
Analysis and Implementation of

Offline-Authentication on Mobile Devices

Bachelor Thesis

by

Daniel Baselt

from

Krefeld

presented at the

Chair of computer networks

Prof. Dr. Martin Mauve

Heinrich-Heine-Universität Düsseldorf

September 2006

Advisor:

Dipl. Inform. Michael Stini

Acknowledgments

A lot of people supported me during my work on this thesis to whom I wish to express

my gratitude.

First of all, I would like to thank Michael Stini for his enduring support and sincere

encouragement. He provided me with lots of ideas and comments. The numerous hours

he spent for discussion were essential to the quality of my work.

I would like to thank Janis Breitmeier, who provided me an early version of the Bluetooth

packages for the DOM framework.

And, of course, I appreciate all the efforts of my colleaguesand friends who cross-read

this thesis, gave helpful comments and advices or lent me their cell phones for strenuous

testing of the programs.

The cliparts used in this thesis are simplified versions fromthe originals created by Ju-

liane Krug, available at [Lib06].

iii

Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contribution . 2

1.3 Structure . 3

2 On Theory of Cryptography 5

2.1 Foundations of Authentication .. 5

2.1.1 Public Key Cryptography . 6

2.1.2 Digital Signature Algorithms 8

2.1.3 Challenge-Response-Identification9

2.1.4 Public Key Infrastructure . 9

2.1.5 Offline-Authentication . 10

2.2 Evaluation of Digital Signature Algorithms 11

2.2.1 RSA . 13

2.2.2 Rabin . 15

2.2.3 ElGamal . 16

2.2.4 The Digital Signature Algorithm 17

2.2.5 Elliptic Curve DSA . 18

2.3 Cryptographic Hash Functions . 21

2.4 Random Numbers . 22

2.5 Certificate Formats . 23

v

Contents

3 Implementation of Offline-Authentication in Java ME 25

3.1 Introducing Java ME . 25

3.1.1 The Wireless Toolkit . 26

3.1.2 Java ME Profile and Configuration Versions 27

3.1.3 Java Cryptography Architecture in Java SE and ME 27

3.2 Java Security Provider . 28

3.2.1 Sun JCE . 28

3.2.2 SATSA . 28

3.2.3 Bouncy Castle . 29

3.2.4 Cryptix . 29

3.2.5 IAIK . 30

3.2.6 Conclusion . 30

4 The AuthToolkit 31

4.1 Recommendations . 31

4.2 Structure . 32

4.3 Implementation of Certificates .34

4.4 Authentication Protocol .34

5 Test series on Java SE and ME 37

5.1 Desktop Computers and Java SE . 37

5.2 Mobile Devices and Java ME . 42

6 Offline-Authentication Demonstration Application 49

6.1 TheAuthServerDemo. 49

6.2 TheAuthClientMEDemo . 51

7 Conclusion and Outlook 55

7.1 Outlook . 56

8 Appendix 57

8.1 Setting up Bouncy Castle . 57

8.2 Source Code . 58

Bibliography 59

vi

List of Figures

2.1 Authentication with a Secret Pass Phrase 6

2.2 Public Key Cryptography . 7

2.3 Signature and Verification of a Document 8

2.4 A Public Key Infrastructure .10

2.5 Protocol for Offline-Authentication 12

3.1 Java SE and Java ME Stack Components 26

4.1 Sample Certificate . 35

4.2 Authentication Protocol used in theAuthToolkit 36

5.1 RSA Key Generation on Desktop . 39

5.2 RSA Signing and Verification on Desktop39

5.3 ECDSA Key Generation on Desktop 40

5.4 ECDSA Signing and Verification on Desktop40

5.5 Different SHA Algorithms on Desktop 41

5.6 RSA Key Generation on Sony-Ericsson M600i43

5.7 RSA Signing and Verification on Sony-Ericsson M600i 43

5.8 ECDSA Key Generation on Sony-Ericsson M600i 44

5.9 ECDSA Signing and Verification on Sony-Ericsson M600i 44

5.10 Different SHA Algorithms on Sony-Ericsson M600i 46

5.11 Prime Certainties at RSA 512 on Sony-Ericsson M600i 46

6.1 Flowchart of theAuthServerDemo. 50

6.2 Flowchart of theAuthClientMEDemo 52

6.3 The Authentication Process inAuthClientMEDemo 52

vii

List of Tables

2.1 Comparison of Symmetric and Asymmetric Cryptography 7

2.2 RSA Speeds for different Modulus Lengths 15

2.3 RSA and ECDSA Key Lengths for equivalent Security 20

ix

List of Abbreviations

CA Certificate Authority

CDC Connected Device Configuration

CLDC Connected, Limited Device Configuration

CRI Challenge-Response-Identification

DOM Digital Ownership Management

DSA Digital Signature Algorithm

ECDSA Elliptic Curve DSA

ECDLP Elliptic Curve Discrete Logarithm Problem

IAIK Institute for Applied Information Processing and Communication

ITU-T International Telecommunication Union

Java ME Java Micro Edition

Java SE Java Standard Edition

JCA Java Cryptography Architecture

JCE Java Cryptography Extension

MIDP Mobile Information Device Profile

OAEP Optimal Asymmetric Encryption Padding

PDAP Personal Digital Assistant Profile

PSE Personal Security Environment

PRNG Pseudo-Random Number Generator

PKI Public Key Infrastructure

PKCS Public Key Cryptography Standards

RNG Random Number Generator

RIPEMD RACE Integrity Primitives Evaluation Message Digest

SATSA Security and Trust Services API for J2ME

SHA Secure Hash Algorithm

xi

Chapter 1

Introduction

The market of digital content on mobile devices has been rapidly growing since a few

years. In the near future, it will become even more importantas new commercial of-

ferings besides the market of device customizations emerge. To take full advantage of

these developments, a generic trading system for entirely digital content at any place

anytime to anyone is necessary. Transactions of this kind are accomplished only with

a certain amount of trust in the trading partners and their offerings. This can be estab-

lished by offline-authentication, which uses several concepts of cryptography to ensure

the confidence in a trading partner.

With the introduction of trust viaoffline-authentication, it will become possible to use

modern mobile devices for more versatile purposes. Besides music files and device en-

hancements like ring tones more interesting and even more valuable content can be of-

fered and traded. Feasible are tickets for public transport, sports events and concerts

as well as digital collectibles like trading cards. Existing digital rights management

systems allow buying and using digital content only in a veryrestrictive manner. There-

fore, a new trading system is in development at the chair of computer networks at the

Heinrich-Heine-University Duesseldorf. TheDigital Ownership Managementproject

will enable the user to show and prove ownership, as well as barter digital content.

Using offline-authentication as presented in this thesis will be one of the project’s pil-

lars.

1

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The intention of this thesis is to analyze and realize offline-authentication on mobile

devices. Since authentication algorithms are already specified in various non-mobile

scenarios, their suitability to a mobile environment has tobe analyzed. As security of the

algorithms is of great importance, the cryptographic background has to be discussed. Ex-

isting libraries implementing authentication are to be examined regarding the constraints

on mobile devices. Their low computing speed and different operating systems demand

special considerations. Moreover, algorithms and licenses for the libraries should be

available under an open source license. Tools providing cryptographic support using

the chosen algorithms and libraries are to be developed for use on mobile devices as

well as on desktop computers suitable to theDigital Ownership Management(DOM)

project. An offline-authentication demonstration program based on these tools has to

be realized as a result to proof the maturity of the technology and that stable usage is

possible.

1.2 Contribution

The protocols of mobile devices authenticating each other and of a mobile device con-

necting to a service provider’s server were adapted and described exactly with regard

to existing authentication algorithms. Then, the most significant digital signature algo-

rithms were analyzed for use with offline-authentication especially on mobile devices.

As conclusion,RSAandElliptic Curve DSA(ECDSA) were selected for implementa-

tion.

Java was chosen in theJava Micro Edition(Java ME) as programming language, offering

easy platform portability to most mobile devices. Possiblecryptographic libraries for the

Java Standard Edition(Java SE) and the Java ME from diverse developing groups were

examined and rated regarding security issues, free availability, speed and the project’s

documentation. TheBouncy Castle Cryptographic Library Providerturned out to be

best fitting to these requirements. During evaluation, testseries were programed using

Bouncy Castle in combination with Java SE and ME to deduce conclusions towards com-

putational speed of RSA and ECDSA.

A library, the AuthToolkit, capable of managing the offline-authentication process, as

2

1.3. STRUCTURE

well as signing and verifying messages using Bouncy Castle hasbeen developed, which

works both with Java SE and ME. The library will be integratedinto the DOM project

to enable mobile devices to authenticate offline and online as well. Based on theAuth-

Toolkit, a demonstration application has been implemented consisting of a desktop server

in Java SE and mobile devices using Java ME. It shows how offline-authentication works

in a real environment.

1.3 Structure

In Chapter 2, it will be discussed what the theoretical foundations are on which offline-

authentication is based and how the concept of aPublic Key Infrastructure(PKI) and

Challenge-Response-Identification(CRI) contribute to this problem. Afterwards, se-

lected digital signature algorithms which are of reasonable significance to security and

speed on mobile devices are analyzed with regard to their usefulness for implementation.

Further on, other security factors of a public key crypto system, like message digests and

random numbers, are discussed.

Chapter 3 is considered with the implementation on mobile devices. Providers of cryp-

tographic libraries enhancing the security architecture of Java are examined with special

regard to their possibilities on the limited Java ME.

Chapter 4 describes theAuthToolkitand its development for the DOM project.

In Chapter 5, the integration ofBouncy Castle, the best-fitting security provider for the

offline-authentication purpose, into the Java developmentenvironment is discussed and

tests series are made with Java SE and ME to examine speed of the implementation.

Chapter 6 presents a demonstration program for the implementation of theAuthToolkit.

Afterwards, the thesis is summarized and an outlook on possibilities of offline-authenti-

cation is made.

3

Chapter 2

On Theory of Cryptography

Authentication in the digital world requires the collaboration of different techniques used

in modern cryptography. With identities being digitized, the first intention is to prevent

making a perfect binary copy of an identity. Having that in mind, it is absolutely ab-

surd sending someone else your identity, to let her prove itscorrectness. This chapter

will show how it is possible to satisfyingly convince a counterpart from one’s identity.

Therefore, the next Sections introduce and discuss relevant solutions for creating a sys-

tem capable of offline-authentication. Usually, the scenarios described in the following

need three parties. According to cryptographic habits, they will be called Alice and Bob

as the communicating parties and Eve being the evil counterpart. Eve will try to pretend

to be Alice or Bob without being discovered.

2.1 Foundations of Authentication

The most simple way to let two people identify each other in a completely digital en-

vironment is to agree upon a secretpass phrase(see Figure 2.1). When more than two

people want to communicate and each one is assigned a pass phrase, everybody has to

know every phrase to assure the identity of a counterpart.

Unfortunately,EvediscoversBob’s secret phrase simply by becoming a new member

at the service he uses. As soon asEve receivesBob’s pass phrase, she will be able to

communicate on the system with his identity, exactly asBobwould do.

5

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

Figure 2.1: Authentication with a Secret Pass Phrase

This can be solved by assigning every possible pairing of users an extra key. A server

managing keys and matching users has to storen(n−1)
2 keys, withn being the number of

users [Buc03], implying complexity ofO(n2). Besides that, all users have to be known to

each other, meaning they have to storen keys before any connection can be established,

but this is unacceptable for mobile usage. Also key distribution becomes very compli-

cated, regular updates distributing new users’ pass phrases are necessary and anybody

except the users must not be permitted to access the passes.

2.1.1 Public Key Cryptography

A different approach uses keys to encrypt messages instead of using passwords for iden-

tification. It is possible to encrypt and decrypt messages with a special key belonging to

one user. This principle is calledsymmetric cryptography(or private key cryptography).

The drawbacks of key distribution and complexity of key numbers (inO(n2)) are still the

same as using passwords. But it paves the way to the use ofpublic key cryptography(see

Figure 2.2).

Here, in contrast to one shared key for encryption and decryption, two different keys

belonging to each other are used. One key is referred to as thepublic key, which can be

freely distributed, the other one is called theprivate key, which must not be revealed to

anyone. Now, the advantage is that only one key pair is neededfor an user instead of one

key per possible communication channel, reducing complexity of key management to be

in O(n) at the server. Also, the key distribution is alleviated, because it is possible for

the server to offer the proper public key to every user requested, although complexity is

still in O(n). Less security overhead is necessary, only the correct exchange of a newly

6

2.1. FOUNDATIONS OF AUTHENTICATION

Figure 2.2: Public Key Cryptography

Table 2.1: Comparison of symmetric and asymmetric cryptography

CRYPTOSYSTEM SYMMETRIC ASYMMETRIC

Number of keys O(n2) O(n)
Keys per device O(n) O(n)
Key distribution private public

created key pair to its owner and the transmission of the public key to the server have to

be assured, as well as that the public directory at the serveris read only to users. After

the exchange, nobody except the user to which the key pair belongs has to care about the

private key. Public key cryptography itself does not offer secure identification.Evemay

know one ofAlice’s encrypted messages (but not her private key) beforeAlice decides

to use it or after she used it and pretend beingAlice by sending this message, which is

called areplay attack.

Public key algorithms are based on problems in mathematics which are easy to compute

in one direction, but (supposed to be)hard to solve in the opposite way (by finding the

inverse) without special information, also known astrapdoor functions. Hardness means

that a problem cannot be computed in polynomial time or better. If a problem was found

to be not hard, it would be possible to derive the private key from the public key, which

is considered as thetotal breakof a public key cryptosystem. For the most important

asymmetric algorithms, the underlying problems have neither been proved nor disproved

yet. The consequences are discussed in Section 2.2, together with the presentation of

chosen algorithms.

To be of comparable strength to private key algorithms, public key algorithms usually

need more bits in key length, making public key operations about 102 to 103 times slower

7

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

Figure 2.3: Signature and Verification of a Document

than private key cryptography [Sch96]. Usually, this is solved by using ahybrid cryp-

tosystem, where not the message itself is encrypted with the public key, but a key of

a private key algorithm, which is then used to encrypt messages of the communication

session.

2.1.2 Digital Signature Algorithms

WhenM is themessage spaceandC the ciphertext space, signing a documentm∈ M

means to perform theencryptionfunctionE : M → C on the document with the private

key of a public key algorithm and to obtain the signaturec = E(m), with c ∈ C. Only

the owner of a key pair knows the private key and without it, nobody else can sign the

document in the same way.

The signature can be verified by taking the signature and a public key as arguments and

compute thedecryptionfunction D : C → M to get the encrypted messagem′ = E(c),

with m′ ∈ M. If the private and public key belong together, the documentitself will be

value of the operation, so thatm= m′ (see Figure 2.3).

To compensate the slowness of public key algorithms, it is not recommendable to sign

the whole document, but a hashed version of the document, seeSection 2.3 for hashing.

This also solves security concerns of some algorithms likeexistential forgeryin RSA

[Buc03].

Key pairs must not be used additionally to encrypt or sign data besides authentication,

8

2.1. FOUNDATIONS OF AUTHENTICATION

because this is of high risk to security. IfEvepretends that she wants to proveAlice’s

identity, Eve is supposed to send a random number toAlice as challenge. In fact, the

random number is the hashed valueh(m) of the textm. Alice cannot recognize this and

signs the hash value. Actually, when sending the signed hashto Eve, Evereceives a self-

chosen document signed byAlice [Buc03]. A solution to this is the use of different hash

functions for authentication and encryption, which produce different hash value lengths,

so that the length of a hash value determines its purpose.

2.1.3 Challenge-Response-Identification

TheChallenge-Response-Identification(CRI) protocol is the following:

1. Alicewants to identify herself toBob.

2. Bobconstructs a challenge onlyAlicecan solve and sends it to her.

3. Alicesolves the challenge if, and only if, she knows a certain secret.

4. Alicesends her response toBob.

5. Bobverifies the solution and acceptsAlice’s identity if her answer was accurate.

Using public key cryptography, Bob would demand Alice to signa random numberr.

Alice uses her private key, which is only known to her, toencrypt rby computing the

ciphertext c= E(r). Alice sends the signaturec to Bob and he verifies it by decrypting

c, he calculatesr ′ = D(c) with Alice’s public key and checks, ifr = r ′.

2.1.4 Public Key Infrastructure

When Bob wants to validateAlice’s identity, he needs her public key. AskingAlice

directly for it is dangerous, becauseEvecan pretend to beAlice and sendBoba public

key matching her own private key. So, to have a trusted third party providing public

keys is necessary, where every user may verify the correctness of a key. A CA-server

managing the identities is such a trusted third party, called aCertificate Authority(CA).

It has its own key pair and every member of the CA trusts the CA’s signature. IsAlice a

member at the same authority asBob, he will find her public key at the server’s public

9

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

Figure 2.4: A simple Public Key Infrastructure with one level depth

directory read-only, packaged in a digitalcertificatesigned by the CA itself. A certificate

is a container for a public key and information about the associated user.Bobcan verify

the CA’s signature because the CA’s public key certificate is known to every member.

With it, he can assure thatAlice’s public key specified in her certificate is authentic,

otherwise verifying failed. The constellation of a CA with associated members is called

aPublic Key Infrastructure(PKI).

If a key pair becomes invalid because of loss, limitation or noticing illegal operations, a

key revocationprocess should be started. Therefore, the key pair is to be marked on the

CA’s directory (but not deleted) and a new key pair may be created and distributed to the

user, depending on the reason of revocation.

2.1.5 Offline-Authentication

With the concepts of CRI and the implementation of a PKI, offline-authentication on

mobile devices can be realized. A server providing CA functionality offers thepublic

key directory, containing every member’s public key certificate signed bythe server. A

mobile device has to learn the server’s public key certificate, as well as its own server-

signed public key certificate and private key. The private key should be kept in aPersonal

Security Environment(PSE), an area where only the owner of the key pair has access to.

WhenBobwants to register himself at the CA and has a mobile device of his own acting

as PSE to him, cryptographic operations will take place on his device. He generates his

key pair on it, so that the private key never has to leaveBob’s PSE. To let the public

key being signed by the CA, he has to securely send his public key to the CA and the

new certificate has to be transmitted back toBob. The best way to do this would be, if

10

2.2. EVALUATION OF DIGITAL SIGNATURE ALGORITHMS

Bob went to the CA’s administrator personally to exchange information, where also the

CA could verifyBob’s identity. Because this is not always feasible, another possibility

is postal communication, as being more expensive but emphasizing Bob’s interest to be-

come registered. Then, postal identification procedures like POSTIDENT[Pos06] can

be realized by postal corporations.

Subsequent,Bobreceives his CA-signed public key certificate from the server. When not

happened during the communication described above, this may even happen using inse-

cure channels, because nowBobcan check his certificate on the CA directory anytime.

Alice, being also registered with her mobile device at the CA, wantsto prove her identity

and her CA membership toBob without connecting to the CA-server at this very mo-

ment (offline-authentication). Therefore, she establishes a connection toBob’s mobile

device using Bluetooth, infrared, direct cable or a comparable short range communica-

tion technology. This type of connections complicate compromising by attacks like the

Man-in-the-Middle-Attack[Sch96].Bobsends toAlice a challenge in form of a random

number, which has to be signed byAlice with her private key. Afterwards, she sends the

signed number and her own CA-signed certificate toBob, who

1. verifiesAlice’s CA-signed certificate with his copy of the CA’s public key certifi-

cate and

2. verifies the signature of the random number withAlice’s public key contained in

her certificate.

That wayBob is assured aboutAlice’s identity (see Figure 2.5).

Because neitherAlice nor Bob have reasons to trust each other before the offline-au-

thentication has taken place,Bob has to identify himself toAlice, too, the same way

as described above. When both have made sure that they are indeed connected to the

person they expected to, authentication is done and the actual transactions can begin.

2.2 Evaluation of Digital Signature Algorithms

As discussed in Section 2.1.1, public key cryptography is essential to the concept of

offline-authentication. The key pair of the Certificate Authority is used to sign users’

certificates and each service member uses his or her pair for signing random numbers.

11

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

Figure 2.5: Protocol for Offline-Authentication

Therefore, a public key algorithm must be chosen, that is able to work as a digital signa-

ture algorithm.

The algorithms discussed in this Section are evaluated considering the demands of cryp-

tography on mobile devices. The criteria are, in order of importance:

Security Ideally, keys for authentication will be valid for years, representing an union

with the associated digital identity. Security aspects of the algorithms are possi-

ble vulnerabilities of the underlying mathematical techniques and appropriate key

lengths to avoid breaking key pairs via brute force in an estimated period of time.

Availability An algorithm should be open source to be able to examine its implemen-

tation. Although software patents are not applicable in theEuropean Union, an

algorithm should be free to use worldwide.

Speed With each new mobile device generation, processing units become faster, but

mobile devices still are rather slow compared to desktop computers. Crypto-

graphic calculations demand operations on very large numbers, while specialized

coprocessors are usually not available. The level of security needed for offline-

authentication depends on the value of the service for whichauthentication is in-

tended. The stronger the cryptography, the longer operations last and the more the

mobility factor of offline-authentication decreases. So speed of different levels of

security has to be observed.

Only three public key algorithms are capable of signing besides encryption: RSA, Rabin

and ElGamal [Sch96]. A fourth one, theDigital Signature Algorithm(DSA), cannot be

12

2.2. EVALUATION OF DIGITAL SIGNATURE ALGORITHMS

used to encrypt. These algorithms are discussed in this Section. A special variant of the

DSA, theElliptic Curve DSA(ECDSA), is described in an own Subsection because of

its attributes, which are especially suitable to mobile devices.

2.2.1 RSA

RSA is an abbreviation for the three inventors of this algorithm: Rivest, Shamir and

Adleman. It was the first public key cryptography algorithm developed and it is the most

frequently used today. And besides it can be used for encryption and signing, it is easy

to implement. Due to its popularity, RSA is well-investigated and to all possible attacks

discovered yet (e.g.Chosen-Ciphertext-Attacksor Low Exponent Attacks), countermea-

sures can be taken [Sch96].

To generate a key pair, Bob chooses two large (more than 100 bits length) prime numbers

p andq, p 6= q, and computes

n = p∗q.

n is called theRSA-modulus.

Additionally, he chooses a natural numbere, theencryption key, with

1 < e< ϕ(n) = (p−1)(q−1) with gcd(e,ϕ(n)) = 1

and computes a natural numberd, thedecryption key, with

1 < d < ϕ(n) and d∗e≡ 1 modϕ(n).

In other words

d = e−1 mod((p−1)(q−1)),

which can be computed with theExtended Euclidean Algorithm, see [Rot05]. The public

key is(n,e) and the private key isd.

To encrypt a messagem∈ M (M being the message space and 0≤ m< n), with a public

13

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

key, Bob computes

c = me modn, with c∈C andC is the ciphertext space.

If m≥ n, m can be split intok subsequent blocksmi, i ∈ 1, . . . ,k, where each block’s

length is less thann. Decryption with the private key is computing

m′ = cd = (me)d modn.

The security of RSA is supposed to be based on the hardness of the factorization prob-

lem [Buc03], meaning factoring large numbers. But it is unknown yet if factoring the

large modulusn of a key pair is the only way of getting the cleartext messagem from the

encrypted messagec and the public key(n,e), with e beingcoprimeto ϕ(n), meaning

thatϕ(n) andehave the greatest common divisor 1 [Buc03].

RSA in this form is vulnerable to chosen-message-attacks. Toprevent this, it is re-

commended to follow the recommendations of thePublic Key Cryptography Standards

(PKCS) devised by theRSA laboratories[RSA05]. PKCS#1 describes methods of hard-

ening RSA against the above mentioned attack sufficiently. RSAis free to world-wide

use since the year 2000, as the patent held by the RSA Security Inc. [RSA06] in the

United States expired.

Evaluating the costs of RSA, encrypting requires an exponentiation modulon. Modu-

lar exponentiation is performed by a series of modular multiplications. With a smaller

exponente encryption is sped up, but when the exponent is too small, so-calledLow-

Exponent-Attacksare possible [Buc03]. A common value fore, recommended by X.509

[Gro02], is(216+1), which is a smart choice because it takes only 17 multiplications to

exponentiate. It is possible to choose the same value fore for all key pairs as long asd

differs. Decryption is also an exponentiation modulon, but this time the exponentd has

to be about the same size asn. Otherwise, the system becomes insecure. The complexity

of usual RSA encryption and decryption implementations is inO(k2) to O(k3), with k

being key bit length, and key generation is inO(k4) [RSA05].

Key generation is necessary only when a new client joins to a service or an existing key

expires. Signing and verifying speeds are acceptable, see table 2.2.1 and the results of

the speed tests in Chapter 5. Recommended key lengths are dependent on the estimated

computing capacity of modern computers to break a key pair. Today, key lengths are at

minimum 1024 bits and if a key pair should be valid for severalyears, it would be best

to use a 2048 bits modulus.

14

2.2. EVALUATION OF DIGITAL SIGNATURE ALGORITHMS

Table 2.2: RSA Speeds for different modulus lengths with a small public key of 8-bit
measured on a SPARC II [Sch96]

STRENGTH 512 BITS 768 BITS 1024BITS

SIGN 0.16 sec 0.52 sec 0.97 sec
VERIFY 0.02 sec 0.07 sec 0.08 sec

RSA’s unproved hardness is its greatest disadvantage. But this can be balanced with two

arguments: Its widespread use and (because of that) the big interest of cryptanalysts. The

more people are interested in the security of RSA (and with it factoring large numbers),

the bigger is the chance that a breakthrough will become public. The contrast to this

would be, if a secret service or a company’s research team broke RSA and everybody

else would still think RSA being secure. But being analyzed forover thirty years, the

“risk” of breaking RSA is very small.

Taking all this into account, usage of RSA is very interestingto offline-authentication. In

combination with hash functions (see Section 2.3), known weaknesses like theexistential

forgeryandRSA multiplicativitybecome impracticable [Buc03].

2.2.2 Rabin

The Rabin public key cryptosystem, named after its inventor Michael O. Rabin, is closely

related to the RSA cryptosystem. Its security is also based onthe factorization problem,

but in contrast to RSA, it is provably equivalent to the factorization problem and therefore

considered secure [Sch96]. Encryption with Rabin is a littlemore efficient than with

RSA, while decryption is about the same costs. The disadvantage of Rabin is its vulnera-

bility to Chosen-Ciphertext-Attacks. These are attacks whereEvehas temporary access

to the decryption machine and chooses ciphertexts to get thecorresponding messages.

With them,Evecan compute the private key and totally break Rabin. This is why Rabin

has only few significance in practice. In the offline-authentication scheme, the attack can

be accomplished by encrypting a message with the public key and then sending these

randomly seeming bytes as challenge to sign. The answer to the challengeEvereceives

is the decrypted message that can be used to break Rabin. Therefore, it is not reasonable

to use Rabin for offline-authentication.

15

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

2.2.3 ElGamal

ElGamal’s security is based on the hardness of thediscrete logarithm problem. It de-

scribes the difficulty of calculating discrete logarithms in a finite field. To create a key

pair, a primep and two random numbersg andx have to be chosen, withg andx < p.

By calculating

y = gx modp,

the public key is(y,g, p) and the private key isx.

Signatures of a messagem∈ M, M is the message space, are made byBobchoosing a

random numberk beingcoprimeto (p−1). It is very important thatk is random and is

never used twice, otherwiseEvecan recover the private keyx [Sch96]. Bob computes

a = gk modp

and uses theExtended Euclidean Algorithmto solve the following equation forb:

m= (x∗a+k∗b) mod(p−1).

Now, (a,b) is the signature ofM; k must be kept secret.

Aliceverifies the signature by confirming that

ya∗ab modp≡ gm modp.

It is necessary form being a message digest (Section 2.3), otherwise messages and ap-

propriate signatures(a,b) can be deduced from another [Buc03]. ElGamal is based on

theDiffie-Hellman key agreement protocoland the operations to sign and verify are very

similar to it [Buc03]. No patents cover the use of it. ElGamal signing requires computing

one modular exponentiation and oneExtended Euclidean. The calculation ofa andya

are message-independent, they can be computed and stored before the actual verification.

Then, ElGamal is faster than RSA (with only one exponentiation), but the computations

have to be kept secret on the mobile device.

Verification demands three modular exponentiations, two more than RSA. But the ver-

ification process can be altered so that computations equivalent to one exponentiation

are necessary [Buc03]. Key sizes of ElGamal are about the samecompared to RSA

for an equal level of security. The ciphertext is double the size of the corresponding

16

2.2. EVALUATION OF DIGITAL SIGNATURE ALGORITHMS

message, but this does not matter to offline-authenticationon mobile devices as long as

only message digests and random numbers of relatively shortbit lengths are computed.

One interesting advantage of ElGamal is the possibility to implement it in any cyclic

group other than the prime residue group modulo a prime. If a way is found to calculate

discrete logarithms in(Z/pZ)∗, with p prime, then ElGamal can be reimplemented in

another cyclic group, where discrete logarithms are still hard to solve [Buc03]. Such a

group are elliptic curves over finite fields, discussed in thefollowing Section about an

ElGamal derivative, theDigital Signature Algorithm.

2.2.4 The Digital Signature Algorithm

The so-calledDigital Signature Algorithm(DSA) is a variant of the ElGamal signa-

ture algorithm. It is used in theDigital Signature Standardproposed from the United

States’National Institute of Standards and Technology(NIST) and specified in FIPS

186-2 [NIS00].

To generate a key pair, Bob chooses a prime numberq of 160 bits length and a primep

with 2511+64t < p < 2512+64t for t ∈ {0,1, . . . ,8}. q is to be a divisor of(p−1). Then

Bob computes

g = h(p−1)/q modp, with h∈ {2,3, . . . , p−2} andh(p−1)/q modp > 1.

He chooses a numberx with 0 < x < q and determines

y = gx modp.

The public key is(p,q,g,y) and the private key isx.

To sign a messagem, Alice generates a random numberk < q. Afterwards, she com-

putes the hashH(m) from m with a one-way hash function. The standard specifies use

of the Secure Hash Algorithmdiscussed in Section 2.3. Furthermore, she calculates

r = (gk modp) modq,

s= (k−1(H(m)+xr)) modq.

17

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

The signature is the pair(r,s). Bob verifies the signature by computing

w = s−1 modq,

u1 = (H(m)∗w) modq,

u2 = rw modq,

v = ((gu1 ∗yu2) modp) modq.

By checking thatv = r, the signature is verified [Sch96].

Because of modular exponentiations of fixed 160 bits length, DSA is faster than ElGamal,

which needs modular exponentiations of the length of the module p. Moreover, DSA can

be sped up analogue to ElGamal by precomputing the message-independent valuesr and

k−1.

The security of DSA, as an ElGamal variant, is also based on the discrete logarithm

problem. One way to attack DSA is theexistential forgery, which can be prevented by

checking

1≤ r ≤ q−1 and 1≤ s≤ q−1

before verification of a signature, another way are algorithms alleviating computation

of the logarithm problem. The best known algorithms likeShanksor Pohlig-Hellman

[Buc03] still need more than
√

q steps to solve a logarithm problem ofq bits. Because

2159 < q < 2160 in DSA, at least 279 operations are necessary, which can be considered

secure [Buc03].

A U.S. patent attributed to David Kravitz, a former NSA employee, covers DSA, but

it was made available world-wide royalty-free. Although DSA is efficient, secure and

freely available, it is not implemented in the offline-authentication toolkit, but a variant

of it, elliptic curve DSA described in 2.2.5, which implements DSA in another cyclic

group and offers even more advantages.

2.2.5 Elliptic Curve DSA

Cryptographic algorithms basing on the discrete logarithm problem can be improved by

implementing them in the cyclic group of elliptic curves over finite fields. By choosing

18

2.2. EVALUATION OF DIGITAL SIGNATURE ALGORITHMS

a certain curve, it is possible to apply speed enhancements utilized in (Z/pZ)∗, making

signing and verifying faster, but preventing the application of algorithms simplifying the

logarithm problem, likeShanksor Pohlig-Hellman[Buc03].

The advantage of this is smaller key sizes to gain the same security level compared to

non-elliptical public key cryptosystems (see table 2.2.5). The downside are more com-

plex mathematical computations for generating signatures, so that implementations of

elliptic curve cryptosystems in spite of smaller keys are not necessarily faster.

Elliptic Curve DSA(ECDSA) is a variant of DSA based on theElliptic Curve Dis-

crete Logarithm Problem(ECDLP). The risk of developing new algorithms breaking

the ECDLP is reduced, because elliptic curves were of interest in mathematics a long

time before the application to cryptography was considered.

Elliptic curves do not represent curves or even ellipses in the common sense, but are

points solving the equation

y2 = x3 +ax+b.

Selecting an appropriate curve requires a good understanding of the mathematics of el-

liptic curves and is troublesome to implement. Therefore, the NIST published recom-

mended domain parameters of elliptic curves to use [NIS99].The choice of a certain

field is significant for overall performance, so for implementation, finite fields of odd

characteristic (Fp, wherep > 3 is a large prime number) and fields of characteristic two,

F2m, are considered best [LD00].

To create a key pair, the domain parameters(q,FR,a,b,G,n,h) of the underlying curve

E have to be chosen:

• q specifies a prime power,

• FRdescribes the method of representing field elements∈Fq, with q= p or q= 2m,

• a,b are two field elements∈ Fq specifying the equation of the curve,

• G is the base pointG = (xG,yG) onE(Fq),

• n is a prime of the order ofG,

• h is an integer, which is the cofactorh = #E(Fq)/n.

19

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

Table 2.3: RSA and ECDSA key lengths for equivalent security in[bits] [NIS06]

ALGORITHM RSA ECDSA

STRENGTH 1024 160 - 223
2048 224 - 255
3072 256 - 383
7680 384 - 511
15360 512+

The private key is a random integerd ∈ [1,n−1] and the public key isQ = dG.

Alicesigns a messagemby selecting a random integerk∈ [1,n−1] and calculating

r = x1 modn, where(x1,y1) = kG,

s= k−1(H(m)+dr) modn,

whereH(m) is the hash value ofm. If r = 0 or s= 0, she has to select another random

number and compute the signature again, otherwise, the signature is the pair(r,s).

For verification,Bob checks thatr ands are integers in[1,n−1]. Then he hashes the

messagem to obtainH(m) and calculates

w = s−1 modn,

u1 = H(m)w modn,

u2 = rw modn,

(x1,y1) = u1G+u2QA.

The signature is valid ifx1 = r modn.

ECDSA overFp is considered secure with key lengths of 192 bits, in contrast to DSA,

which needs key lengths up to 1024 bits or RSA with 2048 bits. The short key lengths are

an advantage on mobile devices regarding memory consumption and computing time,

as far as the elliptic curve algorithms are optimized well inimplementation to benefit

from that. Test series with Bouncy Castle using ECDSA concerning performance are

described in Chapter 5. ECDSA is not covered by any patents.

20

2.3. CRYPTOGRAPHIC HASH FUNCTIONS

2.3 Cryptographic Hash Functions

A message digesth is a preferably random fixed-length representation of a messagemof

arbitrary length, created by a one-way hash functionh= H(m). One-way hash functions

are hash functions with additional characteristics. While it is easy to computeh from m,

the other way findingm from h is hard. Also, it is hard to find another messagem′ to

m, such thatH(m) = H(m′). Message Digests are used by digital signature protocols to

shrink the number of bytes to sign, because signing is slow and message digests, ranging

from 160 bits to 512 bits, are usually shorter than the original message. Several signature

protocols even need hashing for security reasons (see DSA in2.2.4).

Reducing a message to a shorter representation, comparable to a fingerprint of the mes-

sage, may enable Eve to find two random messagesm andm′ with H(m) = H(m′), also

calledbirthday attack. If it is hard detecting tworandommessages with the same hash

value, the algorithm is calledcollision-resistant. Using a non-collision-resistant algo-

rithm for digital signatures alleviates the search of different messages with the same

hash value, so that it cannot be determined, which message was intentionally signed.

A popular family of hash functions, the MD (short forMessage Digest) family, is de-

signed by Ronald Rivest, with the fifth one, MD5 from 1991, beingthe newest and

strongest. While it is mainly used to create checksums of filesdownloadable from the

internet or storing passwords in databases, it is considered insecure due to its hash length

of only 128 bits, allowing birthday attacks. In 2005, Lenstra, Wang and de Weger showed

two different certificates (see 2.5) with the same hashsum [LWdW05].

Another family of hash functions is the SHA family (short forSecure Hash Algorithm),

proposed by the NIST as a Federal Information Processing Standard (FIPS), see [NIS02],

and being technically similar to the MD family. The most common representative is

SHA-1, which is often used in a variety of cryptographic applications. Its predecessor,

SHA-0, has already been proved to be vulnerable against collision attacks, reducing its

complexity from 280 to 239, so it can be considered broken [WYY05], while SHA-1’s

complexity has been reduced from 280 to 263 [Sch05]. This makes SHA-1 not insecure

yet in signing applications, because finding a document withthe same hash value as

another already signed document is still not feasible, but better attacks are expected to

come. The family was enlarged by the SHA-2 algorithms SHA-224, SHA-256, SHA-

384 and SHA-512, each creating according hash lengths, while the variants SHA-0 and

21

CHAPTER 2. ON THEORY OF CRYPTOGRAPHY

SHA-1 create 160 bits hashes. The SHA-2 group is technicallyvery similar to SHA-1:

Although no weaknesses of SHA-2 have been found yet, they areexpected to come.

Nevertheless, the longer hash sums provide secure use for the next years, as long as no

new critical mathematic weaknesses in the SHA family are discovered. All SHA-2 algo-

rithms are covered by a U.S. patent held by the NSA, while SHA-1 is free to use.

A third group of hash functions is theRIPEMD (RACE Integrity Primitives Evaluation

Message Digest) family. The first member of the group, the original RIPEMD, iscon-

sidered insecure due to collisions found for MD4, on which RIPEMD is based [DBP96].

Therefore, RIPEMD-128 was developed, producing a 128 bits hash length like RIPEMD,

but seeming collision resistant yet. A stronger variant is RIPEMD-160, computing 160

bits output, while two other successors, RIPEMD-256 and RIPEMD-320, only reduce

the risk of collisions. The algorithms are developed in an open community and none of

them is covered by patents [Bos04]. Compared to SHA-1, RIPEMD-160 is faster, but

not as widespread and well-investigated as NIST’s algorithm. Since security is more im-

portant to offline-authentication, use of SHA-1 is recommended.

2.4 Random Numbers

Digital signature algorithms use randomly chosen key pairsfor signing operations. IfEve

discovers, thatAlice’s key pair was not randomly picked, but after a certain procedure,

she may be able to reconstruct it and sign messages exactly like Alice does. So, deter-

minable random numbers may lead to the collapse of even the best public key system.

Ideally, random numbers have to be chosen by aRandom Number Generator(RNG) be-

ing completely random, but as far as the numbers are picked bya deterministic working

mobile device, only aPseudo-Random Number Generator(PRNG) is at hand, which

lets numbers only seem random, although they are reproducible. There exist different

approaches to create the impression of real randomness witha PRNG, which seem to

work good as long as the methodology of the random source is not reconstructible. A

common idea is to take the day’s time and date value as starting point and apply tech-

niques to it to diversify the resulting value, like hashing it with a one-way hash function.

This obscures the original time value, making it impossibleto recreate it without further

knowledge about the time interval from which the number was chosen.

Other variants evaluate key pressing intervals or mouse motions of the user, but each is

22

2.5. CERTIFICATE FORMATS

traceable toEve. A possibility that seems to work well and may be worth implementing is

the recording of atmospheric noise sent by a radio and pickedup by a mobile device’s mi-

crophone [Sim05]. The Java programming language offers theclassSecureRandom,

which offers a cryptographic strong PRNG, meaning that it is considered seeming ran-

dom “enough” for cryptographic use.

2.5 Certificate Formats

The offline-authentication scheme presented in 2.1.5 requires a standardized method

of exchanging identification information between the authenticating parties, including

unique identifiers and public keys. Therefore,digital certificates, representing verifiable

links between identifiers and the corresponding public keys, are exchanged. A popular

certificate format used to describe the contained information is X.509[IT05], specified

by the International Telecommunication Union(ITU-T), which stores data in an XML

tree and is very flexible to the content. In a closed environment, where certificates are

not used for other means than offline-authentication, a self-designed format containing

only minimal structure, like simple separation of concatenated information, may also be

chosen, because of faster parsing on mobile devices with limited computing power.

The following information should be contained in a certificate, following to [Buc03]:

• the certificate’s unique ID number

• the CA’s name

• Bob’sunique identifier

• his public key

• the public key’s algorithm name

• beginning and ending date of the certificate’s validity

• information about restricted use of the public key to certain applications

Using a proprietary certificate format for offline-authentication, some entries may not be

necessary. If only one algorithm is used, its name does not have to be mentioned. Also, if

only one CA exists, its name is known to every user. The application to use the certificate

with is clear, too. Additional information is needed, when the certificate is to be signed,

like the name of the signer, the corresponding certificate’sID and the signing algorithm.

See Section 4.3 for the implementation in theAuthToolkit.

23

Chapter 3

Implementation of

Offline-Authentication in Java ME

3.1 Introducing Java ME

The Java 2 Micro Edition(Java ME) fromSun Microsystems[Mic06a] is a derivate of

theJava 2 Standard Edition(Java SE) with focus on the special demands of limited de-

vices. Like the Java SE Bytecode, every program compiled in Java ME Bytecode can

be interpreted by a Java ME virtual machine, called KVM (K forkilobyte) instead of

Java SE’s JVM. Since mobile devices are less powerful than desktop computers, they are

referred as limited devices, meaning their CPU is rather slowand their memory is small

compared to machines supporting the Java SE. The Java ME consists of three parts:

configurations, profilesandoptional APIs.

The configurationis the base part, determining a subset of Java SE’s API. Which con-

figuration is supported by a device, depends on its hardware capabilities. Two different

configurations exist: TheConnected Device Configuration(CDC) used on faster PDAs or

set-top boxes and theConnected, Limited Device Configuration(CLDC), implemented

often on cell phones. Because of the wide spreading of Java ME compatible cell phones,

offline-authentication has to be runnable on the CLDC as the lowest common denomina-

tor.

Profilesexpand the API with device-specific user interfaces and storage functions; cell

phones are usually compatible with theMobile Information Device Profile(MIDP),

which will be used in the following Sections, and PDAs use thePersonal Digital As-

25

CHAPTER 3. IMPLEMENTATION OF OFFLINE-AUTHENTICATION IN JAVA ME

Figure 3.1: Java SE and Java ME Stack Components

sistant Profile(PDAP). Profiles for the CDC are more flexible and offer a more complex

API, but they will not be target of development in this thesis.

Optional APIsmay be on top of the profiles, like a Bluetooth or 3D gaming API for

a specific MIDP compatible device. Figure 3.1 provides an overview, please refer to

[LK05] to get a deeper understanding of Java ME.

3.1.1 The Wireless Toolkit

Sunoffers theSun Java Wireless Toolkit, that allows developing software for Java ME.

The most comfortable way to install it, when already using Sun’sNetbeans IDE[Mic06c],

is to download theNetbeans Mobility Pack, which includes theWireless Toolkit. This

way, the extra functionality is integrated into the existing IDE. Attention has to be paid

to the provided mobile device emulator for testing programsin development. It may

work much smoother or slower than the real devices and, like the various desktop com-

puters able to run the Java SE, ME devices vary enormous in speed from one model

series to another, which is especially important when it is necessary to compute complex

cryptographic algorithms.

Moreover, vendors of Java ME compatible devices do not implement every part of the

Micro Edition with the necessary accurateness, so applications may run flawlessly in the

emulator, but produce different errors from one phone modelto another. During develop-

ment of the AuthToolkit demonstration application, it showed that especiallyoptional

APIs like Bluetooth are affected by this. As an approach to this problem, vendors like

26

3.1. INTRODUCING JAVA ME

Nokiaor Sony-Ericssonoffer own Java ME emulators, which indeed behaved differently

when confronted with the application. But creating platformindependent solutions is

made difficult by this.

3.1.2 Java ME Profile and Configuration Versions

The Java ME’s CLDC configuration with MIDP profile provides only a small subset

of the bigger Java SE, which affects complete parts of the Java language a high level

language programmer is accustomed to. For example, the CLDC 1.0 does not support

floating point numbers at all, while they are implemented in CLDC 1.1, which makes the

newer version recommendable.

Many mobile devices already support the CLDC 1.1 together with MIDP 2.0, which is

the targeted platform for development in the following Sections. Unfortunately, still the

complete API for cryptographic computations is absent in these versions.

3.1.3 Java Cryptography Architecture in Java SE and ME

To understand Sun’s two different cryptographic modules for the Java language, a glance

at history is helpful. From version 1.1, Java is bundled withthe moduleJava Cryptogra-

phy Architecture(JCA), a library with interfaces for signing and hashing. In Java 1.2,

another API was introduced: theJava Cryptography Extension(JCE), offering functions

for several symmetric and asymmetric algorithms. But due to U.S. export regulations in

force at that time, cryptographic source code was treated the same way as weapons and

the export of theJava Software Kitto other countries was prohibited. Therefore, Sun

split the JCA and the JCE and put all classes affected by U.S. export laws into the JCE

and the non-prohibited into the JCA, enabling delivering Java with the JCA outside the

U.S. - without the JCE. The laws changed in 1999, making it possible to bundle Java ver-

sion 1.4 with a weaker JCE for export. Weak in this context refers to the maximum key

length of the supported algorithms, allowing to easily break encryption by brute force.

Today, after another change of the regulations in 2004, the only difference between the

weak and strong JCE is a file containing security policies. U.S. law permits downloading

and replacing the file with one from Sun’s website to gain “unlimited strength” support.

The JCA offers a set of classes in the packagejava.security for transparent im-

27

CHAPTER 3. IMPLEMENTATION OF OFFLINE-AUTHENTICATION IN JAVA ME

plementation and use of cryptographic functions like encryption or hashing, which en-

ables other developers than Sun to design own cryptographicservice providers. The

programmer does not need to worry which certaincryptographic service provideris

used. In Java ME, Sun excluded the JCA from the CLDC to downsize the consump-

tion of disk space on mobile devices, but some providers created special mobile edi-

tions of their frameworks that also regard the technical circumstances on mobile de-

vices.

3.2 Java Security Provider

Several security providers exist which enhance Java’s cryptographic abilities. Only the

more widespread are discussed here to benefit from a bigger number of testers, which

guarantees greater code maturity. The criteria to evaluatethe security providers are pretty

much the same as for the digital signature algorithms in Section 2.1.2: Besides the avai-

lability of RSA and ECDSA, all implementations of discussed algorithms in Chapter 2

should be flawless regarding security aspects, the sources should be open (also to review

the implementation), as well as free of charge and the provider should run fast. Ideally, a

separate mobile edition exists that reimplements Java ME’slack of necessary data types

for cryptography likeBigInteger.

3.2.1 Sun JCE

Sun’s JCE is the standardcryptographic service providerin Java SE and can be found

in the packagejavax.crypto. It supports a variety of symmetric algorithms, but only a

few asymmetric like RSA, while ElGamal, DSA and ECDSA are not implemented. The

source code is not available and it cannot be integrated intomobile projects because of

lacking classes likejava.math.BigInteger andjava.math.SecureRandom.

3.2.2 SATSA

TheSecurity and Trust Services API for J2ME(SATSA) by Sun realizes parts of the JCE

as optional API adding cryptographic functionality to JavaME [Mic06d]. It implements

28

3.2. JAVA SECURITY PROVIDER

the digital signature algorithms RSA and DSA, but no ellipticcurve cryptography. By

supportingsmart cardsas security elements, cryptographic operations can be performed

in a trusted environment on mobile devices. Unfortunately,devices are not necessarily

supplied with smart cards (or the programmer does not has access to them, like a SIM

card in a cell phone), nor any cryptographic hardware, so thefunctionalities have to

implemented in software, since the cryptographic providerhas to be runnable on every

Java supporting mobile device. Although SATSA is free to use, its source code is not

available.

3.2.3 Bouncy Castle

TheBouncy Castle Crypto API[otBC06], developed by theLegion of the Bouncy Cas-

tle, is a completely free and open source cryptographic serviceprovider. It is aClean-

Room-Implementationof the JCE (meaning, that it supports the same interfaces, butis

developed from scratch) and supports every algorithm askedfor - and even a lot more. A

lightweight versionfor limited mobile devices is available, too, which realizes the mis-

singBigInteger andSecureRandom for use with Java ME.

The downside of Bouncy Castle as being a voluntary project is, that there is no support for

the package except a very poor class documentation. Withoutsearching for further docu-

mentation on the internet and raking around in some of the rare books covering Bouncy

Castle like [Hoo05], it is very hard to get it to work (see Section 8.1). While Java SE

offers the well-documented JCA interfaces for use with BouncyCastle, the lightweight

ME version requires direct work with the Bouncy Castle classes, involving examining

the source code for understanding the gearing of the package.

3.2.4 Cryptix

The Cryptix project [Cry04], used in theiCloudsproject of theDarmstadt University

of Technology[SH04], is anotherClean-Room-Implementationof the JCE. Although it

supports many algorithms, it lacks support for elliptic curves and offers no Java ME

version. Since support and development on the project seem to have stopped in 2004, it

cannot be considered an option for ambitious cryptographicapplications. A subproject

29

CHAPTER 3. IMPLEMENTATION OF OFFLINE-AUTHENTICATION IN JAVA ME

for elliptic curves,Elliptix, is in a pre-alpha state since 1999 and has not been updated

anymore.

3.2.5 IAIK

TheInstitute for Applied Information Processing and Communication (IAIK) of the Graz

University of Technology[Gra05] provides aClean-Room-Implementationof the JCE

that is free of charge for research and educational purpose,but not for commercial use.

A separate lightweight mobile version, theIAIK JCE-ME, is available. The IAIK JCE

has a lot of different security algorithm schemes implemented and an optional API for

elliptic curve cryptography is offered. The main advantageover Bouncy Castle is the

availability of support for IAIK’s products, the drawback of the commercially orienta-

tion is the closed source. IAIK advertises the speed of the algorithms as a design focus.

3.2.6 Conclusion

Bouncy Castle and the IAIK JCE are both very interesting, but have downsides that

have to be evaluated. Unfortunately, open source and free ofcharge appear to be a

contradiction to a good documentation and product support.The lack of documentation

of the Bouncy Castle project can be countervailed with voluntary reports on the internet,

but it is not guaranteed, that the project will be continually developed. IAIK on the other

hand keeps its sources under lock and key. Since free sourcesweigh more to the demands

of the offline-authentication project, Bouncy Castle has beenchosen for implementation.

Because speed of Boncy Castle’s algorithm implementations canonly be guessed, speed

measurements are taken in Chapter 5.

30

Chapter 4

The AuthToolkit

The DOM project requires secure offline-authentication for scenarios like offline bar-

tering. Therefore, theAuthToolkitproject has been developed as result of this thesis to

support authentication and signing with Java ME and SE. Withit, offline-authentication

of mobile devices is made possible by using short-range communication connections,

that can also be used for flow of application data after authentication (or before, if ne-

cessary). Cryptographic operations in theAuthToolkitare performed by theBouncy Cas-

tle lightweight API, which is implemented as security provider. Algorithms fordigital

signatures that were to be integrated are RSA and ECDSA, both with the SHA-1 hash

function. TheAuthToolkitcan be used as base for other cryptographic extensions of the

DOM project, like data encryption.

Since it has to be evaluated, whether mobile devices available now and in the near fu-

ture will support offline-authentication based on this software with acceptable speed, the

testing applicationsBCSpeedSEandBCSpeedMEwere written. They are presented with

testing results in Chapter 5. A demonstration application showing the possibilities of the

AuthToolkit has been developed and is presented in Chapter 6.

4.1 Recommendations

Since theAuthToolkitwill be used in theDOM project, general recommendations set

for DOM have to be fulfilled by theAuthToolkit, too. It has to use cryptographic li-

braries free of charge and open source, which is complied by the Bouncy Castle security

31

CHAPTER 4. THE AUTHTOOLKIT

provider and RSA, respectively ECDSA, together with SHA-1. For flexibility toward

cryptanalytic progress and because of unknown speed of the Bouncy Castle provider,

both algorithms have to be implemented.

Besides offline-authentication, theAuthToolkitshould be applicable to any scenario where

authentication is demanded. Hence the project performs authentication by using arbitrary

input and output streams to other devices, which also allowsonline-authenticaion. More-

over, theAuthToolkitis designed generic to allow integration into projects for Java ME

and SE, making authentication between any Java supporting machines possible.

The components integrated into theAuthToolkitcomprise signature methods, certificate

objects and theChallenge-Response-Identificationfor authentication as described in Sec-

tion 2.1.3.

4.2 Structure

The AuthToolkit is realized as a mobile library, enabling the implementation into Java

ME as well as into Java SE projects. Offline-authentication as presented in this thesis

needs digital signatures and certificates, this is why the project provides three packages:

signature, certificate andauthentication.

Package signature

The packagesignature offers an interface and three classes implementing it:

Signer This is an interface for arbitrary signature algorithms, that classes being part of

the signing package should conform to. It offers functions for key pair generation,

signing and verifying generic messages. Implementations of Signer allow digital

signature operations not limited to certificates but any content.

RSASigner An implementation of theSigner interface for the RSA algorithm. For

key generation, it allows specifying the key length, the prime number certainty

(see Section 5.2 for an explanation) and the public key, but also offers “default”

values sufficient for most applications on mobile device: 1024 bits and a certainty

of (1
2)25.

32

4.2. STRUCTURE

RSAOAEPSigner Mainly equivalent toRSASigner, enhancesRSAOAEPSigner it

with theOptimal Asymmetric Encryption Padding(OAEP) encoding, making RSA

secure againstchosen ciphertext attacks[BR95]. The downside of this method are

effectively smaller block sizes, which slows down signing of longer hash functions

like SHA-512 by a factor of 2, depending on the length of the RSAmodulus.

ECDSASigner A third implementation of theSigner interface, which integrates the

ECDSA algorithm. When generating keys, prime curves with 192,239 and 256

bits are available. These curves areprime192v1, prime239v1andprime256v1, as

defined inANSI X9.62. Like theRSASigner default values, a default curve is

available (192 bits).

If other signature algorithms become necessary for theDOM project, they can easily be

added by another implementation of theSigner interface.

Package certificate

Thecertificate package contains classes for managing certificates. Only one for-

mat is used in offline-authentication and therefore the class AuthCert has been de-

veloped. AnAuthCert instance represents a certain certificate as defined in Sec-

tion 4.3 together with the corresponding signature and offers access to the certificate’s

fields.

Package authentication

Theauthentication package copes with the process of authenticating devices. The

classAuthManager initializes and processes the authentication cycle between two de-

vices. Calling an AuthManager object and passing it a connection’sInputStream and

OutputStream is the only action a developer has to perform to implement authentica-

tion. The process performs without any need of user interaction until completed, which

can be checked by reading status fields of the AuthManager. Then the exchange of ap-

plication data can begin.

AuthManager is adapted to work with Java ME peculiarities like theDisplay class

as user interface and uses the BluetoothLocalDevice andRemoteDevice to get

33

CHAPTER 4. THE AUTHTOOLKIT

information about devices. When these objects are not passedto AuthManager, the com-

mandline is used as output and Strings describe the connected parties. This enables

authentication also with Java SE and with any connection where streams are available,

for example WLAN.

For detailed information on every method of the classes,JavaDocshave been created

and are located on the CD in the folders of theAuthToolkitproject.

4.3 Implementation of Certificates

The certificate format used by the AuthToolkit is not according to X.509 to minimize

the computation time on mobile devices. Although parsers are available that process

the standardized X.509 format, the flexibility it offers is not needed for the offline-

authentication purpose and so the management overhead can be avoided. Hence a simple

separation symbol (a new line) between each entry is defined and the specified entries

are:

C (Country), ST (State), CN (Common Name), unique identifier, public key, according

key algorithm, the public keys length, a “valid from” date and a “valid to” date, the hash

function used to sign the certificate, as well as the signature itself.

The order of the entries is fixed and can be seen in the sample inFigure 4.1.

4.4 Authentication Protocol

The flow of messages for offline-authentication implementedinto the authentication

package of theAuthToolkitproject follows the considerations of Section 2.1.5. The dif-

ference is an extension to authenticate not only one party toanother but both to each

other. The actual information exchanged is shown in Figure 4.2.

34

4.4. AUTHENTICATION PROTOCOL

Figure 4.1: Sample certificate representing the structure used in offline-authentication
certificates.

35

CHAPTER 4. THE AUTHTOOLKIT

Figure 4.2: Authentication protocol used in the AuthToolkit in case of positive authenti-
cation. If certificates or responses have been proved to be wrong, the noticing
party sendsBYEto signalize failure.

36

Chapter 5

Test series on Java SE and ME

To estimate the expectable speed of offline-authenticationon desktop computers and mo-

bile devices, two applications were developed for measuring the execution speed of RSA

and ECDSA in various key lengths together with several SHA hash functions.

5.1 Desktop Computers and Java SE

The testing project for desktop computers is calledBCSpeedSE. When started, all test-

runs are processed successively until finished. Then a new file will be created in the ap-

plication’s directory, calledBCSpeedSE_[date].txt, where minimum, maximum,

average values and the standard deviation of each part of every test series is stored.

The sequence observed in one test series is always the same:

1. A random message of fixed length is hashed.
2. A key pair is created.
3. The message is signed.
4. The signature is verified.
5. A verification failure is stored.

The verification result is mainly important for RSA due to the certainty of a key pair

being created from prime numbers. If the numbers are not prime, verification fails.

Each sequence shown above is repeated one hundred times to straighten out conspicuous

slow or fast results. The number of repeatings is not enough for absolutely reliable re-

sults, but points out roughly the way Bouncy Castle is able to cope increasing computing

37

CHAPTER 5. TEST SERIES ON JAVA SE AND ME

complexity.

The settings observed combined each RSA at 512, 768, 1024 and 2048 bits with SHA-1,

SHA-256, SHA-384 and SHA-512, as well as ECDSA at 192, 239 and 256 bits with the

SHA variants. The RSA and ECDSA steps represent conventional values from lower to

higher security. The different SHAs shall show effects of different message digest bit

lengths to the signing and verifying procedures. With RSA, nodifferences are expected,

because even SHA-512 is only as long the block length of the shortest modulus.

The RSA public key value is fixed for each repeating at 216+1 = 65537, which is small

compared to the modulus lengths (512+ bits) and therefore, operations on the public key

are expected to be faster than on the private key. The prime certainty is set to 25, which

means that a found number is prime with a certainty of 1− (1
2)25, which is the upper end

of values usually implemented.

The tests were run on anAsus A8N-SLImainboard with anAMD Athlon64 3500+CPU

running at 2200MHz and one gigabyte DDR memory at 400MHz. This represents a mid-

range end-user system in mid 2006.

Results are presented in Figures 5.1 through 5.5 with so-called candlesticks. The boxes

of each stick show the standard deviation from the average value, which is shown by a

horizontal line in the middle of each box. The vertical linesat the top and bottom of the

boxes indicate the measured maximum and minimum values.

The RSA key generation results shown in Figure 5.1 are logarithmically scaled. But

still the creation times for longer keys cannot be approximated by a straight line, proving

that use of RSA makes sense only when key generation is necessary very seldom.

Figure 5.2 describes signing and verification times of RSA. While verification at dif-

ferent key lengths takes about constant time because of the fixed public key at(216+1),

signing becomes slower with a power of more than two, which was expected in Section

2.2.1.

ECDSA key generation measurements are shown in Figure 5.3. The measured times

grow about linear compared to key sizes. It should be regarded, that the key length steps

are not equally caused through lacking availability of moreconvenient curves in Bouncy

Castle. Of importance is also that already 192 bits of ECDSA areconsidered about as

strong as RSA 1024, as shown in table 2.2.5.

Signing and verifying with ECDSA results are described in Figure 5.4. The signing

38

5.1. DESKTOP COMPUTERS AND JAVA SE

 10

 100

 1000

 10000

 100000

20481024768512

R
es

ul
ts

 in
 [m

se
c]

RSA key length in [bits]

RSA Key Generation with a Prime Certainty of 25, Desktop

Figure 5.1: RSA key generation on desktop, logarithmic scale

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

20481024768512

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

S
ig

ni
ng

 in
 [m

se
c]

V
er

ify
in

g
in

 [m
se

c]

RSA key length in [bits]

RSA Signing and Verfication with SHA-1, Desktop

signing
verifying

Figure 5.2: RSA with SHA-1 signing and verification on desktop

39

CHAPTER 5. TEST SERIES ON JAVA SE AND ME

 0

 10

 20

 30

 40

 50

 60

256239192

R
es

ul
ts

 in
 [m

se
c]

ECDSA key length in [bits]

ECDSA Key Pair Generation, Desktop

Figure 5.3: ECDSA key generation on desktop

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

256239192

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

S
ig

ni
ng

 in
 [m

se
c]

V
er

ify
in

g
in

 [m
se

c]

ECDSA key length in [bits]

ECDSA Signing and Verfication with SHA-1, Desktop

signing
verifying

Figure 5.4: ECDSA with SHA-1 signing and verification on desktop

40

5.1. DESKTOP COMPUTERS AND JAVA SE

 0

 5

 10

 15

 20

 25

 30

 35

512384256160

 35

 30

 25

 20

 15

 10

 5

 0

R
S

A
 in

 [m
se

c]

E
C

D
S

A
 in

 [m
se

c]

SHA length in [bits]

SHA-1 and SHA-2 with RSA 1024 and ECDSA 192 Signing, Desktop

RSA
ECDSA

Figure 5.5: RSA 1024 and ECDSA 192 with different SHA algorithms on desktop

times measured take about the same time as key creation, while verification is slower by

a factor of two, although it grows linearly also.

In Figure 5.5, measured times of RSA 1024 and ECDSA 192 are shownwith different

SHA bit lengths. As expected, there appear no differences and the chosen SHA algo-

rithm on desktop computers does not has to be a matter of speed.

The results show that a computer of this class is able to compute even the most com-

plex operations (finding RSA key pairs of 2048 bits length) in about five seconds on

average. Noticeable outliers appear at RSA signing with 2048bits, which indicates be-

havior when even higher security levels become necessary. Nonetheless, the conclusion

is that key lengths on more powerful desktop systems should be chosen from upper se-

curity levels, since performance is of no concern there.

The enormous advantage of shorter ECDSA keys compared to RSA isclearly shown at

key generation. But also that signing and verifying is slowerthan RSA even at these

short key lengths has to be concerned, since key generation usually is performed much

less frequently than signing and verifying.

Which algorithm (and which strength) to choose should be madedependent on the mo-

bile devices observed in Section 5.2.

41

CHAPTER 5. TEST SERIES ON JAVA SE AND ME

5.2 Mobile Devices and Java ME

The testing application for mobile devices is calledBCSpeedME. When started, it de-

mands the user firstly to choose how often each test is ran (1, 20, 50 or 100 times) and

then offers a list with possible combinations of algorithmsand hash functions. In con-

trast toBCSpeedSE, it is not allowed to run all test combinations in a row without user

interaction, since this would take way too long to finish. This eased the problem that the

processing units were needed sometimes for other means during testing (like when the

phone is called), what adulterated the results.

The mobile devices used for testing are the cellphonesNokia 6600released in 2003,

Siemens S65from 2004 andSony-Ericsson M600ifrom 2006. All three are modern mo-

bile devices able to run Java ME applications and to communicate via Bluetooth and

GPRS, which are integrated in the offline-authentication demonstration application pre-

sented in Chapter 6. TheNokia 6600implements only CLDC 1.0 and therefore lacks

floating point support. But because it is owned by the computernetworks chair and was

available for testing,BCSpeedMEwas developed to run on this phone, too. The most un-

comfortable adaptation was to let the standard deviation bedisplayed squared, because

calculating the square root is not possible with CLDC 1.0. Unfortunately, it hung up

during tests regularly, so only a few tests were ran upon it.

The other phone of the chair, theSiemens S65, hung up reproducible when trying to com-

pute results when more than one test series were ran in a row. Allowing only one row of

tests to run and then showing results solved this problem, sothat all tests could also be

measured on this phone.

TheSony-Ericsson M600i, as being the newest of the devices available for testing, made

no adaptations necessary.

The results are presented by candlesticks, which are explained in Section 5.1. All figures

show the measured times of theSony-Ericsson M600i, which turned out to be the fastest

and most stable device.

A look at the RSA key generation measurements in Figure 5.6 shows the same growth

as RSA on the desktop in Section 5.1, although about one hundred times slower. This

shows that the higher key lengths should only be considered,if key creation happens

very seldom in the application. Keys used for authentication may be valid for years, so

even 2048 bits should be taken into account.

42

5.2. MOBILE DEVICES AND JAVA ME

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

20481024768512

R
es

ul
ts

 in
 [m

se
c]

RSA key length in [bits]

RSA Key Generation with a Prime Certainty of 25, Sony-Ericsson M600i

Figure 5.6: RSA key generation on Sony-Ericsson M600i, logarithmic scale

 0

 1000

 2000

 3000

 4000

 5000

20481024768512

 5000

 4000

 3000

 2000

 1000

 0

S
ig

ni
ng

 in
 [m

se
c]

V
er

ify
in

g
in

 [m
se

c]

RSA key length in [bits]

RSA Signing and Verfication with SHA-1, Sony-Ericsson M600i

signing
verifying

Figure 5.7: RSA with SHA-1 signing and verification on Sony-Ericsson M600i

43

CHAPTER 5. TEST SERIES ON JAVA SE AND ME

 0

 5000

 10000

 15000

 20000

256239192

R
es

ul
ts

 in
 [m

se
c]

ECDSA key length in [bits]

ECDSA Key Pair Generation, Sony-Ericsson M600i

Figure 5.8: ECDSA key generation on Sony-Ericsson M600i

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

256239192

 40000

 35000

 30000

 25000

 20000

 15000

 10000

 5000

 0

S
ig

ni
ng

 in
 [m

se
c]

V
er

ify
in

g
in

 [m
se

c]

ECDSA key length in [bits]

ECDSA Signing and Verfication with SHA-1, Sony-Ericsson M600i

signing
verifying

Figure 5.9: ECDSA with SHA-1 signing and verification on Sony-Ericsson M600i

44

5.2. MOBILE DEVICES AND JAVA ME

RSA signing and verification, shown in Figure 5.7, is a matter of a few seconds and much

faster than with ECDSA (see Figure 5.9), which takes ten to thirty seconds.

In Figure 5.8, ECDSA key pair generation measurements are described. The key pair

creation happens in less than 15 seconds and is nearly as fastas ECDSA signing and

twice as fast as verifying. The implementation of ECDSA 239 isslower on average com-

pared to ECDSA 256. Therefore, ECDSA 256 should be preferred toECDSA 239, when

a higher security level than ECDSA 192 is necessary.

Compared to the results of the desktop computer in Section 5.1, the mobile results are

slower by a factor of one hundred to one thousand times, depending on the specific oper-

ation. Especially key generation is very slow on the mobile devices. The other operations

need seconds, instead of milliseconds as on the desktop, to finish.

The differences between RSA and ECDSA show that the algorithm to choose finally

depends on the emphasis key generation in contrast to verification and signing in an ap-

plication has. In offline-authentication, key pairs need only be computed once per device,

so RSA is a better option as long as ECDSA’s speed is not further improved in Bouncy

Castle.

Different hash functions, shown in Figure 5.10, do not seem to have an effect on mea-

sured RSA 1024 times, so the decision can be made upon desired security level. With

ECDSA 192, average values with SHA-384 and SHA-512 raised significantly compared

to SHA-1 and SHA-256, which may be caused through splitting longer message digests

into more blocks that have to be processed.

Some of the RSA verifications failed, which is supposed to be caused by the way RSA

keys are generated in Bouncy Castle. A key is a randomly picked number, which is only

estimated to be a prime number. Thecertainty, to which a number should be prime, can

be specified when generating keys. If a chosen key pair is madeof a non-prime num-

ber, signing works but verification fails. All tests above have been made with a certainty

value of 25, meaning that a number is prime with a certainty of(1− (1
2)25). The docu-

mentation of theBigInteger.isProbablePrime(int certainty) in Java

SEmentions execution time proportional to the value. If the influence of the certainty

to speed inBouncy Castlealso behaves like this can also be tested withBCSpeedMEby

choosing the optionRSA Certaintyat start. Then, RSA 512 test series (like above, each

series consists of 100 repeatings) with different prime certainties are measured.

45

CHAPTER 5. TEST SERIES ON JAVA SE AND ME

 0

 200

 400

 600

 800

 1000

 1200

 1400

512384256160

 14000

 12000

 10000

 8000

 6000

 4000

 2000

 0

R
S

A
 in

 [m
se

c]

E
C

D
S

A
 in

 [m
se

c]

SHA length in [bits]

SHA-1 and SHA-2 with RSA 1024 and ECDSA 192 Signing, Sony-Ericsson M600

RSA
ECDSA

Figure 5.10: Different SHA algorithms with RSA 1024 and ECDSA 192 on Sony-
Ericsson M600i

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

100503020101

R
es

ul
ts

 in
 [m

se
c]

Certainty

Prime Certainties at RSA Key Generation, Sony-Ericsson M600i

Figure 5.11: Prime Certainties at RSA 512 on Sony-Ericsson M600i

46

5.2. MOBILE DEVICES AND JAVA ME

The results in Figure 5.11 show, that the influence of a greater prime certainty is much

less than proportional increase at RSA 512. Unfortunately, even one verification with a

certainty of 100 failed, where a number is prime with a probability of (1− (1
2)100). So

the reason for failure has to be somewhere else. To cope with that, applications using the

Bouncy Castle RSA algorithms should make a “test-run” after keycreation: A random

number has to be signed and its signature verified afterwards. If the result is good, the

key pair is considered okay. Otherwise, another key pair should be created.

With this method, a certainty of about 10 is enough to receivea working key pair in a

feasible amount of time.

A final note about the big differences between minimum and maximum values, respec-

tively the width of the standard deviation. Key pair creation is, as already mentioned

above, a process of choosing a random number and then testingit’s primality. According

to that, a prime number can be found fast, even the first numberchosen may be prime,

but it can also take many attempts.

Signing and verifying processes are better predictable, they happen within one magni-

tude. These differences are presumably due to the bit representation of the keys and

messages, which specifies how many low level multiplications and additions to make

when calculating RSA exponentiations or ECDSA additions.

Another factor that appears on mobile devices much strongerthan on the desktop is the

operating system and other applications running in background, which consume signifi-

cant amounts of memory and processing time. Although other applications were shut-

down when possible before startingBCSpeedME, those influences are hardly calculable,

although surely significant.

47

Chapter 6

Offline-Authentication Demonstration

Application

Implementingoffline-authenticationrequires a mobile client, calledAuthClientMEDemo,

and a certificate management server, theAuthServerDemo. The server is aimed at non-

mobile computers and therefore will be based on Java SE with the standard Bouncy

Castle Crypto API as security provider, while the mobile part will be developed using

Java ME and the lightweight Bouncy Castle Crypto API.

These projects show how theAuthToolkitcan be used for the offline-authentication pur-

pose. TheAuthServerDemo, acting as certificate authority, manages known user cer-

tificates, while the mobile clients register themselves at the server and can execute an

offline-authentication process. The server implements theAuthToolkitin the same way

the clients do, so the Bouncy Castle lightweight API is sufficient to the server.

6.1 The AuthServerDemo

The AuthServerDemois a straight forward implementation as a proof of concept for a

server managing users and their certificates as PKI. Mobile devices need a root certifi-

cate and a personified certificate for offline-authentication, so theAuthServerDemois

owner of the root certificate and offers the service of certificate creation to members

connecting to it. The certificates are generated with information provided by the clients.

When creating a root certificate at first start of the server, the algorithm to use can be

chosen: RSA or ECDSA. After initialization, waiting for clients begins to supply them

49

CHAPTER 6. OFFLINE-AUTHENTICATION DEMONSTRATION APPLICATION

Figure 6.1: Flowchart of theAuthServerDemo

with certificates (see Figure 6.1), which have unique serialnumbers.

The certificates are stored each in a single file in the workingdirectory of the server.

Connecting a database to the server for certificate management is simply implementable

but not part of this thesis.

Another possible extension is a logic unit for calculating validity of certificates. This

concerns out-dated certificates as well as withdrawn ones. Certificate revocation with

offline-authentication has not been analyzed in this thesisand is currently considered un-

solved. An approach to handle this may be blacklisting, although this implies lists which

can become very large and have to be distributed and kept up-to-date on the mobile de-

vices.

The GUI is realized with Java’s Swing API and consists of two tabs, one for showing log

messages and another for the certificates stored, which are presented in a table to show

their content and signature.

50

6.2. THEAUTHCLIENTMEDEMO

6.2 The AuthClientMEDemo

TheAuthClientMEDemois the second application of the demonstration designed to run

on mobile devices. The implemented functionality comprises finding another device also

running anAuthClientMEDemoand performing offline-authentication with this device.

Before this is possible, the mobile devices need unique certificate, which can be obtained

by connecting to theAuthServerDemodescribed in Section 6.1.

Certificate Management

The private key and all certificates are stored in the application’s record store, which is

managed by Java ME. Other Java applications do not have access to this store for security

reasons. But the record store is somewhere on a physical memory, so it is likely possible

to access this storage in some way. Therefore, at least the private key should be encrypted

with a pass phrase in a serious application to block insights, which is out of scope of this

thesis.

User Registration

New users receive their certificate by connecting to the server via TCP/IP over GPRS.

This registration is made simple to clarify the proceedings. Neither the user identity

is checked as recommended in Section 2.1.5, nor is a secure channel used to exchange

certificates. Both is regarded as necessary to a serious implementation.

The procedure is costly to the user and requires online connectivity, but has be done only

once for receiving a unique certificate. It simulates a simplified exchange of the CA’s

and user’s information.

Whether RSA or ECDSA is used by the server and clients has to be decided at the first

start of the server, see Section 6.1. The client certificatesare generated on the mobile

devices during server registration, see Figure 6.2.

51

CHAPTER 6. OFFLINE-AUTHENTICATION DEMONSTRATION APPLICATION

Figure 6.2: Flowchart of theAuthClientMEDemo

Figure 6.3: The authentication process inAuthClientMEDemo

52

6.2. THEAUTHCLIENTMEDEMO

User Interface

The GUI is a collection of Java ME displays, which indicate the status of the application.

A main menu offers the possibility to connect to another device for authentication or to

show known certificates. The latter is implemented as a list,where the user may choose

to verify the selected certificate, set it as current or alterthe common name of the certifi-

cate and then set it as current.

Besides these functions, the user’s original certificate andthe root certificate can be

shown.

Offline-Authentication via Bluetooth

When two clients own a certificate, client-client connections are possible, which is im-

plemented over Bluetooth as one possibility of a freely available short range communi-

cation. The protocol implemented for offline-authentication is presented in Section 4.4,

see also Figure 6.3. The user is informed about the progress of authentication on the

device’s display.

The decision to use Bluetooth was made because WLAN is not yet supported by most

regular cell phones and infrared is often not supported anymore and not suitable to the

envisioned scenario of detecting people.

Developing the Bluetooth connection turned out to be the mostdifficult part of the appli-

cation. Although the Bluetooth framework of theDOM project was still in development,

it worked very well on the Java ME emulators from Sun and Sony-Ericsson. So they

were chosen for implementation into theAuthClientMEDemo. Unfortunately, there ap-

peared problems on real devices regarding Bluetooth inquiryand opening connections.

Only two devices of the brandSony-Ericsson K750icould be reproducibly connected, but

even there various errors occured. Therefore, the Bluetoothpart has been redeveloped

on base of theBluetoothDemosupplied with theSun Wireless Toolkit, which seems to be

the only implementation able to pair real mobile devices. The difference to other projects

are mainly a more intense usage of threads.

53

CHAPTER 6. OFFLINE-AUTHENTICATION DEMONSTRATION APPLICATION

Cheating Authentication

There are two possibilities implemented inAuthClientMEDemoto test the authentication

process against deceits: By setting another certificate as current one, the user can change

her “identity” for testing the resistance of offline-authentication. The process has to fail,

because the private keys to other certificates are unknown.

The other option is to change the common name of a certificate.Here, the certificate

itself is altered and so the signature of this certificate will not withstand the verifying

process.

54

Chapter 7

Conclusion and Outlook

The offline-authenticationscheme presented in Section 2.1.5 enables theDigital Own-

ership Managementproject to securely verify service members to each other that have

never met before without the need to set up a costly server connection. Because of the

underlyingPublic Key Infrastructure, the system is scalable to fit even large numbers

of users. The implementedBouncy Castle Crypto APIsupports the special demands on

mobile devices and covers the cryptographic algorithms RSA and Elliptic Curve DSA,

both proved to be very useful for mobile purposes during theoretical analysis in Chapter

2 and the test series in Chapter 5. The level of security they offer with the recommended

parameters will suffice offline-authentication for the nextcouple of years, although math-

ematic and technological progress have to be closely observed.

TheAuthToolkitdeveloped during this thesis serves as foundation to offline-authentication,

but may also be used for any other digital signature application suitable to the DOM

project.

Speed measurements on cell phones showed thatElliptic Curve Cryptographyhas al-

ready passed the border to be used on mobile devices. If the next generation of cell

phones offers advancements in calculation speed or the Bouncy Castle implementation

gets more optimized, it may become first choice in every application in need of authen-

tication or digital signatures.

The AuthServerDemoandAuthClientMEDemoare simplified examples for the realiza-

tion of offline-authentication, but can be easily adjusted to fit the needs of theDOM

project.

55

CHAPTER 7. CONCLUSION AND OUTLOOK

7.1 Outlook

The next step is to include theAuthToolkitinto theDOM project. There, a connection to

a database management system will be integrated for handling user accounts server-sided

with extended certificate validation logic units.

The client devices will also be enhanced by theAuthToolkitto support secure authenti-

cation to other service members. For this use, methods for secure access and storage of

the private key have to be developed.

If DOM applications benefit from data encryption, libraries basing on the Bouncy Castle

security provider can be developed easily with the experience gained during this the-

sis.

56

Chapter 8

Appendix

8.1 Setting up Bouncy Castle

In this section setting up the Bouncy Castle security providerin a Java SE environment

is explained. The installation is not easy there because of missing documentation and re-

quires a couple of steps. With Java ME, usage of Bouncy Castle ismuch more simple, as

described afterwards. The description expectsMicrosoft Windowsas operating system,

although all steps also apply to Linux, only the installation directories and folder slashes

have to be adapted (“\” => “/”). As programming environment,Sun Netbeansis recom-

mended and described in the following, because it supports theSun Wireless Toolkit.

1. Assuming that aJava Runtime Environment(JRE) and aJava Development Kit

(JDK) are already set up on the system,NetBeanshas to be installed. The newest

version,Netbeans 5.0, can be obtained from [Mic06c]. Since applications for mo-

bile devices are to be developed, theMobility Pack 5.0and theSun Java Wireless

Toolkit should also be installed, which are both availably online from Sun, too.
2. Now, Bouncy Castle has to obtained from [otBC06]. Version 1.32is used for

implementation of the applications in the following sections, but at the time of

writing, Bouncy Castle 1.33 is already out and should be chosen, because it is

mainly a bug fix release without changed functionality. The needed file is called

bc-prov-[version].jar. It has to be copied to the directory\lib\ext of

the JREand the JDK’s Runtime:

For exampleC:\jre\lib\ext andC:\jdk\jre\lib\ext.

57

CHAPTER 8. APPENDIX

3. Then, a list entry into the filejava.security has to be made, residing in

\lib\security in both the JRE and the JDK directories. The “X” has to be

replaced with the actual number in the list:

security.provider.X= \
org.bouncycastle.jce.provider.BouncyCastleProvider

The position in the list is nearly arbitrary, it may be put anywhere but the first

place (Sun’s JCE has to stay there). A sequential numbering isimportant for Java

to work with the providers.
4. To undo the key length restriction (see 3.1.3), a “unlimited strength JCE Policy”

file from [Mic06b] has to be put into\lib\security. Bouncy Castle can now

be used with Java SE.
5. For use with Java ME, simply put the filecldc_classes.zip containing the

lightweight API somewhereNetbeanscan find it, for example refer to it in a

project’s classpath as library.
6. An obfuscator, a program for renaming classes for obscuring sense of the source

code and removing unreferenced classes is crucial for BouncyCastle on Java ME

for two reasons: Firstly, the size of the package is about 500kb, which is already

too much for many mobile devices, and secondly, it tries to defineBigInteger

andSecureRandom in thejava.* namespace, which is prohibited by MIDP

devices. Netbeansis supplied with theProGuard obfuscator, which has to be

configured to maximum obfuscation in the project’s settingsfor Bouncy Castle to

work.

8.2 Source Code

All packages discussed in this thesis are supplied with the thesis on a CD, where also the

source code’s documentation and an electronic version of the thesis is located.

58

Bibliography

Bos04 Antoon Bosselaer. The RIPEMD-160 page.

http://homes.esat.kuleuven.be/ bosselae/ripemd160.html (as seen Sep

12th 2006), 2004.

BR95 Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption - How

to Encrypt with RSA. http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf

(as seen Sep 12th 2006), 1995.

BSS99 Ian Blake, Gadiel Seroussi, and Nigel Smart.Elliptic Curves in Cryptogra-

phy. Cambridge University Press, 1st edition, 1999.

Buc03 Johannes Buchmann.Einführung in die Kryptographie. Springer, Berlin, 3rd

edition, 2003.

Cry04 Cryptix. http://www.ntua.gr/cryptix/ (as seen Sep 12th 2006), 2004.

DBP96 Hans Dobbertin, Antoon Bosselaer, and Bart Preneel.

RIPEMD-160: A Strengthened Version of RIPEMD.

http://homes.esat.kuleuven.be/ cosicart/pdf/AB-9601/AB-9601.pdf, 1996.

Gra05 TU Graz. IAIK JCE. http://jce.iaik.tugraz.at/ (as seen Sep 12th 2006), 2005.

Gro02 IETF Network Working Group. http://www.ietf.org/rfc/rfc3280.txt (as seen

Sep 12th 2006), 2002.

Hoo05 David Hook.Beginning Cryptography with Java. Wiley, 1st edition, 2005.

IT05 ITU-T. Recommendation x.509. http://www.itu.int/rec/T-REC-X.509/en (as

seen Sep 12th 2006), 2005.

59

Bibliography

LD00 Julio Lopez and Ricardo Dahab. An Overview of Elliptic Curve Cryptogra-

phy. http://citeseer.ist.psu.edu/333066.html (as seen Sep 12th 2006), 2000.

LFB+00 Peter Lipp, Johannes Farmer, Dieter Bratko, Wolfgang Platzer, and Andreas

Sterbenz.Sicherheit und Kryptographie in Java. Addison-Wesley, 1st edi-

tion, 2000.

Lib06 Open Clip Art Library. http://openclipart.org/ (as seen Sep 12th 2006), 2006.

LK05 Sing Li and Jonathan Knudsen.Beginning J2ME. Springer-Verlag, New

York, 3rd edition, 2005.

LWdW05 Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding X.509 Cer-

tificates. http://eprint.iacr.org/2005/067 (as seen Sep 12th 2006), 2005.

Mic06a Sun Microsystems. Java ME. http://java.sun.com/javame/ (as seen Sep 12th

2006), 2006.

Mic06b Sun Microsystems. JCE Unlimited Strength Jurisdiction Policy.

http://java.sun.com/javase/downloads/index.jsp (as seen Sep 12th 2006),

2006.

Mic06c Sun Microsystems. Netbeans. http://www.netbeans.org/products/ide/ (as

seen Sep 12th 2006), 2006.

Mic06d Sun Microsystems. Security and Trust Services API for J2ME (SATSA); JSR

177. http://www.netbeans.org/products/satsa/ (as seen Sep 12th 2006), 2006.

NIS99 NIST. Recommended Elliptic Curves for Federal Government use.

http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/ (as seen Sep 12th 2006), 1999.

NIS00 NIST. FIPS 186-2 Digital Signature Standard (DSS).

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

(as seen Sep 12th 2006), 2000.

NIS02 NIST. FIPS 180-2 Secure Hash Standard.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf (as seen

60

Bibliography

Sep 12th 2006), 2002.

NIS06 NIST. Recommendation for Key Management - Part 1: Gen-

eral. http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf

(as seen Sep 12th 2006), 2006.

otBC06 Legion of the Bouncy Castle. Bouncy Castle Crypto API.

http://www.bouncycastle.org/ (as seen Sep 12th 2006), 2006.

Pos06 Deutsche Post. Frequently asked questions: POSTIDENT.

http://www.deutschepost.de/dpag?lang=de_DE&xmlFile=6394 (as seen

Sep 12th 2006), 2006.

Rot05 Jörg Rothe.Complexity Theory and Cryptology. Springer-Verlag, Heidel-

berg, 1st edition, 2005.

RSA05 RSA Laboratories. http://www.rsasecurity.com/rsalabs/ (as seen Sep 12th

2006), 2005.

RSA06 RSA Security. http://www.rsasecurity.com/ (as seen Sep 12th 2006), 2006.

Sch96 Bruce Schneier.Applied Cryptography. John Wiley & Sons, 2nd edition,

1996.

Sch05 Bruce Schneier. New Cryptanalytic Results Against SHA-1.

http://www.schneier.com/blog/archives/2005/08/new_cryptanalyt.html

(as seen Sep 12th 2006), 2005.

SH04 Tobias Straub and Andreas Heinemann. An Anonymous

Bonus Point System For Mobile Commerce Based On

WordOfMouth Recommendation. http://www.informatik.tu-

darmstadt.de/GK/participants/tstraub/publications/straub_heinemann_acm-

sac_2004.pdf (as seen Sep 12th 2006), 2004.

Sim05 Kent Simonsen. J2ME Security. Master’s thesis, Universityof Bergen, 2005.

61

Bibliography

WYY05 Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Colli-

sion Search Attacks on SHA-0. http://www.infosec.sdu.edu.cn/paper/sha0-

crypto-author-new.pdf (as seen Sep 12th 2006), 2005.

62

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen,

die aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keinerPrüfungsbehörde vorgele-

gen.

Düsseldorf, 12.September 2006 Daniel Baselt

63

	Titlepage
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution
	1.3 Structure

	2 On Theory of Cryptography
	2.1 Foundations of Authentication
	2.1.1 Public Key Cryptography
	2.1.2 Digital Signature Algorithms
	2.1.3 Challenge-Response-Identification
	2.1.4 Public Key Infrastructure
	2.1.5 Offline-Authentication

	2.2 Evaluation of Digital Signature Algorithms
	2.2.1 RSA
	2.2.2 Rabin
	2.2.3 ElGamal
	2.2.4 The Digital Signature Algorithm
	2.2.5 Elliptic Curve DSA

	2.3 Cryptographic Hash Functions
	2.4 Random Numbers
	2.5 Certificate Formats

	3 Implementation of Offline-Authentication in Java ME
	3.1 Introducing Java ME
	3.1.1 The Wireless Toolkit
	3.1.2 Java ME Profile and Configuration Versions
	3.1.3 Java Cryptography Architecture in Java SE and ME

	3.2 Java Security Provider
	3.2.1 Sun JCE
	3.2.2 SATSA
	3.2.3 Bouncy Castle
	3.2.4 Cryptix
	3.2.5 IAIK
	3.2.6 Conclusion

	4 The AuthToolkit
	4.1 Recommendations
	4.2 Structure
	4.3 Implementation of Certificates
	4.4 Authentication Protocol

	5 Test series on Java SE and ME
	5.1 Desktop Computers and Java SE
	5.2 Mobile Devices and Java ME

	6 Offline-Authentication Demonstration Application
	6.1 The AuthServerDemo
	6.2 The AuthClientMEDemo

	7 Conclusion and Outlook
	7.1 Outlook

	8 Appendix
	8.1 Setting up Bouncy Castle
	8.2 Source Code

	Bibliography

