for instance, at the University of Düsseldorf

(HHU) by the working group of Jun.-Prof. Dr.-Ing. Kalman Graffi or at the University of Paderborn

(UPB) by Thim Strothmann and Matthias Feldotto [Pee].

As it is always very difficult to foresee the future, the main challenge for the developers of Peer-

factSim.KOM was to create a simulator that could work independently from the network architecture

5
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and could fit the wide spectrum of the use cases [Ste11]. The simulator consists of several layers,

each of which can be set up by the user. This layer structure is presented in Figure 2.1.

Figure 2.1: Structure of PeerfactSim.KOM [Pee].

The overlay can be started and manipulated through two types of files: an XML-file, as well as a DAT-

file. In the XML-file the basic structure of the overlay is defined, as well as parameters, such as churn

rate or the number of peers per region, can be set. The DAT-file includes commands that come from

the user and can be directly called out from the protocol code.

As mentioned in the paper written by Matthias Feldotto and Kalman Graffi, this simulator is event-

driven. This means that all events “[...] follow a timeline which assures sequential processing”

[FG13]. In this case, events are represented as operations that can be generated either by the simulator

itself or through the DAT-file. For each event it is possible to set the start time and the delay, which

enables a much easier management of the operations. It is also possible to use and analyse different

protocols at the same time, as “[...] the operations on various layers are decoupled” [FG13].

6
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2.2 Chord

Chord is one of the basic high-structured protocols for P2P networks. It was developed at the MIT

Laboratory of Computer Science and introduced in 2001 by Ion Stoica, Robert Morris, David Karger,

M. Frans Kaashoek and Hari Balakrishan [Wika].

This protocol is one of the basic distributed hash tables (DHT), that is why it provides just one oper-

ation: mapping a key to a node. In order to map the keys to the nodes, a consistent hashing is used

[SMK+01]. For load-balancing and scalability purposes, each peer stores information about just a

fixed number of peers.

In this overlay the nodes are arranged on the flat address space so that they create a circle. Instead

of IP addresses, m-bit identifiers, created by using the SHA-1 hash function, are used. There are at

most 2m nodes with the identifiers ranging from 0 to 2m−1. The value of m should be, though, large

enough in order to avoid collisions. Each node has only the information about its successor and its

predecessor and is responsible for an area between its ID and the ID of its predecessor [TU]. A

successor is a node that is next in the circle in a clockwise-direction. Under predecessor a node that

lies next in the counter-clockwise direction is meant.

Each node has short cuts (fingers) to other nodes further in the ring that are stored in the finger tables.

Such tables have up to m entries where the successors((n+2i−1) mod 2m) are stored. The first entry

in a finger table is always an immediate successor. If a key k must be found, a node passes a response

message to the nearest successor or predecessor of this key in its finger table until the key is found.

Such routing algorithm helps to avoid the linear search time as the search is done in O(logN) steps.

An example of the nodes organisation and finger tables in Chord is shown in Figure 2.2.

2.3 Kademlia

Kademlia is a robust P2P distributed hash table that minimizes the number of messages sent between

nodes and avoids timeout delays [MM]. This protocol was developed by Petar Maymounkov and

David Mazières in 2002. Due to its decentralized structure, Kademlia is much more resistant against

the DoS attacks than many other protocols, since the overlay recovers itself around the nodes that had

been flooded [Wikc].

Equally to Chord, Kademlia makes use of the consistent hashing using the SHA-1 function to map a

key to a value. Each node has a 160-bit node ID that is used to locate values. The ID number must be

7
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Figure 2.2: An example of a finger table and organisation of nodes in Chord (Adapted from [Wika]).

unique for every node and can be generated by hashing the IP address of a node or just by generating a

random number [TU]. Using the node ID, it is possible to locate some value to this node. In contrast

to other protocols, Kademlia uses the same routing algorithm from start to the end, in order to locate

a node near a particular ID [MM]. Each peer stores the data whose IDs are next to its own ID. For

the distance calculation the XOR metric is used. The XOR function is symmetric, which means that

a distance from node A to node B is the same as the distance from node B to node A. Such property

allows the system to learn useful routing information from the received messages, so that the peers

participating in the overlay receive the queries from exactly the same distribution of nodes in their

routing tables [MM].

The routing table in Kademlia is represented as a binary tree whose leaves are nodes in the over-

lay. The position of a node in the routing table is determined by the shortest unique prefix of its ID. In

Figure 2.3, the position of a node 0011, as well as the division into three successively lower subtrees

(circled areas) are represented. The first subtree is as large as the half of the binary tree, the second

one is as large as the half of the remaining tree and so on. Such structure ensures that every node

knows of at least one node in each of its subtrees and can locate further nodes in the routing table

[MM]. This allows a peer to search for a node in O(logN) steps.

2.4 Basic Overlay Modules

In Section 2.2 and Section 2.3 various approaches used in different overlay designs were intro-

duced. Before discussing in more detail the main functionality principles and proposing a practical

8



2.4 Basic Overlay Modules

Figure 2.3: Position of the node 0011 in the routing table (Adapted from [MM]).

implementation of Geodemlia, observations concerning the commonalities of all overlays should be

pointed out. Despite of the different routing table structures, every protocol follows some common

rules.

In the structure of each and every protocol, some small similar modules can be found. As the proposed

protocol has to be implemented in a modular way, the main types of these modules should be defined.

Some modules ensure the stabilization processes in the overlays (Updates = UP). Under stabiliza-

tion, operations such as periodic updates, or join and leave procedures are meant. The Routing algo-

rithm module (RA) implements the routing of the information. The Routing table module (RT) sorts

the node’s contacts according to some fixed algorithm and stores these contacts in the routing table.

Some of these modules are passive as they do nothing else than just providing some place for infor-

mation storage. The example of such modules is the RT module: the contacts are sorted and stored

on a rule-based basis and no tasks are scheduled here. RA and UP belong to the active modules. They

send requests and receive response messages and can be used by other modules.

Such a module-based structure of the overlay has a lot of advantages. If an overlay or an applica-

tion is implemented in small modules, the developers can remove, exchange or extend them with an

astonishing simplicity. These modules can be easily stopped and started again in order to analyse the

reaction of the overlay on such events.
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Chapter 3

Geodemlia: Main Functionality Principles

After providing in Chapter 2 some pieces of information about such widely used protocols as Kadem-

lia and Chord and presenting the PeerfactSim.KOM simulator, the next logical step towards the prac-

tical implementation of Geodemlia is to explain the basic principles and the main operations in this

protocol. For this purpose, a brief overview of the main idea and the basic operations in this location-

based routing protocol are introduced in this chapter.

3.1 Main Concept of the Protocol

In comparison to Chord or Kademlia, Geodemlia is supposed to provide an effective location-based

search using a search tag. This protocol allows to maintain locality and directionality, which means

that neighbored peers store the neighbored location-based information and that the mapping of this

information onto peers preserves the orientation in the multidimensional space [GSR+12], [KSS09].

The design of the protocol was inspired by the Kademlia protocol that was presented in Section 2.3.

Such design makes Geodemlia protocol robust, which means that the performance of the overlay does

not drop below a fixed threshold even if the churn rate is very high. The position-aware informa-

tion gets periodically replicated onto k nodes that are nearest to the location that this information is

associated with [GSR+12].

The main idea of Geodemlia is that each and every point has its own geographical coordinates

lp = (φ ,ψ), where φ ∈ [−180◦,180◦] and ψ ∈ [−90◦,90◦] [GSR+12]. Under this assumption and

because most localization techniques use spherical coordinates, the peers are located on the sphere

representing the earth. Each peer determines its own coordinates (longitude and latitude) using GPS,
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IP location service [Geo] or other techniques. As in Chord and Kademlia, each and every node in

Geodemlia has not only an IP address but also an identifier i ∈ [0,2160− 1]. However this identifier

does not prove to be an efficient tool, as it consumes memory space and does not demonstrate any

advantages.

The distance d(l1, l2) between two nodes with coordinates l1 = (φ1,ψ1) and l1 = (φ2,ψ2) can be

computed using the Haversine formula [Hij16], [CN13], as shown below:

d(l1, l2) = d(φ1,ψ1,φ2,ψ2) = 2r · arcsin(
√

a(φ1,φ2)+b(φ1,φ2) ·a(ψ1,ψ2)), (3.1)

where

a(φ1,φ2) = sin2(
φ2−φ1

2
) [GSR+12] (3.2)

and

b(φ1,φ2) = cos(φ1)cos(φ2) [GSR+12]. (3.3)

In Geodemlia it is possible to store data objects and tags that are associated with fixed coordinates.

The search can be carried out in a circular area within some fixed radius, but other forms of the search

area are also allowed.

Geodemlia provides three main operations: FIND_NODES(ls,k,b), AREA_SEARCH(ls,r,s,b) and

STORE(o, lo). The structure of the routing table in Geodemlia, as well as these three operations are

described in the next sections.

3.2 Structure of the Routing Table

One of the crucial differences between Geodemlia and Chord is the organisation of the routing table.

As mentioned in the paper written by Christian Gross and Dominik Stingl, each peer divides the ge-

ographical space in n directions j ∈ [0,n−1] based on the bearing angle θ ∈ [−π,π] clockwise from

north to south [GSR+12], as shown in Figure 3.1. The number of directions is usually set to 4, but

any other number is also allowed.

For determining in which direction j ∈ J a given peer lies, a bearing angle θ using the formula that is

shown below must be calculated:

θ = arctan2(c,d), (3.4)
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where

c = sin(φq−φp) · cos(ψq) [GSR+12] (3.5)

and

d = cos(ψp) · sin(ψq)− sin(ψp) · cos(ψq) · cos(φq−φp) [GSR+12] (3.6)

with p and q being two peers.

Having the bearing angle, the direction j can be computed using the formula below [GSR+12]:

j = b [(θ +2π) mod 2π] ·n
2π

c. (3.7)

Each direction is divided into buckets K j
i in which, same as in Kademlia, the information about a

fixed number of peers is stored [MM]. This information includes the geographical coordinates of

the peer, the peer ID and the transport layer information, such as an IP address and a port. The size

of the geographical area covered by a bucket grows exponentially with the distance of the bucket.

As a result, fine-grained information about the nodes in the neighborhood and only scarse pieces of

information about the nodes, that are further away, will be stored. Such routing table organisation

ensures the probability of peer p to be a part of the peer q’s routing table to be inversely proportional

to the distance between these two nodes, so the routing converges within a logarithmic amount of

steps [AAG+].

Figure 3.1: An example of how a routing table with 4 possible directions in Geodemlia can look like
[GSR+12].
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3.3 FIND_NODES(ls,k,b)

The FIND_NODES(ls,k,b) request is the basic operation in Geodemlia, because other operations,

such as STORE(o, lo) and AREA_SEARCH(ls,r,s,b), as well as the updating mechanism, internally

utilize the functionality of this method. This query includes the number of peers k that have to be

returned, the location ls, and the bloom filter b computed out of the IDs of the already found peers. If

this request has been received, k nearest peers to the given location will be returned.

This operation is performed in the following way. If a peer p wants to find k nearest nodes, it first

initializes a list C, where contacts to be queried will be stored, and checks its routing table in order to

find k closest nodes to the location ls. The found contacts are stored in the list C and the bloom filter

b is computed from the IDs of these peers. After that, a fixed number of nodes from the list C will be

contacted. The peers receiving this request do the same thing as the first node and search in its routing

table for k nearest peers that still were not included in the bloom filter. Then the list of the newly

found nodes is sent back to the querying node which will be merged with the contacts from the list

C. From this list, a new bloom filter is calculated and sent as a part of a new FIND_NODES(ls,k,b)

request to the still not contacted peers. This procedure will be repeated as many times as necessary

until no further nodes closer to the location ls can be found.

3.4 STORE(o, lo)

The STORE(o, lo) request has the following parameters: o - object to be stored and the location lo. If

a node wants to store an object o in Geodemlia, it first must find k closest nodes with respect to the

given location lo. Afterwards, every peer from the set of k peers receives the command to store the

object o on them.

3.5 AREA_SEARCH(ls,r,s,b)

In contrast to Kademlia, Geodemlia provides a method for searching for the position-aware informa-

tion within some fixed radius. The AREA_SEARCH(ls,r,s,b) request includes a search location ls,

a search tag s, radius r within which the search must be proceeded, and the bloom filter b. During

the AREA_SEARCH(ls,r,s,b) process, two sets of peers must be found. The first set includes the

nodes within the search radius r. The second set includes the peers that lie outside the query area but

remain nearest to it. As a result, if the query area is too small, it is still possible to find the data objects.
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The AREA_SEARCH(ls,r,s,b) operation is performed as follows. If a peer p wants to issue this

request, it uses the FIND_NODES(ls,k,b) method. After the k nearest nodes were found, the peer p

initializes two lists: a list C, where the peers to be contacted will be stored, and a list C, where the

peers will be stored, that have not yet been contacted. The found k peers are stored in list C, from

which the bloom filter is calculated. Afterwards, all peers in the list C are contacted. After receiving

AREA_SEARCH(ls,r,s,b) request, the nodes check first whether they are inside the query area or not.

If so, the stored objects will be included in the response message, as well as the additional k peers

that are closest to the search area. After receiving the reply message, the peer p first checks, whether

the newly found nodes have already been included to the list C. The nodes, that match the nodes in

the list C, will be removed, otherwise, they will be added to the list C. The newly found objects will

be stored in a result list. After that, the peer, that sent the response, is removed from the list C and

added to the list of already contacted nodes. After that, a new bloom filter is calculated. Afterwards,

the further peers in the list C are contacted until the list C is empty [GSR+12].

3.6 Process of Entering And Leaving the Overlay

In order to join an overlay, a peer p has to define its geographical coordinates and then contact a

bootstrap node, it knows about. Afterwards, the bootstrap node is added to the routing table of the

peer p. After that, the peer p sends the FIND_NODES(ls,k,b) request to it. In this way, the peer p

fills its routing table. Before a newly found contact is added to the routing table, the following steps

should be done: (1) peer p should check whether a bucket, to which a newly found contact belongs,

has less then k peers or not. (2) If there are less than k peers in the bucket, then a new contact is added

to the end of the bucket. If the bucket is already full, then the least recently contacted peer should be

found and contacted via a ping message. (3) If this peer responds to the query, then it is removed from

the bucket and added to the end of the same bucket, and a newly found peer is added to the cache. (4)

If this peer fails to reply, then it is removed from the bucket and a newly found peer is added to the

end of the same bucket. This mechanism allows Geodemlia to update the routing information in such

a way that the least recently contacted peers are at the beginning and the newly found peers are at the

end of the bucket.

While leaving the overlay, it is not necessary to notify other nodes about this event, as the absence of

this node will soon be discovered by the neighboring peers.
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3.7 Updating the Routing Table

A peer p updates its routing table whenever it finds a new peer as a result of the requests, or by

periodically querying for a random location. In this case, the steps from (1) to (4) from the previous

section are carried out.

3.8 Modular Structure of Geodemlia

In the sections above we described the core procedures carried out by Geodemlia. Given this knowl-

edge and the information about the modules presented in Section 2.4 of Chapter 2, the next step

towards an implemention of the protocol is by defining first theoretically, which operation belongs to

which module. This will help by planning the structure of the implementation.

Firstly, the active operations should be introduced. The process of entering the overlay, as well as

the process of updating the routing table are active operations and they are a part of the UP module.

Operations, such as FIND_NODES(ls,k,b) and AREA_SEARCH(ls,r,s,b), are also active, but they

don’t have any influence on the periodical updates of the routing table. These operations provide

some services, that can be called by other modules. That is why they belong to the RA module.

The routing table also represents a module, but a passive one, as it just stores the contacts follow-

ing some routing principle.

The STORE(o, lo) operation and cache, in which the objects and the newly found nodes can be stored,

also belong to passive modules.

Chapter 4 will show, whether an attempt to follow this modular division was successful or whether it

was needed to change the notion of the modular overlay structure.
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Chapter 4

Geodemlia: Implementation in Java

In the previous chapter, the theoretical understanding of main functionality principles of Geodemlia,

as well as the modular structure of this protocol, were described. Using this knowledge, the next step

can be done by introducing the main modules used for implementing the Geodemlia protocol.

4.1 Geodemlia: Basic Modules

For each overlay the ability to ensure the communication between hosts, to react on the connectiv-

ity changes and to handle the events coming from the inside and outside is very important. For the

implemetation of Geodemlia, three main basic modules can be defined: TransceiverModule, NetCon-

nectivityModule and TaskSchedulerModule.

The NetConnectivityModule provides methods to react on the churn property of the overlay. It is

shown in Listing 4.1 and Listing 4.2 how method references are used by this module in order to

specify the methods called, if a node goes on- or offline.

1 /**Create new modules: transceiverModule for sending and receiving the messages,

2 * netConnectivityModule for reacting on the connectivity changes,

3 **/ TaskSchedulerModule for scheduling the events.

4
5 this.transceiverModule = new TransceiverModule(host, this.port);

6 this.netConnectivityModule = transceiverModule.getNetConnectivityModule();

7 this.taskSchedulerModule = new TaskSchedulerModule(host, this.netConnectivityModule);

8 this.netConnectivityModule.addNetConnectivityListener(this::online,this::offline);

Listing 4.1: Definition of the methods called if the connectivity of a node changes.
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1 // Called if a node goes online

2 private void online(){

3
4 // If a node goes offline, it will be removed from the bootstrap manager

5 GeoBootstrapManager.registerNode(this);

6 GeoAnalyzer.registerNode(this.contact.getNodeTransInfo());

7 }

8
9 // Called if a node goes offline

10 private void offline(){

11
12 // If a node goes offline, it will be removed from the bootstrap manager

13 GeoBootstrapManager.removeNode(this);

14 GeoAnalyzer.unregisterNode(this.contact.getNodeTransInfo());

15 }

Listing 4.2: Methods called if the connectivity of a node changes.

The TransceiverModule ensures an efficient communication between peers as it is responsible for

sending and receiving the messages. This module reacts on connectivity changes by stopping all ac-

tions, if a node goes offline. It can also be deactivated, if needed. Same as the NetConnectivityModule,

the TransceiverModule makes use of Java 8. In Listing 4.3 is shown, how this module uses method

references to define which method should be called after receiving a message and specifies the type

of the messages the overlay is listening to.

1 // Define the type of the messages to be listened to and the methods that should be called,

2 // if some particular message has been received

3 this.transceiverModule.addMessageListener(this::receiveFindKNodesRequest,

4 FindKNodesRequest.class);

5 this.transceiverModule.addMessageListener(this::receiveFindKNodesReply,

6 FindKNodesReply.class);

7 this.transceiverModule.addMessageListener(this::receiveAreaSearchRequest,

8 AreaSearchRequest.class);

9 this.transceiverModule.addMessageListener(this::receiveAreaSearchReply,

10 AreaSearchReply.class);

11 this.transceiverModule.addMessageListener(this::receivePingMessage, GeoPing.class);

12 this.transceiverModule.addMessageListener(this::receiveStoreRequest, StoreRequest.class);

Listing 4.3: Definition of the main message types the overlay is listening to and the functions called

after receiving these messages.

This module provides the following methods: sendUdp(), sendAndWaitUdp(), sendReplyUdp().

sendUdp() enables sending a message to a specified receiver. sendAndWaitUdp() can be used to

send a message and to listen to a response message. It is also possible to set the methods that will

be called, if a message has been successfully sent or if the process failed, as well as the number of

retransmissions and the delay interval. sendReplyUdp() ensures the sending of a reply message. The

usage of these methods is represented in Section 4.2.2.
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The TaskSchedulerModule provides methods to schedule the tasks. Equally to the TransceiverModule,

this module stops all operations, if a node goes offline.

4.2 Other Modules Used in the Implementation of Geodemlia

In this section, the main classes that were developed are described, as well as the structure of some

methods is presented. Selected classes are described in details. Over the rest of the classes just a brief

overview is given. In Figure 4.1 the structure of this implementation is presented.

Figure 4.1: Geodemlia: the structure of the implementation.

Every overlay or application needs a tool that installs the applications on the hosts so that it can run.

The GeoFactory fulfills this task by creating an instance of the overlay on a given node.

The BootstrapManager represents some kind of a container where all possible bootstrap nodes can

be added, stored or removed. The registerNode()-method is used to add a node to the BootstrapMan-
ager. To remove a node from the BootstrapManager use the unregisterNode().
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The GeoNode class creates an instance of a node and serves as an interface between the XML-file

and the inner structure of the overlay.

The GeoContact stores the TransLayer information, such as IP address and ID of the node, as well as

the geographical coordinates of the node. In this implementation, the IDs are not used because they

did not prove to be an efficient tool, as it has already been mentioned in Chapter 3. To get access to

the IP address and port use getNodeTransInfo()-method. The getX() and getY()-methods are used to

extract the node’s coordinates.

The FindKNodesRequest class creates a request message used by the findKnearestNodes()-method.

The FindKNodesReply class creates a reply message used by the findKnearestNodes()-method.

The AreaSearchRequest class creates a request message used by the areaSearch()-method. The

AreaSearchReply class creates a reply message used by the areaSearch()-method.

The StoreRequest class creates a request message used by the store()-method.

In order to represent a storage, where the objects as well as the newly found nodes could be stored,

the GeoStorage class was created.

The GeoRoutingTable class represents a container for storing the contacts of the nodes. For its

implementation an ArrayList was used. Listing 4.4 presents the usage of the ArrayList. The outer list

represents the number of directions, the middle list represents the number of buckets, and the inner

list represents the position of a contact in some particular bucket. ArrayList was chosen for this im-

plementation as it preserves the order of insertion of the elements. This plays an important role for the

process of updating the routing table described in Section 3.6 and Section 3.7. The nodes, that take up

the first positions, are the oldest nodes, that joined the overlay. The nodes at the end of the bucket are

the nodes, that newly joined the network. This property of the ArrayList saves us some space, because

no time stamps for every node must be created.

1 private ArrayList<ArrayList<ArrayList<GeoContact>>> routingTable;

2 private int numberOfDirections;

3 private int numberOfBuckets;

4
5 public GeoRoutingTable(GeoContact contact, int numberOfBuckets, int numberOfDirections){

6 this.contact = contact;

7 this.numberOfBuckets = numberOfBuckets;

8 this.numberOfDirections = numberOfDirections;

9
10 routingTable = new ArrayList<>();

11 prepareRoutingTable();

12 }

13
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14 /**
15 * Initialise the routing table

16 */

17 private void prepareRoutingTable(){

18 for(int i = 0; i < this.numberOfDirections; i++){

19 routingTable.add(new ArrayList<ArrayList<GeoContact>>());

20
21 for(int j = 0; j < this.numberOfBuckets; j++){

22 routingTable.get(i).add(new ArrayList<GeoContact>());

23 }

24 }

25 }

Listing 4.4: Geodemlia: ArrayList used as a routing table.

The main methods of this class are: addNode() which adds a contact to the routing table, removeN-

ode() which removes a node from the routing table, getRoutingTable() which returns the routing table

and findKNearestNodes() which returns the k nearest nodes to a given location and is described below

in Section 4.2.2.

For maintaining the periodic operations responsible for updating the routing table the CheckOnlineS-
tatusOperation class was developed. The main methods of this class are: startCheckOnlineStatus()

which allows the procedure to be called from the outside, checkOnlineStatus() which is called, if the

operation starts, and stopCheckOnlineStatus() which stops an operation.

The GeoMaintenance class is the most important active class in this implementation as it maintains

the most import functions of the overlay: join(), findKnodes(), areaSearch(), store().

4.2.1 findKNearestNodes()-method

This method can be either called from the outside or utilized internally as a part of the join()-, ar-

eaSearch()- or store()- procedures. As it has already been said in Section 4.2, this method returns a

list of the k nodes closest to a specific location. In case of joining the overlay, these coordinates are

the location of the node joining the network. The implementation of this method is shown in Listing

4.5.

1 /**
2 * Return the list of k nearest nodes

3 *
4 * @param node

5 * @param x

6 * @param y

7 * @param k

8 * @return

9 */
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10 public ArrayList<GeoContact> getKNearestNodes(GeoContact node,

11 GeoMaintenance maintenance,

12 long x,

13 long y,

14 int k){

15
16 GeoAnalyzer.incFindNodesOperations();

17 GeoAnalyzer.incOperations();

18
19 ArrayList<GeoContact> kNearestNodes = new ArrayList<>();

20 HashMap<Number, ArrayList<GeoContact>> distanceList = new LinkedHashMap<>();

21
22 // Compute the direction and the bucket, in which this node could belong,

23 // in order to find the nearest nodes

24 double d = maintenance.getDistance(node, x, y);

25 int bucket = maintenance.getBucket(maintenance.maxX, maintenance.maxY, d);

26 int dir = maintenance.getDirection(node, x, y);

27
28 // If a node is inside the routing table area

29 if(bucket != -1){

30 // Iterate over all nodes in a bucket and calculate the distances

31 // to (x, y)-coordinates

32 for(int m = 0; m < routingTable.get(dir).get(bucket).size(); m++){

33 ArrayList<GeoContact> nodes = new ArrayList<GeoContact>();

34 double dd = maintenance.getDistance(this.routingTable.get(dir).get(bucket).

35 get(m), x, y);

36
37 if(distanceList.containsKey(dd) == true)

38 distanceList.get(dd).add(routingTable.get(dir).get(bucket).get(m));

39 else{

40 nodes.add(routingTable.get(dir).get(bucket).get(m));

41 distanceList.put(dd, nodes);

42 }

43 }

44 }

45 // Sort the distances

46 List list = new ArrayList(distanceList.keySet());

47 Collections.sort(list);

48
49 // Find the first k nodes with the smallest distances

50 for(int i = 0; i < list.size(); i++){

51 for(int j = 0; j < distanceList.get(list.get(i)).size(); j++){

52 if(kNearestNodes.size() < k){

53 kNearestNodes.add(distanceList.get(list.get(i)).get(j));

54 }

55 }

56 }

57 return kNearestNodes;

58 }

Listing 4.5: Geodemlia: findKNearestNodes()-method.

First of all, the direction in which the given coordinates are located should be determined, because

just the nodes from the same direction can be considered to be the closest ones. After that, the right

22



4.2 Other Modules Used in the Implementation of Geodemlia

bucket is calculated. Thereafter, the distances between this location and all nodes from the calculated

bucket are computed. The results of this calculation are stored in the LinkedHashMap, where the keys

are the distances and the values are the lists of the nodes. In this implementation, the LinkedHashMap

is used instead of the HashMap in order to ensure the output to be deterministic. It is very important

as we have to run the simulation a number of times and ensure that the data remains the same.

To find the k nearest nodes, the distances first need to be sorted in the ascending order. As it is

impossible to sort the keys of the HashMap, a List was created and filled with the key set of the

LinkedHashMap.After that, the sort()-method which can be found in the Collections package was

used. Thereafter, the iteratation over the first k distances in the sorted list is done and the nodes asso-

ciated to these keys are added to the kNearestNodes. The kNearestNodes list to be returned is of type

ArrayList because the order of the insertion must be preserved to make the output deterministic, as in

case of the LinkedHashMap described above.

4.2.2 Join/Leave the Overlay

In this section the join/leave procedure in Geodemlia is described. The implementation of this opera-

tion is shown in Listing 4.6.
1 /**
2 * Join the network

3 *
4 * @param contact

5 * @param node

6 */

7 public void join(){

8 // Get the random bootstrap node in order to get access to the overlay

9 GeoContact bootstrapNode = GeoBootstrapManager.getRandomNode(this.node);

10
11 // Register in a bootstrap manager

12 GeoBootstrapManager.registerNode(node);

13
14 isOnline = true;

15
16 // Register node in the analyzer

17 EduAnalyzer.registerNode(this.contact.getNodeTransInfo());

18
19 if (bootstrapNode == null){

20 firstNode = true;

21 }else{

22 // If this is not the first node in the overlay, then add the bootstrap node to

the routing table

23 createRoutingTable(bootstrapNode);

24
25 // Add the bootstrap node to the contact list

26 contactList = new ArrayList<>();

27 contactList.add(bootstrapNode);
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28
29 // Compute the bloom filter

30 bloomFilter = new LinkedHashSet<>();

31 bloomFilter = computeBloomFilter(contactList);

32
33 // Send findKnearestNodes-request to the bootstrap node

34 sendRequest(this.contact, bootstrapNode, bloomFilter,

35 this.node.getGeoContact().getX(),

36 this.node.getGeoContact().getY(), K);

37 }

38 }

Listing 4.6: Geodemlia: join()-method.

If a node joins the Geodemlia overlay, it first needs to contact a bootstrap node it knows about to

learn about new peers and to fill its routing table. If this node is the first node in the network, then

it will be registered in the BootstrapManager and a firstNode variable is set to true. Otherwise the

BootstrapManager generates a random bootstrap node and returns it to the node that has just joined the

overlay. As it has been already mentioned in Chapter 3, if some particular node goes offline, it does not

inform other nodes about its abscence. The offline node is just removed from the BootstrapManager

as it can be seen in Figure 4.2, so that new nodes do not receive the information about an inactive

bootstrap node. After joining the overlay and getting the IP address of the bootstrap node, the node

contacts the bootstrap node by using the sendAndWaitUdp()-method described in Section 4.1 and

represented in Listing 4.7. This method creates the instance of the FindKNodesRequest class and

sends the calculated bloomfilter as well as its own geographical coordinates with this message. We

also specify, what happens, if the message is successfully sent, or if the process failed.

1 /**
2 * Send k nearest nodes request

3 *
4 * @param sender

5 * @param receiver

6 * @param bloomFilter

7 * @param x

8 * @param y

9 * @param k

10 */

11 private void sendRequest(GeoContact sender, GeoContact receiver,

12 Set<GeoContact> bloomFilter,

13 long x,

14 long y,

15 int k){

16
17 // Set the message ID

18 kNodesMessageID += 1;

19 this.transceiverModule.sendAndWaitUdp(new FindKNodesRequest(contact,

20 receiver, kNodesMessageID,

21 bloomFilter, x, y, k),

22 receiver.getNodeTransInfo(),

23 3, 10*Simulator.SECOND_UNIT,
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24 this::sendSuccessful,

25 this::sendFailed);

26 }

Listing 4.7: Geodemlia: sendAndWait()-method.

After the bootstrap node receives the request message, the receiveFindKNodesRequest-method is

called. This method calls the findKNearestNodes-method of the GeoRoutingTable class. In case,

if this bootstrap node was the first node in the overlay and the firstNode variable was set to true,

it computes the direction to the sender of the message and defines, whether this node is inside the

bucket area or not. If this node lies inside the area, its contact will be added to the routing table of the

bootstrap node and the firstNode variable will be set to false. This ensures that the routing table of the

first node in the network will not stay empty. After the kNearestNodes list is sent back to the sender,

the receiveFindKNodesReply is called. In this method a new bloom filter is computed, the newly

found contacts are added to the list of nodes to be contacted, the routing table is updated. After the

old contact list was merged with the newly received contacts, the request messages to the nodes, that

has not already been contacted, are sent. This procedure lasts until no new nodes can be found.

4.2.3 CheckOnlineStatusOperation

The methods of this class are used to update the routing table. For this purpose, a random coordinates

must be generated. After that, the node performes the findKnearestNodes()-operation. In Listing 4.8,

a snipet of the CheckOnlineStatusOperation class code is presented. The full code can be seen in

the implementation recorded on the disc.

1 // This method is called if the operation starts

2 private void checkOnlineStatus(long interval){

3
4 if(!routingTable.getRoutingTable().isEmpty()){

5 update = true;

6
7 long x = (long)(Simulator.getRandom().nextDouble()*this.node.getMaxX());

8 long y = (long)(Simulator.getRandom().nextDouble()*this.node.getMaxY());

9
10 contacts = new ArrayList<>();

11 bloom = new LinkedHashSet<>();

12
13 contacts = this.routingTable.getKNearestNodes(this.ownContact, maintenance,

14 x, y, (int)this.node.getK());

15
16 this.transceiverModule.sendAndWaitUdp(new UpdateMessageRequest(this.ownContact,

17 n, messageID, bloom, x, y,

18 (int)this.node.getK()), n.getNodeTransInfo()

, 2,

19 2*Simulator.SECOND_UNIT,

20 this::receiveUpdateRequest,
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21 this::updateRequestFailed);

22
23 this.taskSchedulerModule.schedule(() -> checkOnlineStatus(interval), interval);

24 }

25 }

Listing 4.8: Periodic operations in Geodemlia (part 1).

As it is not the same to randomly generate the numbers in the real world implementations and in the

PeerfactSim.KOM simulator, the Simulator.getRandom()-method was chosen in order to produce ran-

dom coordinates. This ensures the generatation of the results that are repeatable for every simulation.

After k nodes were found, the communication to these nodes via the sendAndWaitUdp()-method of

the TransceiverModule is established and the CheckOnlineStatusMessage is sent. In the sendAnd-

WaitUdp()-method, the checkOnlineStatusSuccess()-method is specified, which defines what has to be

done, if the receiver is still online, and the checkOnlineStatusFailed(), which specifies what to do, if

the receiver went offline. The use of these methods can be seen in Listing 4.9.

1 // Called if reply had been received

2 private void checkOnlineStatusSuccess(Message msg, TransInfo senderinfo, int commID){

3 GeoAnalyzer.incSuccessfulLookups();

4
5 GeoContact contactToAdd = this.routingTable.getRoutingTable().get(direction).

6 get(bucket).get(position);

7
8 if(position != this.routingTable.getRoutingTable().get(direction).

9 get(bucket).size()-1){

10 this.routingTable.removeNode(this.routingTable.getRoutingTable().

11 get(direction).get(bucket).get(position));

12 this.routingTable.addNode(direction, bucket, contactToAdd);

13 }

14 this.onSuccess.run();

15 }

16
17 // Called if no reply had been received

18 private void checkOnlineStatusFail(Message msg, TransInfo senderinfo, int commID){

19 GeoAnalyzer.incFailedLookups();

20 this.routingTable.removeNode(this.routingTable.getRoutingTable().get(direction).

21 get(bucket).get(position));

22 this.onFail.run();

23 }

Listing 4.9: Periodic operations in Geodemlia (part 2).

If the receiver is still online, than it is removed from its old position in the bucket by using the

removeNode() from the GeoRoutingTable class, and added to the end of the same bucket by means

of the addNode()-mehtod from the same class. If the receiver is offline, its contact is removed from

the bucket by using the method mentioned above.
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4.2 Other Modules Used in the Implementation of Geodemlia

4.2.4 Practical Modular Distribution of Classes

In Section 3.8 we defined theoretically, which operation belongs to which module. Now, having seen

the structure of our protocol implementation and the functionality principles of some methods, let us

define practically, which class belongs to which module.

The GeoMaintenance class is an active class that belongs to the UP module, as it maintains such

methods as the join() and startNewCheckOnlineStatusOperation(), which stabilize the overlay. To the

same module belongs the CheckOnlineStatusOperation class, in which the periodical lookups are

scheduled.

The findKNearestNodes() and areaSearch() methods maintain actually the routing algorithm. For

this reason, they belong to the RA module.

The GeoRoutingTable class belongs to the RT module, as it adds, stores and removes contacts as

well as searches for specific contacts in the routing table.

The GeoStorage class also represents a passive module used just for the storing purposes.

All other classes, such as the classes, that create an instance of a request or a reply message, be-

long to the auxiliary modules that are used by the active modules, but are not of a vital importance.

So as it can be seen, we have succeeded to follow the modular distribution principles presented in

Chapter 3.
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Chapter 5

Evaluation of the Protocol

In this chapter, the evaluation of Geodemlia is given. The goal of this evaluation is to test the per-

formance and the scalability of the protocol’s implementation, as well as to analyse the influence of

some parameters on the performance of the protocol. In Section 5.1, the simulator setup for testing

purposes is described. Section 5.2 presents the results of the protocol tests.

5.1 Simulator Setup

5.1.1 Environmental Parameters

In order to test the Geodemlia implementation, first the environment should be set up. For this reason,

the parameters shown in Table 5.1 are used. They remain the same throughout the whole testing

Table 5.1: Environmental parameters.

Parameter Value

Region Germany
Size of Area 70 km x 70 km
Number of Peers 1000, 10000
Simulation Duration 180 min

process. The only parameter that varies is the number of peers: this number varies from 1000 to

10000 peers to show that the overlay functions by a sparse/dense peer distribution.
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5.1.2 System Parameters

The system parameters play an important role for the performance of the overlay. These parameters

are presented in Table 5.2. The parameters in bold are used for some tests as default ones. To ensure

Table 5.2: System parameters.

Parameter Value

Number of Buckets 2, 32, 64, 160
Bucket Size 2, 5, 10, 20
k Nearest Nodes 2, 4, 8, 16
Number of Directions 4
Number of Parallel Lookpus 4
Radius 10 km, 20 km, 30 km
Range of the Randomly Generated Tags 10, 100

that the overlay functions by every random peer distribution, the tests were made for 5 randomly

chosen seeds. All results presented below had been computed as an average for these 5 seeds. For

testing purposes, a fixed number of directions, as well as a fixed number of parallel lookups were

used.

5.1.3 Scenario

As already mentioned in Chapter 2, the DAT-file simulates a location-based application that generates

the commands, such as join(), store() or areaSearch(). However, in order to test a more complex

scenario, the DAT-file contains just the method calls without any parameters. After these methods

have been called, the according methods from the GeoNode class come into play. They generate the

following scenario.

The peers join the network in the first 60 minutes. In the next hour, the nodes perform the store()-

command by randomly generating the coordinates and numbers that serve as tags. The range of the

random numbers is varied from 10 to 100 tags to test the overlay with a sparse/medium file distribu-

tion. Each node performs 100 store()-actions using the generated coordinates and tags. All the tags

that are generated are stored in an ArrayList<String> tagList. After the store()-operation was per-

formed on all nodes, each node generates 30 random coordinates and takes 30 tags randomly found in

the tagList and starts 30 areaSearch()-requests. This procedure lasts for the next 60 minutes.

To simulate the dynamics of the real world, in which the nodes go not only online but also offline,
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the peer churn parameter is enabled in the XML-file. The churn generator uses the KAD churn model

described by Steiner et al. [SENB07]. The churn starts after the first 75 minutes of the simulation.

5.2 Results

In this section, the results of the testing process in form of the plotted graphs are presented. For

generating the graphs, the plotting tool called Gnuplot [gnu] was used.

5.2.1 Average Number of Operations vs. Average Number of
findKNearestNodes()-operations

As already mentioned in Chaper 3 and Chapter 4, the findKNearestNodes()-operation is considered

to be a core operation in Geodemlia. To prove this assumption, the number of operations, as well

as the number of findKNearestNodes()-operations was counted. The ratio between the number of

operations and the number of findKNearestNodes()-operations is shown in Figure 5.1 and Figure 5.2.

The plotted graphs show the average number of operations for 5 different seeds with the following

default parameters: number of buckets = 32, bucket size = 5, k = 8, radius = 20 km.
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Figure 5.1: Average number of operations vs. average number of findKNearestNodes()-operations for
tags = 10.

In the first two images, the number of possible tags was set to 10 and tested for 1000 and 10000 peers.

In the next two plots, the number of possible tags was set to 100 and tested for the same number of

peers.

Indeed, one can clearly see, that in the first 60 minutes of simulation only the findKNearestNodes()-

operation is conducted, because it is the only action needed to join the network. But even after this

step, the findKNearestNodes()-operation is executed almost all the time and takes almost the whole
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Figure 5.2: Average number of operations vs. average number of findKNearestNodes()-operations for
tags = 100.

part of the executed procedures.

One can also clearly recognize, that after the 75th-80th minute, the number of findKNearestNodes()-

operations, as well as the number of all operations decreases. This is the result of the active churn

process that starts after the first 75 minutes of the simulation.

5.2.2 Average Number of Hops vs. Average Number of Hops per
findKNearestNodes()-operation

The number of hops is one more proof of the assumption that the findKNearestNodes()-operation is

the basic procedure in Geodemlia. In Figure 5.3 and Figure 5.4, the ratio between the number of hops

and the number of hops per findKNearestNodes()-operation is represented. The parameters are the

same as in Section 5.2.1.
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Figure 5.3: Average number of hops vs. average number of hops per findKNearestNodes()-operation
for tags = 10.

The amount of hops is so large, that it is almost impossible to recognize the hops made while per-
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Figure 5.4: Average number of hops vs. average number of hops per findKNearestNodes()-operation
for tags = 100.

forming other operations. These graphics show that the findKNearestNodes()-operation extremely

dominates other operations in Geodemlia. Especially, in the first 60 minutes of joining the overlay.

These plots also show the influence of the churn rate on the overlay activity, because the number af all

hops and the number of hops per findKNearestNodes()-operation decreases after the first 75th - 80th

minutes.

5.2.3 Number of Buckets

As written in a paper by Christian Gross and Dominik Stingl [GSR+12], the number of buckets is

originally set to 160. Such bucket partition is supposed to improve the performance of the protocol.

However, by testing the overlay with 160 buckets, the unforeseen results came to light. In the next

sections, the graphics reveal an unexpected influence of the number of buckets on various overlay

events will be shown, as well as the according analysis will be given.

5.2.4 Number of Buckets vs. Number of Operations

In this section, the impact of the number of buckets on the number of operations is investigated. The

parameters were set as follows: number of possible tags = 10, size of buckets = 5, k = 8, radius = 20

km. The results of this investigation are shown in Figure 5.5 and Figure 5.6. These tests were made

for 1000 peers with 5 different seeds.

As the graphics show, an increase in the number of buckets leads to a decrease in the number of find-

KNearestNodes()-operations.
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Figure 5.5: Average number of operations vs. average number of findKNearestNodes()-operations for
1000 peers with the number of buckets set to 2 and 32.

These graphics also show the impact of the active churn rate, as the number of operations decreases

at about 75 - 80 minute of the simulation.
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Figure 5.6: Average number of operations vs. average number of findKNearestNodes()-operations for
1000 peers with the number of buckets set to 64 and 160.

The same effect can be recognized by testing the overlay with the number of peers set to 10000. The

Figures 5.7 and 5.8 demonstrate the results of this test.

There is only one explanation for this phenomenon. The larger the number of buckets, the larger is

the possibility, that these buckets are empty or that they contain a very small amount of contacts. In

order to imagine such situation, consider Figure 5.9.

The blue nodes belong to the routing table of the peer p while the orange marked nodes belong to the

routing table of the peer q. The nodes marked with both colours belong to the routing tables of both

nodes. From these graphics, it becomes clear, that if there are just a few nodes in the buckets and the

peers have just one or two contacts in common or no contacts at all, than it is very difficult to find the

nearest k nodes in order to perform other operations efficiently. This effect becomes even worse, if the
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Figure 5.7: Average number of operations vs. average number of findKNearestNodes()-operations for
10000 peers with the number of buckets set to 32 and 64.
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Figure 5.8: Average number of operations vs. average number of findKNearestNodes()-operations for
10000 peers with the number of buckets set to 160.

Figure 5.9: Possible routing table models. The original graphic was adopted from [GSR+12] and
changed for explanation purposes.
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peer distribution is sparse. So, even the number of peers set to 10000 in the 70 km x 70 km simulation

area seems to be too small for this overlay to fill all buckets.

5.2.5 Number of Buckets vs. Number of Lookups

The same effect can be revealed while investigating the impact of the number of buckets to the rate of

the successful lookups.

The usage of the term lookups in this particular part will be explained. Under lookups, all attemps to

update the routing table are meant. Such updates can be the result of the periodic update operations or

the result of the requests generated by the nodes. Under successful lookups, the cases in which some

node in a bucket appears to be online and needs to be removed from its old position and added to the

end of the bucket is meant.

In Figures 5.10 to 5.13, the average rate of the total lookups, as well as the average rate of successful

lookups for 5 seeds is presented while testing the overlay with the number of peers set to 1000. The

size of buckets and the value of k were set by default.
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Figure 5.10: Average number of total lookups vs. average number of successfull lookups for 1000
peers with the number of buckets set to 2.

The size of the images was intentionally made larger than by other graphs, because the rate of the

successful lookups converges almost to zero and for this reason can be very difficult to recognise on a

small plot.
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Figure 5.11: Average number of total lookups vs. average number of successfull lookups for 1000
peers with the number of buckets set to 32.
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Figure 5.12: Average number of total lookups vs. average number of successfull lookups for 1000
peers with the number of buckets set to 64.
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Figure 5.13: Average number of total lookups vs. average number of successfull lookups for 1000
peers with the number of buckets set to 160.

The same effect as in the previous plots can be recognized by testing the network with the number of

peers set to 10000. The Figure 5.14 demonstrates the results of this test.

As mentioned in the previous section, a large amount of buckets leads to the increased possibility that

many buckets remain empty, especially, by a sparse peer distribution. This leads to the situation in

which just a few or possibly no k nearest nodes can be found while performing the findKNearestN-

odes()-operation. As a result, the updates can not be fulfilled efficiently, because the findKNearestN-

odes()-operation is the core method of all updates. As a consequence, the routing table is updated by

accident and does not grow dynamically.

5.2.6 Number of Buckets vs. Number of Stored/Found Objects

After investigating the influence of the number fo buckets on the basic operation of this protocol, it is

useful to examine the impact of this parameter to the performance of the store()-operation by inspect-

ing the number of stored objects.

For this reason, the number of possible tags was set to 10. In these tests, the following default param-

eters were used: size of buckets = 5, k = 8, radius = 20 km. Consider Figure 5.15. The first tests were

made in the overlay with 1000 peers.
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Figure 5.14: Average number of total lookups vs. average number of successfull lookups for 10000
peers with the number of buckets set to 32, 64, 160.
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Figure 5.15: Average number of stored and found objects for 1000 peers with 10 tags and the number
of buckets set to 2, 32, 64, 160.
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In this Figure, the number of stored objects for 64 buckets is a little larger than the number of stored

objects for 32 buckets, but it depends on the randomly generated coordinates. These graphics provide

insight into the tendency as a whole: the number of stored objects decreases with the increasing num-

ber of buckets.

The second test was made for 10000 peers. Its results are presented in Figure 5.16.
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Figure 5.16: Average number of stored and found objects for 10000 peers with 10 tags and the number
of buckets set to 32 and 64, 160.

Equally to the first tests, this one shows the same tendency. The larger the number of buckets, the

smaller is the number of stored objects. The explanation for such behavior lies in the decreasing per-

formance of the findKNearestNodes()-operation shown in Section 5.2.4, as this operation is the main

tool of the store()-procedure. This happens as a result of an amount of buckets being empty.

Such a small amount of found objects can also be explained by reminding the testing scenario. The

coordinates for the areaSearch() are generated randomly. This fact together with a sparse peer and file

distribution, as well as the inappropriate number of buckets decreases the probability to find a given

object.

One more parameter influences the number of stored objects: the churn rate. All these plots have

some commonality: the number of stored objects decreases after the first 75 - 80 minutes of the sim-
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ulation. This is the result of the active churn process.

Now, to ensure that the tendency observed in Figure 5.16 depends only on the number of buckets

and not on the density of the file distribution, the range of the randomly generated tags will be set to

100. The results of this investigation are shown in Figure 5.17.
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Figure 5.17: Average number of stored and found objects for 1000 peers with 100 tags and the number
of buckets set to 2, 32, 64, 160.

The first two plots present the number of objects stored in the overlay with 1000 peers. The Figure

5.18 provides the same observations as in the previous plots but in the overlay consisting of 10000

peers. In these three plots, the same effect as for the set up with 10 tags can be observed.

Moreover, all these graphics reveal one more disadvantage of this overlay: it is extremely slow. One

can clearly see in these plots, that some objects are stored even after the store()-operation is considered

to be fulfilled. The reason for such behaviour is an enourmous amount of findKNearestNodes()-

operations shown in Section 5.2.4 that are performed during the whole testing process as a part of the

store()-, areaSearch()- or update-operations. Such a giant amount of operations is also the reason,

why no tests for 10000 peers with 2 buckets could be done and no results of such tests could be

presented.
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Figure 5.18: Average number of stored and found objects for 10000 peers with 100 tags and the num-
ber of buckets set to 32, 64 and 160.

5.2.7 Radius Size vs. Number of Found Objects

To investigate the impact of the radius size to the performance of the areaSearch()-operation, the

following tests were done. The number of all found tags was counted, while varying the size of

radius. These tests were conducted with the following parameters: 10000 peers, number of buckets =

32, bucket size = 5, k = 8. The radius size was set to 10 km, 20 km, 30 km. First, consider the results

of the tests made with 10 possible tags shown in Figures 5.19 and 5.20.
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Figure 5.19: Average number of stored and found objects for 10000 peers with 10 tags and the radius
size set to 10 km and 20 km.
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Figure 5.20: Average number of stored and found objects for 10000 peers with 10 tags and the radius
size set to 30 km.

Now, consider the results of the tests shown in Figure 5.21. The tests were made with the same

parameters but with the range of randomly generated tags set to 100.
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Figure 5.21: Average number of stored and found objects for 10000 peers with 100 tags and the radius
size set to 10 km, 20 km, 30 km.

As expected, the larger the radius size, the larger is the number of found objects. The churn rate also

has its impact on the number of found objects, because some peers, which stored a given object, go

offline. It can be observed in the previous graphs, in which the number of found objects decreases as

the simulation comes to the end.
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To examine, how probable it is to find the objects within an area with various radii, consider Fig-

ures 5.22 and 5.23 in which the probability of finding the objects is presented.
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Figure 5.22: The probability to find objects in the overlay within an area with the radius size set to 10
km and 20 km. The number of peers was set to 10000 and the number of tags = 100.
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Figure 5.23: The probability to find objects in the overlay within an area with the radius size set to 30
km. The number of peers was set to 10000 and the number of tags = 100.

These graphics show that the probability to find some object in the overlay is, indeed, larger, if the

radius of the search area is larger. This probability is, however, still very small as a result of the effects

seen in the previous sections.

5.2.8 Size of Buckets

As already mentioned in Chapter 3, if a node finds a new contact while executing the findKNearestN-

odes()-request, it defines the bucket for this node and checks, whether this bucket is full or not. In

case the bucket is full, the oldest node from this bucket must be contacted. If this node is still online,

the newly found contact must be stored in cache.

In this section, an investigation of the impact of the bucket size on the number of newly found nodes

to be contacted and stored in cache is provided. For this reason, the bucket size is varied from 2, 5,
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10 to 20. The results are shown in Figures 5.24 and 5.25. The parameters for this investigation are as

follows: the tests were made in the overlay consisting of 1000 peers with 5 different seeds, the value

of k is set to 8 and the number of randomly generated tags equals 100.
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Figure 5.24: Number of newly found contact vs. number of contacts added to cache for 1000 peers
and 100 tags with the size of buckets set to 2 and 5.
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Figure 5.25: Number of newly found contact vs. number of contacts added to cache for 1000 peers
and 100 tags with the size of buckets set to 10 and 20.

For these tests, the number of cases, when it was needed to contact to oldest node, was counted. The

first plot shows, how many lookups were made, if the size of buckets was set to 2, and as a result how

many newly found nodes could be added to cache. The second graph shows a significant reduction

in the number of contact that could be possibly added to cache in comparison to the first plot. This

happens, because more contacts can now be stored in a bucket. In this case, if a new contact is found,

it can be in most cases directly stored within a bucket and there is no need to check, whether the oldest

node is still online or not.

The last two graphs show clearly, that 10 and 20 peers per bucket reduce the number of lookups

to zero, because there is enough storing space in each bucket.
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As expected, the reduction of the bucket size leads to the increased number of nodes to be contacted

in order to update the routing table.

5.2.9 Value of K Nearest Nodes vs. Number of Stored/Found Objects

In this section, the influence of the value for k parameter used in the findKNearestNodes()-operation

is investigated. In Figures 5.26 and 5.27, the results of this investigation are shown.
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Figure 5.26: Number of stored and found objects for 1000 peers and 100 tags with k = 2, 4.
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Figure 5.27: Number of stored and found objects for 1000 peers and 100 tags with k = 8, 16.

The tests were made in the overlay with 1000 peers. The range of the possibly generated tags was set

to 100. The routing table of all peers consisted of 2 buckets. The size of the bucket was set to 2. The

value for k was varied from 2, 4, 8 to 16.

In the first graph made for k = 2, the maximum number of stored objects lies slightly under 30 and

the maximum number of found objects lies slightly above 20. The second plot shows, that these num-

bers increase to about 35 and 30, respectively, if k is set to 4. Such a behaviour can be explained

as follows: on the one hand, the larger the number of k nearest nodes found by the findKNearestN-

odes()-operation, the larger is the number of objects stored on these nodes around a given location.

As a result, there are more copies of the same object stored in the overlay which leads to an increased

46



5.2 Results

probability to find a given tag. On the other hand, the larger the number of k nearest nodes found by

the findKNearestNodes()-operation, the larger is the probability that these nodes have some informa-

tion about a given tag or about other nodes that have such information. This, in its turn, leads to an

increased probability to find a given object while performing the areaSearch()-operation.

The last two graphs don’t show any significant improvements. Logically, this leads to the conclu-

sion that the larger value for k improves the results of the store()- and areaSearch()-operations, but it

is insignificant, if the peer distribution is dense or the number of buckets is to large.
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Chapter 6

Conclusion

In this chapter, the summary of this thesis is provided, as well as some ideas for future work are

presented.

6.1 Summary

The goal of this bachelor thesis was to implement a routing protocol for location-based search called

Geodemlia and to evaluate the performance of this overlay.

To develop this protocol, the event-driven simulator called PeerfactSim.KOM was used. As it is im-

possible to work with this simulator without a scarce understanding of its functionality, in Chapter

2 a description of its main properties and structure is provided. In order to understand what makes

Geodemlia worth implementing, a brief overview of the basic routing protocols is given in the same

chapter. The basic modules that can be found in each overlay are also presented there.

After that, the preparation for the implementation of the overlay begins. To implement an overlay,

a good understanding of its basic principles is needed. For this reason, Chapter 3 was developed. In

this chapter, a detailed theoretical discription of the protocol’s functionality is given. After that, an

attempt to assign the main operations to the basic modules described in Chapter 2, in order to develop

a better structure of our implementation, was made.

After the theoretical part, the practical approach was provided in Chapter 4. In this chapter, the

structure of the protocol’s implementation in Java is presented, and the basic modules are described.
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After that, the protocol’s implementation has to be tested and the results have to be analysed. That is

why, in Chapter 5, the results of the testing process are shown.

After the performed tests and analyses, the main advantages and disadvantages of this protocol must

be pointed out.

One of the advantages of Geodemlia is that it does no’t depend on a single central bootstrap node

which can be a bottleneck in some situations. The whole overlay will not be laid down, in case one

central node goes offline. One more advantage of Geodemlia is the mechanics of leaving the overlay.

As it is not required to inform other nodes, if some node goes offline, the process of implementing the

protocol becomes much easier in comparison to Chord.

The design of the routing table is, however, not one of the strenghts of this protocol. It sounds great

theoretically, but in practice, such a bucket partition, as a result of an amount of buckets being empty

intensified by a sparse peer distribution, leads to a poor performance. Under this circumstances, the

updating mechanism also leads to an inefficient performance. All this leads to the conclusion that the

routing tables do not expend dynamically, which makes it difficult to reach the nodes that are further

away on the periphery.

Moreover, due to the large amount of findKNearestNodes()-operations, performed as a part of other

operations, leads to the overload in the network what makes the overlay extremely slow. This means

that the updating mechanism should be changed and it should take the churn factor and the load-

balancing into consideration. The scalability of this protocol proved to be insufficient for a large

amount of peers and complex scenarios.

6.2 Future Work

The idea of this protocol is theoretically very elegant, but practically can obviously be improved. First

of all, the updating mechanism could be changed.

As an example, a node could update its routing table by regularly checking the status of a random

node from a random bucket by just pinging it. This method does not allow the nodes to learn about

new contacts while performing the update operations, but it does not overload the network with hun-

dreds of thousands messages. For this reason, the proposed update mechanism could be extended

with the already existing one in the following way: in the periods of time in which the network is very

active, the proposed update method should be used; in the periods of time when the network is more
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passive, the existing update mechanism could be executed. It is surely not very easy to implement,

but it could ensure that the nodes learn about new contacts while performing updates. Of course, all

these changes should be made after an appropriate number of buckets was chosen.

One more idea for future work is associated with the coordinate system in Geodemlia. In its the-

oretical representation, as well as in the given implementation all peers were assumed to have static

coordinates [GSR+12]. Assuming that some peers use mobile phones or tablets on the run leads to

the conclusion that the whole overlay won’t function properly in such situations. So managing this

problem could be an excellent challenge.

For extending the PeerfactSim.KOM simulator, it could be possible to create new basic modules like

NetConnectivityModule which could be used by different protocols simultaniuosly. Such basic mod-

ules could maintain the interactions between different overlays, for instance, by using messages.
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