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Chapter 1

Introduction

The market of digital content on mobile devices has beerdhagjrowing since a few
years. In the near future, it will become even more importanhew commercial of-
ferings besides the market of device customizations emérgdake full advantage of
these developments, a generic trading system for entiigiyfaticontent at any place
anytime to anyone is necessary. Transactions of this kiachacomplished only with
a certain amount of trust in the trading partners and théarioigs. This can be estab-
lished by offline-authentication, which uses several cptgef cryptography to ensure
the confidence in a trading partner.

With the introduction of trust viaffline-authenticationit will become possible to use
modern mobile devices for more versatile purposes. Besidsscrfiles and device en-
hancements like ring tones more interesting and even mduahle content can be of-
fered and traded. Feasible are tickets for public transpparts events and concerts
as well as digital collectibles like trading cards. Exigtidigital rights management
systems allow buying and using digital content only in a westrictive manner. There-
fore, a new trading system is in development at the chair ofpzder networks at the
Heinrich-Heine-University Duesseldorf. Thaigital Ownership Managemeryroject
will enable the user to show and prove ownership, as well atebdigital content.
Using offline-authentication as presented in this thesisbe one of the project’s pil-
lars.



CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The intention of this thesis is to analyze and realize offan¢hentication on mobile
devices. Since authentication algorithms are alreadyifspeén various non-mobile
scenarios, their suitability to a mobile environment hasa@nalyzed. As security of the
algorithms is of great importance, the cryptographic baokgd has to be discussed. Ex-
isting libraries implementing authentication are to benexeed regarding the constraints
on mobile devices. Their low computing speed and differgarating systems demand
special considerations. Moreover, algorithms and licerise the libraries should be
available under an open source license. Tools providingtographic support using
the chosen algorithms and libraries are to be developedderom mobile devices as
well as on desktop computers suitable to Digital Ownership Manageme{DOM)
project. An offline-authentication demonstration pragraased on these tools has to
be realized as a result to proof the maturity of the technokd that stable usage is
possible.

1.2 Contribution

The protocols of mobile devices authenticating each othdrad a mobile device con-
necting to a service provider's server were adapted anditledcexactly with regard

to existing authentication algorithms. Then, the mostificant digital signature algo-
rithms were analyzed for use with offline-authenticatiopessally on mobile devices.
As conclusion,RSAandElliptic Curve DSA(ECDSA) were selected for implementa-
tion.

Java was chosen in tBava Micro Edition(Java ME) as programming language, offering
easy platform portability to most mobile devices. Possiygtographic libraries for the
Java Standard EditiofJava SE) and the Java ME from diverse developing groups were
examined and rated regarding security issues, free auditabpeed and the project’s
documentation. Th&ouncy Castle Cryptographic Library Providéurned out to be
best fitting to these requirements. During evaluation, seskes were programed using
Bouncy Castle in combination with Java SE and ME to deduce aesiwis towards com-
putational speed of RSA and ECDSA.

A library, the AuthToolkit capable of managing the offline-authentication process, a
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well as signing and verifying messages using Bouncy Castlédéas developed, which
works both with Java SE and ME. The library will be integratei the DOM project
to enable mobile devices to authenticate offline and onl;eell. Based on thAuth-
Toolkit, a demonstration application has been implemented corgsistta desktop server
in Java SE and mobile devices using Java ME. It shows how effluthentication works
in a real environment.

1.3 Structure

In Chapter 2, it will be discussed what the theoretical fotioda are on which offline-
authentication is based and how the concept Blualic Key Infrastructurg PKI) and
Challenge-Response-ldentificatig@RI) contribute to this problem. Afterwards, se-
lected digital signature algorithms which are of reasoaalnificance to security and
speed on mobile devices are analyzed with regard to thefulngss for implementation.
Further on, other security factors of a public key cryptaeys like message digests and
random numbers, are discussed.

Chapter 3 is considered with the implementation on mobilecgsv Providers of cryp-
tographic libraries enhancing the security architectdikdgaga are examined with special
regard to their possibilities on the limited Java ME.

Chapter 4 describes thfuthToolkitand its development for the DOM project.

In Chapter 5, the integration &ouncy Castlgthe best-fitting security provider for the
offline-authentication purpose, into the Java developreawironment is discussed and
tests series are made with Java SE and ME to examine speeglinfglementation.
Chapter 6 presents a demonstration program for the implemembof theAuthToolkit
Afterwards, the thesis is summarized and an outlook on piisisis of offline-authenti-
cation is made.






Chapter 2

On Theory of Cryptography

Authentication in the digital world requires the collabiiwa of different techniques used
in modern cryptography. With identities being digitizelde first intention is to prevent
making a perfect binary copy of an identity. Having that imdjiit is absolutely ab-
surd sending someone else your identity, to let her proveoitsectness. This chapter
will show how it is possible to satisfyingly convince a coertart from one’s identity.
Therefore, the next Sections introduce and discuss rdlegdutions for creating a sys-
tem capable of offline-authentication. Usually, the sciesadescribed in the following
need three parties. According to cryptographic habitg;, #i# be called Alice and Bob
as the communicating parties and Eve being the evil couatergve will try to pretend
to be Alice or Bob without being discovered.

2.1 Foundations of Authentication

The most simple way to let two people identify each other iromgletely digital en-
vironment is to agree upon a secpetss phrasé¢see Figure 2.1). When more than two
people want to communicate and each one is assigned a pase paverybody has to
know every phrase to assure the identity of a counterpart.

Unfortunately,Eve discoversBob’s secret phrase simply by becoming a new member
at the service he uses. As soonEagreceivesBob’s pass phrase, she will be able to
communicate on the system with his identity, exactlydabwould do.
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"Tel|
Okay, you are Alice.n

Bob Alice(?)

Figure 2.1: Authentication with a Secret Pass Phrase

This can be solved by assigning every possible pairing afsuse extra key. A server
managing keys and matching users has to s'-l@{ea keys, withn being the number of
usersﬁB—uES], implying complexity @(n?). Besides that, all users have to be known to
each other, meaning they have to stoideys before any connection can be established,
but this is unacceptable for mobile usage. Also key distidoubecomes very compli-
cated, regular updates distributing new users’ pass phi@genecessary and anybody
except the users must not be permitted to access the passes.

2.1.1 Public Key Cryptography

A different approach uses keys to encrypt messages instesthg passwords for iden-
tification. It is possible to encrypt and decrypt messagéis avspecial key belonging to
one user. This principle is callymmetric cryptographfor private key cryptography
The drawbacks of key distribution and complexity of key nemsinO(n?)) are still the
same as using passwords. But it paves the way to the ymeétt key cryptographysee
Figure 2.2).

Here, in contrast to one shared key for encryption and déoryptwo different keys
belonging to each other are used. One key is referred to gaitiiee key which can be
freely distributed, the other one is called threvate key which must not be revealed to
anyone. Now, the advantage is that only one key pair is nefedeah user instead of one
key per possible communication channel, reducing comiyletikey management to be
in O(n) at the server. Also, the key distribution is alleviated, &ese it is possible for
the server to offer the proper public key to every user reigaesithough complexity is
still in O(n). Less security overhead is necessary, only the correcaegehof a newly
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Key Pair

Public Key Private Key

%

B Encrypted

Document
Document
c decryption

Figure 2.2: Public Key Cryptography

Table 2.1: Comparison of symmetric and asymmetric crypiagya

CRYPTOSYSTEM‘ SYMMETRIC ASYMMETRIC

Number of keys o(n?) o(n)
Keys per device O(n) O(n)
Key distribution private public

created key pair to its owner and the transmission of theipubl to the server have to
be assured, as well as that the public directory at the sexverad only to users. After
the exchange, nobody except the user to which the key pangslhas to care about the
private key. Public key cryptography itself does not offecwre identificationEvemay
know one ofAlice’s encrypted messages (but not her private key) befdice decides
to use it or after she used it and pretend behtige by sending this message, which is
called areplay attack

Public key algorithms are based on problems in mathematioshvare easy to compute
in one direction, but (supposed to dggrd to solve in the opposite way (by finding the
inverse) without special information, also knowntegdoor functionsHardness means
that a problem cannot be computed in polynomial time or bdfta problem was found
to be not hard, it would be possible to derive the private keynfthe public key, which
is considered as thital breakof a public key cryptosystem. For the most important
asymmetric algorithms, the underlying problems have eeibleen proved nor disproved
yet. The consequences are discussed in Section 2.2, togéthehe presentation of
chosen algorithms.

To be of comparable strength to private key algorithms, iplt#y algorithms usually
need more bits in key length, making public key operatiomsiah to 10° times slower
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Signed
Document

Documenth

correct

Private Key

incorrect

Figure 2.3: Signature and Verification of a Document

than private key cryptograph;( iScﬂ%]. Usually, this isvedl by using ahybrid cryp-
tosystemwhere not the message itself is encrypted with the publc ket a key of
a private key algorithm, which is then used to encrypt messag the communication
session.

2.1.2 Digital Signature Algorithms

WhenM is themessage spa@ndC the ciphertext spacesigning a documenn e M
means to perform thencryptionfunctionE : M — C on the document with the private
key of a public key algorithm and to obtain the signatare E(m), with c € C. Only
the owner of a key pair knows the private key and without ihady else can sign the
document in the same way.

The signature can be verified by taking the signature and kcgudy as arguments and
compute thedecryptionfunctionD : C — M to get the encrypted messagé= E(c),
with m' € M. If the private and public key belong together, the docunitsetf will be
value of the operation, so that= n (see Figure 2.3).

To compensate the slowness of public key algorithms, it ts@commendable to sign
the whole document, but a hashed version of the documen§eset®mn 2.3 for hashing.
This also solves security concerns of some algorithmsdmdstential forgeryin RSA
[Buco3).

Key pairs must not be used additionally to encrypt or sigma degisides authentication,
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because this is of high risk to security. Hve pretends that she wants to pro&éce’s
identity, Eveis supposed to send a random numbeAlice as challenge. In fact, the
random number is the hashed vah(en) of the textm. Alice cannot recognize this and
signs the hash value. Actually, when sending the signedtodsihe Evereceives a self-
chosen document signed BYice [Buc03]. A solution to this is the use of different hash
functions for authentication and encryption, which praglddferent hash value lengths,
so that the length of a hash value determines its purpose.

2.1.3 Challenge-Response-ldentification

TheChallenge-Response-ldentificati@RI) protocol is the following:

Alice wants to identify herself t8oh.

Bobconstructs a challenge onBfice can solve and sends it to her.
Alice solves the challenge if, and only if, she knows a certainetecr
Alice sends her response Boh

a bk wdhPE

Bobverifies the solution and accepisice’sidentity if her answer was accurate.

Using public key cryptography, Bob would demand Alice to ssgrandom number.
Alice uses her private key, which is only known to hergetacrypt rby computing the
ciphertext c= E(r). Alice sends the signatureto Bob and he verifies it by decrypting
¢, he calculates’ = D(c) with Alice’s public key and checks, if=r’.

2.1.4 Public Key Infrastructure

When Bob wants to validateAlice’s identity, he needs her public key. Askingice
directly for it is dangerous, becauEsecan pretend to bAlice and sendBoba public
key matching her own private key. So, to have a trusted thendypproviding public
keys is necessary, where every user may verify the corrextolea key. A CA-server
managing the identities is such a trusted third party, dal€ertificate AuthorityCA).

It has its own key pair and every member of the CA trusts the Ggisadure. I1sAlice a
member at the same authority Beb, he will find her public key at the server’s public
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Certificate Authority

Alice's AN Bob's AN

Certificate

CA-Signature

Figure 2.4: A simple Public Key Infrastructure with one leglepth

directory read-only, packaged in a digitartificatesigned by the CA itself. A certificate
is a container for a public key and information about the eisged userBobcan verify
the CA's signature because the CA's public key certificate maknto every member.
With it, he can assure th&lice’s public key specified in her certificate is authentic,
otherwise verifying failed. The constellation of a CA witlsasiated members is called
aPublic Key InfrastructurgPKI).

If a key pair becomes invalid because of loss, limitation atiaing illegal operations, a
key revocatiorprocess should be started. Therefore, the key pair is to Iokesh@n the
CA’s directory (but not deleted) and a new key pair may be eckand distributed to the
user, depending on the reason of revocation.

2.1.5 Offline-Authentication

With the concepts of CRI and the implementation of a PKI, offighentication on
mobile devices can be realized. A server providing CA fumalay offers thepublic
key directory containing every member’s public key certificate signedh®yserver. A
mobile device has to learn the server’s public key certiéicas well as its own server-
signed public key certificate and private key. The privatedteould be kept in ersonal
Security EnvironmerPSE), an area where only the owner of the key pair has aczess t
WhenBobwants to register himself at the CA and has a mobile devicesobin acting
as PSE to him, cryptographic operations will take place srdevice. He generates his
key pair on it, so that the private key never has to leBeb’'s PSE. To let the public
key being signed by the CA, he has to securely send his pubjitcckéhe CA and the
new certificate has to be transmitted baclBtb. The best way to do this would be, if

10
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Bob went to the CA's administrator personally to exchangermttion, where also the
CA could verify Bob’sidentity. Because this is not always feasible, another poggi

is postal communication, as being more expensive but enghg®8ob’s interest to be-
come registered. Then, postal identification procedumHOSTlDENT@ﬂ can
be realized by postal corporations.

SubsequenBobreceives his CA-signed public key certificate from the servéren not
happened during the communication described above, thiseren happen using inse-
cure channels, because nBabcan check his certificate on the CA directory anytime.
Alice, being also registered with her mobile device at the CA, wampsove her identity
and her CA membership Bob without connecting to the CA-server at this very mo-
ment Effline-authentication Therefore, she establishes a connectioBab’s mobile
device using Bluetooth, infrared, direct cable or a comgarabort range communica-
tion technology. This type of connections complicate camngsing by attacks like the
Man-in-the-MiddIe-AttacM]. Bobsends tdAlice a challenge in form of a random
number, which has to be signed Blice with her private key. Afterwards, she sends the
signed number and her own CA-signed certificatBod, who

1. verifiesAlice’s CA-signed certificate with his copy of the CAs public key ctrti
cate and

2. verifies the signature of the random number whtite’s public key contained in
her certificate.

That wayBobis assured abowlice’s identity (see Figure 2.5).

Because neitheAlice nor Bob have reasons to trust each other before the offline-au-
thentication has taken placBpb has to identify himself tAlice, too, the same way
as described above. When both have made sure that they aszlindenected to the
person they expected to, authentication is done and thaldc&mnsactions can begin.

2.2 Evaluation of Digital Signature Algorithms

As discussed in Section 2.1.1, public key cryptography geesal to the concept of
offline-authentication. The key pair of the Certificate Auihois used to sign users’
certificates and each service member uses his or her paiilgfang random numbers.

11
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Alice Z Bob
>verifies puie Koy
sendS cha\\enge certificate 7
Pri\/j::: 'SKey S I g n S
v challenge answers challenge

verifies oo,
challenge (7 .~

Figure 2.5: Protocol for Offline-Authentication

Therefore, a public key algorithm must be chosen, that is tblvork as a digital signa-
ture algorithm.

The algorithms discussed in this Section are evaluatedamensg the demands of cryp-
tography on mobile devices. The criteria are, in order ofontgnce:

Security ldeally, keys for authentication will be valid for yearspresenting an union
with the associated digital identity. Security aspectshef algorithms are possi-
ble vulnerabilities of the underlying mathematical teciu@s and appropriate key
lengths to avoid breaking key pairs via brute force in amasstied period of time.

Availability An algorithm should be open source to be able to examine péeimen-
tation. Although software patents are not applicable inEeopean Union, an
algorithm should be free to use worldwide.

Speed With each new mobile device generation, processing uniterpe faster, but
mobile devices still are rather slow compared to desktopprders. Crypto-
graphic calculations demand operations on very large nesnldile specialized
coprocessors are usually not available. The level of sgcneeded for offline-
authentication depends on the value of the service for whithentication is in-
tended. The stronger the cryptography, the longer ope&stast and the more the
mobility factor of offline-authentication decreases. Seespof different levels of
security has to be observed.

Only three public key algorithms are capable of signingdesencryption: RSA, Rabin
and ElGamal [Sch96]. A fourth one, tiiEgital Signature Algorithm(DSA), cannot be

12
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used to encrypt. These algorithms are discussed in thigo8eét special variant of the
DSA, theElliptic Curve DSA(ECDSA), is described in an own Subsection because of
its attributes, which are especially suitable to mobileickes.

2.2.1 RSA

RSA is an abbreviation for the three inventors of this algonit Rivest, Shamir and
Adleman. It was the first public key cryptography algoritheveloped and it is the most
frequently used today. And besides it can be used for erioryphd signing, it is easy
to implement. Due to its popularity, RSA is well-investigatnd to all possible attacks
discovered yet (e.gChosen-Ciphertext-Attacks Low Exponent Attackscountermea-

sures can be taken [Sch96].

To generate a key pair, Bob chooses two large (more than 19@hbdth) prime numbers
p andq, p # g, and computes

n=px*q.

nis called theRSA-modulus
Additionally, he chooses a natural numiegtheencryption keywith

l1<e<¢(n)=(p-1)(q—1) with gcde¢(n)) =1
and computes a natural numlzkrthedecryption keywith
l1<d<¢(n) and dxe=1mod@p(n).
In other words
d=e"* mod((p—1)(q-1)),
which can be computed with tiextended Euclidean Algorithmee@ﬂ. The public

key is(n,e) and the private key id.
To encrypt a message < M (M being the message space and th < n), with a public

13
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key, Bob computes
c=mf modn, with c e CandC is the ciphertext space.

If m> n, mcan be split intdk subsequent blocksy, i € 1,...,k, where each block’s
length is less than. Decryption with the private key is computing

n =c? = (m®)4 modn.

The security of RSA is supposed to be based on the hardness fadiorization prob-
lem st], meaning factoring large numbers. But it is unknoeet if factoring the
large modulus of a key pair is the only way of getting the cleartext messadem the
encrypted messageand the public keyn, e), with e beingcoprimeto ¢ (n), meaning
that¢ (n) ande have the greatest common divisomwi%].

RSA in this form is vulnerable to chosen-message-attacks préwent this, it is re-
commended to follow the recommendations of Fheblic Key Cryptography Standards
(PKCS) devised by thBRSA Iaboratorie#RSAOS]. PKCS#1 describes methods of hard-
ening RSA against the above mentioned attack sufficiently. BSree to world-wide
use since the year 2000, as the patent held by the RSA Secmxnityi RSAOQ6] in the
United States expired.

Evaluating the costs of RSA, encrypting requires an expaaigor modulon. Modu-
lar exponentiation is performed by a series of modular mligtations. With a smaller
exponente encryption is sped up, but when the exponent is too smaltaied Low-
Exponent-Attackare possible [Buc03]. A common value fgrrecommended by X.509
ﬂGroOZ], is(216+ 1), which is a smart choice because it takes only 17 multipbeatto
exponentiate. It is possible to choose the same value flor all key pairs as long ag
differs. Decryption is also an exponentiation moduajdut this time the exponenthas
to be about the same sizerafOtherwise, the system becomes insecure. The complexity
of usual RSA encryption and decryption implementations i©(k?) to O(k%), with k
being key bit length, and key generation isdk*) [RSAQ5].

Key generation is necessary only when a new client joins &néce or an existing key
expires. Signing and verifying speeds are acceptable abbe 2.2.1 and the results of
the speed tests in Chapter 5. Recommended key lengths areddepen the estimated
computing capacity of modern computers to break a key panlay, key lengths are at
minimum 1024 bits and if a key pair should be valid for sevgesrs, it would be best
to use a 2048 bits modulus.

14
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Table 2.2: RSA Speeds for different modulus lengths with allspudblic key of 8-bit
measured on a SPARC Il [Sch96]
STRENGTH \ 512BITS 768BITS 1024BITS

SIGN 0.16 sec 0.52 sec 0.97 sec
VERIFY 0.02sec 0.07 sec 0.08 sec

RSAs unproved hardness is its greatest disadvantage. Butdhibe balanced with two
arguments: Its widespread use and (because of that) thetbrgst of cryptanalysts. The
more people are interested in the security of RSA (and withdtdring large numbers),
the bigger is the chance that a breakthrough will becomeiquilhe contrast to this
would be, if a secret service or a company’s research teake lR&A and everybody
else would still think RSA being secure. But being analyzedofaer thirty years, the
“risk” of breaking RSA is very small.

Taking all this into account, usage of RSA is very interestongffline-authentication. In
combination with hash functions (see Section 2.3), knowakmesses like thexistential
forgeryandRSA multiplicativitypecome impracticablmOS].

2.2.2 Rabin

The Rabin public key cryptosystem, named after its inventwhislel O. Rabin, is closely
related to the RSA cryptosystem. Its security is also basdtefactorization problem,
butin contrast to RSA, itis provably equivalent to the faiation problem and therefore
considered secur@l%]. Encryption with Rabin is a littlere efficient than with
RSA, while decryption is about the same costs. The disadgamBRabin is its vulnera-
bility to Chosen-Ciphertext-Attack3 hese are attacks whefsehas temporary access
to the decryption machine and chooses ciphertexts to getdiresponding messages.
With them,Evecan compute the private key and totally break Rabin. This ig Rébin
has only few significance in practice. In the offline-autlheatton scheme, the attack can
be accomplished by encrypting a message with the public keytlzen sending these
randomly seeming bytes as challenge to sign. The answee tchillengeéEvereceives
is the decrypted message that can be used to break Rabinfdreereis not reasonable
to use Rabin for offline-authentication.
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2.2.3 ElGamal

ElGamal’s security is based on the hardness ofdiserete logarithm problemlt de-
scribes the difficulty of calculating discrete logarithmsai finite field. To create a key
pair, a primep and two random numbegsandx have to be chosen, withandx < p.
By calculating

y=g" modp,

the public key ify, g, p) and the private key ix.

Signatures of a message< M, M is the message space, are madeBbp choosing a
random numbek beingcoprimeto (p— 1). It is very important thak is random and is
never used twice, otherwidéve can recover the private key[@é]. Bob computes

a=g“ modp

and uses thExtended Euclidean Algorithto solve the following equation fdu.
m= (xxa+kx*b) mod(p—1).

Now, (a,b) is the signature of1; k must be kept secret.
Alice verifies the signature by confirming that

y2xa® modp = g™ modp.

It is necessary fom being a message digest (Section 2.3), otherwise messagepan
propriate signature&,b) can be deduced from anothLer [Buc03]. ElGamal is based on
the Diffie-Hellman key agreement protoctd the operations to sign and verify are very
similar to it ‘BucO?B]. No patents cover the use of it. EIGamghsg requires computing
one modular exponentiation and oBgtended EuclideanThe calculation of andy?
are message-independent, they can be computed and stéyesithe actual verification.
Then, ElIGamal is faster than RSA (with only one exponentigfibut the computations
have to be kept secret on the mobile device.

Verification demands three modular exponentiations, twoentisan RSA. But the ver-
ification process can be altered so that computations dguivib one exponentiation
are necessarJ/[TucOB]. Key sizes of EIGamal are about the sampared to RSA
for an equal level of security. The ciphertext is double tlze ®f the corresponding

16



2.2. EVALUATION OF DIGITAL SIGNATURE ALGORITHMS

message, but this does not matter to offline-authenticatomobile devices as long as
only message digests and random numbers of relatively blideingths are computed.
One interesting advantage of EIGamal is the possibilityntplement it in any cyclic
group other than the prime residue group modulo a prime. lag & found to calculate
discrete logarithms itZ/pZ)*, with p prime, then ElIGamal can be reimplemented in
another cyclic group, where discrete logarithms are sditbhto solve [Buc03]. Such a
group are elliptic curves over finite fields, discussed inftil®wing Section about an
ElGamal derivative, th®igital Signature Algorithm

2.2.4 The Digital Signature Algorithm

The so-calledDigital Signature Algorithm(DSA) is a variant of the ElIGamal signa-
ture algorithm. It is used in thBigital Signature Standarghroposed from the United
States’National Institute of Standards and Technold@IST) and specified in FIPS
186-2 [NISO&)].

To generate a key pair, Bob chooses a prime numglzérl60 bits length and a prime
with 251464 - n < 2512464 for t € {0,1,...,8}. qis to be a divisor of p—1). Then
Bob computes

g=hP~Y/9 modp, with he {2,3,...,p—2} andh®Y/9 modp > 1.
He chooses a numbgmwith 0 < x < g and determines
y =g modp.

The public key i9p,q,9,y) and the private key is.

To sign a message, Alice generates a random numbex g. Afterwards, she com-
putes the hashl (m) from m with a one-way hash function. The standard specifies use
of the Secure Hash Algorithndiscussed in Sectian 2.3. Furthermore, she calculates

r = (g¢ modp) modg,
s= (k"1(H(m) +xr)) modq.
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The signature is the pa(r, s). Bob verifies the signature by computing

w=s"! modaq,
u; = (H(m) «w) modgq,
Uz = rw modgq,

v=((g"* *y*2) modp) modg.

By checking that = r, the signature is verifie@%].

Because of modular exponentiations of fixed 160 bits leng8A 3 faster than EIGamal,
which needs modular exponentiations of the length of theutegal Moreover, DSA can
be sped up analogue to EIGamal by precomputing the messdgpeandent valugsand
k1.

The security of DSA, as an ElGamal variant, is also based erdibcrete logarithm
problem. One way to attack DSA is tlistential forgerywhich can be prevented by
checking

1<r<g-land1<s<g-1

before verification of a signature, another way are algor#ttalleviating computation
of the logarithm problem. The best known algorithms If&eanksor Pohlig-Hellman
[BucO3] still need more thar/qg steps to solve a logarithm problem @bits. Because

2199 < q < 21800 DSA, at least 2° operations are necessary, which can be considered
secure [Buc03].

A U.S. patent attributed to David Kravitz, a former NSA enyde, covers DSA, but

it was made available world-wide royalty-free. Although®$% efficient, secure and
freely available, it is not implemented in the offline-auttieation toolkit, but a variant

of it, elliptic curve DSA described in 2.2.5, which implenteDSA in another cyclic
group and offers even more advantages.

2.2.5 Elliptic Curve DSA

Cryptographic algorithms basing on the discrete logarithabiem can be improved by
implementing them in the cyclic group of elliptic curves o¥aite fields. By choosing
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a certain curve, it is possible to apply speed enhancemétited in (Z/pZ)*, making
signing and verifying faster, but preventing the applicatf algorithms simplifying the
logarithm problem, likeShanksor Pohlig-Hellman[BucO3].

The advantage of this is smaller key sizes to gain the sameigelevel compared to
non-elliptical public key cryptosystems (see table 2.2 H)e downside are more com-
plex mathematical computations for generating signajiseshat implementations of
elliptic curve cryptosystems in spite of smaller keys arenezessarily faster.

Elliptic Curve DSA(ECDSA) is a variant of DSA based on th#liptic Curve Dis-
crete Logarithm ProblenfECDLP). The risk of developing new algorithms breaking
the ECDLP is reduced, because elliptic curves were of inténesiathematics a long
time before the application to cryptography was considered

Elliptic curves do not represent curves or even ellipsehé&édommon sense, but are
points solving the equation

y? = x> +ax+b.

Selecting an appropriate curve requires a good undersiguadithe mathematics of el-
liptic curves and is troublesome to implement. Therefdne, NIST published recom-
mended domain parameters of elliptic curves to @IIS%]e choice of a certain
field is significant for overall performance, so for implertagion, finite fields of odd
characteristicl{p, wherep > 3 is a large prime number) and fields of characteristic two,
Fom, are considered beOO].

To create a key pair, the domain parameter$ R, a, b, G, n, h) of the underlying curve

E have to be chosen:

e ( specifies a prime power,

FRdescribes the method of representing field elemeritg, with = porq=2",

a,b are two field elements IFq specifying the equation of the curve,

G is the base poir® = (xg,Ys) OnE(Fy),

nis a prime of the order o,

his an integer, which is the cofactbr= #E(Fq) /n.
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Table 2.3: RSA and ECDSA key lengths for equivalent securifpits] [NISO@]

ALGORITHM | RSA | ECDSA

STRENGTH 1024 | 160 - 223
2048 | 224 - 255
3072 | 256 - 383
7680 | 384 - 511
15360| 512+

The private key is a random integee [1,n— 1] and the public key i = dG.
Alicesigns a messageby selecting arandom integkee [1,n— 1] and calculating

r =x; modn, where(xy,y1) = kG,
s=k 1(H(m)+dr) modn,

whereH (m) is the hash value ah. If r =0 ors= 0, she has to select another random
number and compute the signature again, otherwise, thatsignis the paifr, s).

For verification,Bob checks that ands are integers iffl,n—1]. Then he hashes the
messagen to obtainH (m) and calculates

w=s"! modn,
up = H(m)w modn,
Up = rw modn,

(X1,y1) = 1G+ wQA

The signature is valid k; = r modn.

ECDSA overlFy is considered secure with key lengths of 192 bits, in contm®SA,
which needs key lengths up to 1024 bits or RSA with 2048 bite Sifort key lengths are
an advantage on mobile devices regarding memory consumatid computing time,
as far as the elliptic curve algorithms are optimized welinmplementation to benefit
from that. Test series with Bouncy Castle using ECDSA concgrperformance are
described in Chapter 5. ECDSA is not covered by any patents.
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2.3 Cryptographic Hash Functions

A message digestis a preferably random fixed-length representation of a atgsa of
arbitrary length, created by a one-way hash functienH (m). One-way hash functions
are hash functions with additional characteristics. While easy to computk from m,

the other way findingn from h is hard. Also, it is hard to find another messageto

m, such thatH (m) = H(nm'). Message Digests are used by digital signature protocols to
shrink the number of bytes to sign, because signing is slanzessage digests, ranging
from 160 bits to 512 bits, are usually shorter than the oabjinessage. Several signature
protocols even need hashing for security reasons (see D3A ih).

Reducing a message to a shorter representation, compasabfengerprint of the mes-
sage, may enable Eve to find two random messagasdm’ with H(m) = H(nv), also
calledbirthday attack If it is hard detecting twoandommessages with the same hash
value, the algorithm is calledollision-resistant Using a non-collision-resistant algo-
rithm for digital signatures alleviates the search of défg messages with the same
hash value, so that it cannot be determined, which messageteationally signed.

A popular family of hash functions, the MD (short fbtessage Dige¥tfamily, is de-
signed by Ronald Rivest, with the fifth one, MD5 from 1991, beihg newest and
strongest. While it is mainly used to create checksums of fisnloadable from the
internet or storing passwords in databases, it is congidesecure due to its hash length
of only 128 bits, allowing birthday attacks. In 2005, LeastVang and de Weger showed
two different certificates (see 2.5) with the same hasthWdQOS].

Another family of hash functions is the SHA family (short 8ecure Hash Algorithjn
proposed by the NIST as a Federal Information Processingl&td (FIPS), see [NIS02],
and being technically similar to the MD family. The most conomrepresentative is
SHA-1, which is often used in a variety of cryptographic aggtions. Its predecessor,
SHA-0, has already been proved to be vulnerable againssioollattacks, reducing its
complexity from 20 to 229, so it can be considered brokén ilVYYOS], while SHA-1’s
complexity has been reduced frofP20 262 [Sch05]. This makes SHA-1 not insecure
yet in signing applications, because finding a document Wighsame hash value as
another already signed document is still not feasible, ltteb attacks are expected to
come. The family was enlarged by the SHA-2 algorithms SHA;2Z2HA-256, SHA-
384 and SHA-512, each creating according hash lengthsewhel variants SHA-0 and
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SHA-1 create 160 bits hashes. The SHA-2 group is technigally similar to SHA-1:
Although no weaknesses of SHA-2 have been found yet, thegxgected to come.
Nevertheless, the longer hash sums provide secure usesfoeitt years, as long as no
new critical mathematic weaknesses in the SHA family areadisred. All SHA-2 algo-
rithms are covered by a U.S. patent held by the NSA, while SHéfree to use.

A third group of hash functions is tfRIPEMD (RACE Integrity Primitives Evaluation
Message Dige¥tfamily. The first member of the group, the original RIPEMD can-
sidered insecure due to collisions found for MD4, on whichIRW® is based [DBP96].
Therefore, RIPEMD-128 was developed, producing a 128 bgh length like RIPEMD,
but seeming collision resistant yet. A stronger variant IBEVD-160, computing 160
bits output, while two other successors, RIPEMD-256 and RIPE320, only reduce
the risk of collisions. The algorithms are developed in aaropommunity and none of
them is covered by patenE}BLosM]. Compared to SHA-1, RIPEMD+4 faster, but
not as widespread and well-investigated as NIST’s algaritSince security is more im-
portant to offline-authentication, use of SHA-1 is recomuesh

2.4 Random Numbers

Digital signature algorithms use randomly chosen key gairsigning operations. Eve
discovers, thaBlice’s key pair was not randomly picked, but after a certain prooedu
she may be able to reconstruct it and sign messages ex&etllice does. So, deter-
minable random numbers may lead to the collapse of even ttepbblic key system.
Ideally, random numbers have to be chosen Baadom Number Generat@®RNG) be-
ing completely random, but as far as the numbers are pickeddaterministic working
mobile device, only @seudo-Random Number Genera®RNG) is at hand, which
lets numbers only seem random, although they are reprdducithere exist different
approaches to create the impression of real randomnesaaviRRNG, which seem to
work good as long as the methodology of the random sourcetisegonstructible. A
common idea is to take the day’s time and date value as ggstimt and apply tech-
niques to it to diversify the resulting value, like hashihgith a one-way hash function.
This obscures the original time value, making it impossiblescreate it without further
knowledge about the time interval from which the number wassen.

Other variants evaluate key pressing intervals or mousén®bf the user, but each is
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traceable t&cve A possibility that seems to work well and may be worth impésting is
the recording of atmospheric noise sent by a radio and piegdxy a mobile device’s mi-
crophone‘ [Simd5]. The Java programming language offersltssSecur eRandom
which offers a cryptographic strong PRNG, meaning that ioissidered seeming ran-
dom “enough” for cryptographic use.

2.5 Certificate Formats

The offline-authentication scheme presented in 2.1.5 rega standardized method
of exchanging identification information between the antioating parties, including
unique identifiers and public keys. Therefadegital certificates representing verifiable
links between identifiers and the corresponding public kays exchanged. A popular
certificate format used to describe the contained inforwnai X.509[ITO5], specified
by theInternational Telecommunication UniqiiTU-T), which stores data in an XML
tree and is very flexible to the content. In a closed enviramme&here certificates are
not used for other means than offline-authentication, adedigned format containing
only minimal structure, like simple separation of concated information, may also be
chosen, because of faster parsing on mobile devices wittelinsomputing power.

The following information should be contained in a certifegdollowing to [BucO03]:

o the certificate’s unique ID number

e the CAs name

e Bob’sunique identifier

e his public key

¢ the public key’s algorithm name

e beginning and ending date of the certificate’s validity

¢ information about restricted use of the public key to caerggplications

Using a proprietary certificate format for offline-autheation, some entries may not be
necessary. If only one algorithm is used, its name does nettioebe mentioned. Also, if
only one CA exists, its name is known to every user. The apic#o use the certificate
with is clear, too. Additional information is needed, whéae tertificate is to be signed,
like the name of the signer, the corresponding certificaizand the signing algorithm.
See Section 4.3 for the implementation in fethToolkit
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Chapter 3

Implementation of
Offline-Authentication in Java ME

3.1 Introducing Java ME

The Java 2 Micro Edition(Java ME) fromSun MicrosystemWicOBa] is a derivate of
theJava 2 Standard Editio(ava SE) with focus on the special demands of limited de-
vices. Like the Java SE Bytecode, every program compiledva BE Bytecode can
be interpreted by a Java ME virtual machine, called KVM (K kilobyte) instead of
Java SE’s JVM. Since mobile devices are less powerful thaktdp computers, they are
referred as limited devices, meaning their CPU is rather slod/their memory is small
compared to machines supporting the Java SE. The Java Mtsooisthree parts:
configurationgprofilesandoptional APIs

The configurationis the base part, determining a subset of Java SE’s API. Whinh ¢
figuration is supported by a device, depends on its hardwagalilities. Two different
configurations exist: Th€onnected Device Configurati¢8DC) used on faster PDAs or
set-top boxes and th@onnected, Limited Device Configurati@@LDC), implemented
often on cell phones. Because of the wide spreading of Javadvitpatible cell phones,
offline-authentication has to be runnable on the CLDC as tlvesbcommon denomina-
tor.

Profilesexpand the API with device-specific user interfaces andagfunctions; cell
phones are usually compatible with tiMobile Information Device ProfilMIDP),
which will be used in the following Sections, and PDAs use Feesonal Digital As-
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Optional
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Java Micro Edition

Figure 3.1: Java SE and Java ME Stack Components

sistant Profile(PDAP). Profiles for the CDC are more flexible and offer a momapgiex
API, but they will not be target of development in this thesis

Optional APIsmay be on top of the profiles, like a Bluetooth or 3D gaming ARI fo
a specific MIDP compatible device. Figure [3.1 provides amaew, please refer to
LKO5] to get a deeper understanding of Java ME.

3.1.1 The Wireless Toolkit

Sunoffers theSun Java Wireless Toolkithat allows developing software for Java ME.
The most comfortable way to install it, when already using’SNetbeans IDEMic06c],

is to download theéNetbeans Mobility Pagkwhich includes théwVireless Toolkit This
way, the extra functionality is integrated into the exigtiDE. Attention has to be paid
to the provided mobile device emulator for testing programdevelopment. It may
work much smoother or slower than the real devices and, li&evarious desktop com-
puters able to run the Java SE, ME devices vary enormous edsjpem one model
series to another, which is especially important when ieisassary to compute complex
cryptographic algorithms.

Moreover, vendors of Java ME compatible devices do not impl& every part of the
Micro Edition with the necessary accurateness, so apjitamay run flawlessly in the
emulator, but produce different errors from one phone mtmahother. During develop-
ment of the AuthToolkit demonstration application, it slemlrthat especiallpptional
APIslike Bluetooth are affected by this. As an approach to thiblenm, vendors like
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Nokiaor Sony-Ericssonffer own Java ME emulators, which indeed behaved difféyent
when confronted with the application. But creating platfandependent solutions is
made difficult by this.

3.1.2 Java ME Profile and Configuration Versions

The Java ME’s CLDC configuration with MIDP profile provides yrd small subset
of the bigger Java SE, which affects complete parts of tha llEwjuage a high level
language programmer is accustomed to. For example, the CLO@dks not support
floating point numbers at all, while they are implemented irbCL1.1, which makes the
newer version recommendable.

Many mobile devices already support the CLDC 1.1 togethen WItDP 2.0, which is
the targeted platform for development in the following S®td. Unfortunately, still the
complete API for cryptographic computations is absent@séwversions.

3.1.3 Java Cryptography Architecture in Java SE and ME

To understand Sun’s two different cryptographic moduleshe Java language, a glance
at history is helpful. From version 1.1, Java is bundled whnmoduleJava Cryptogra-
phy Architecturg(JCA), a library with interfaces for signing and hashing. &va 1.2,
another APl was introduced: tlBava Cryptography ExtensiqdCE), offering functions
for several symmetric and asymmetric algorithms. But due.®. Export regulations in
force at that time, cryptographic source code was treateddime way as weapons and
the export of thelJava Software Kito other countries was prohibited. Therefore, Sun
split the JCA and the JCE and put all classes affected by U.®rebgws into the JCE
and the non-prohibited into the JCA, enabling deliveringadaith the JCA outside the
U.S. - without the JCE. The laws changed in 1999, making itiptes® bundle Java ver-
sion 1.4 with a weaker JCE for export. Weak in this contextreefe the maximum key
length of the supported algorithms, allowing to easily Breacryption by brute force.
Today, after another change of the regulations in 2004, tihe difference between the
weak and strong JCE is a file containing security policies. 38 permits downloading
and replacing the file with one from Sun’s website to gain iited strength” support.
The JCA offers a set of classes in the packpgea. security for transparent im-
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plementation and use of cryptographic functions like eptioyn or hashing, which en-
ables other developers than Sun to design own cryptograggmndce providers. The
programmer does not need to worry which certaigptographic service provideis
used. In Java ME, Sun excluded the JCA from the CLDC to downsigeconsump-
tion of disk space on mobile devices, but some providerstedespecial mobile edi-
tions of their frameworks that also regard the technicatwitstances on mobile de-
vices.

3.2 Java Security Provider

Several security providers exist which enhance Java’'stegypphic abilities. Only the
more widespread are discussed here to benefit from a biggeeruof testers, which
guarantees greater code maturity. The criteria to evathatsecurity providers are pretty
much the same as for the digital signature algorithms ini@e& 1.2: Besides the avai-
lability of RSA and ECDSA, all implementations of discussegoaithms in Chapter|2
should be flawless regarding security aspects, the sounoedsbe open (also to review
the implementation), as well as free of charge and the pes\adould run fast. Ideally, a
separate mobile edition exists that reimplements Java MEksof necessary data types
for cryptography likeBi gl nt eger .

3.2.1 Sun JCE

Sun’s JCE is the standamlyptographic service providen Java SE and can be found
in the packaggavax.crypto It supports a variety of symmetric algorithms, but only a
few asymmetric like RSA, while EIGamal, DSA and ECDSA are ngblemented. The
source code is not available and it cannot be integratednatoile projects because of
lacking classes likpava. mat h. Bi gl nt eger andj ava. mat h. Secur eRandom

3.2.2 SATSA

TheSecurity and Trust Services API for J22MEATSA) by Sun realizes parts of the JCE
as optional API adding cryptographic functionality to J&& [MicOGJ]. It implements

28



3.2. JAVA SECURITY PROVIDER

the digital signature algorithms RSA and DSA, but no elliglicve cryptography. By
supportingsmart cardsas security elements, cryptographic operations can benpeetl

in a trusted environment on mobile devices. Unfortunatédyices are not necessarily
supplied with smart cards (or the programmer does not hassado them, like a SIM
card in a cell phone), nor any cryptographic hardware, sofuhetionalities have to
implemented in software, since the cryptographic provites to be runnable on every
Java supporting mobile device. Although SATSA is free to, itsesource code is not
available.

3.2.3 Bouncy Castle

The Bouncy Castle Crypto AHstCO&], developed by theegion of the Bouncy Cas-
tle, is a completely free and open source cryptographic sepriceider. It is aClean-
Room-Implementatioaf the JCE (meaning, that it supports the same interfacess but
developed from scratch) and supports every algorithm askedand even a lot more. A
lightweight versiorfor limited mobile devices is available, too, which reatizbe mis-
singBi gl nt eger andSecur eRandomfor use with Java ME.

The downside of Bouncy Castle as being a voluntary projedtas there is no support for
the package except a very poor class documentation. Wislgauching for further docu-
mentation on the internet and raking around in some of treelvaoks covering Bouncy
Castle like ‘[HooOS], it is very hard to get it to work (see SewtB.1). While Java SE
offers the well-documented JCA interfaces for use with BouBagtle, the lightweight
ME version requires direct work with the Bouncy Castle classe®lving examining
the source code for understanding the gearing of the package

3.2.4 Cryptix

The Cryptix project ‘[Cry04], used in théClouds project of theDarmstadt University
of TechnologySHO04], is anotheClean-Room-Implementatiasf the JCE. Although it
supports many algorithms, it lacks support for ellipticvas and offers no Java ME
version. Since support and development on the project sediave stopped in 2004, it
cannot be considered an option for ambitious cryptograpppications. A subproject
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for elliptic curves,Elliptix, is in a pre-alpha state since 1999 and has not been updated
anymore.

3.2.5 IAIK

Thelnstitute for Applied Information Processing and Commutaa(lAIK) of the Graz

University of TechnologyGra05] provides &lean-Room-Implementatiaof the JCE

that is free of charge for research and educational purfmsgalot for commercial use.
A separate lightweight mobile version, th&lK JCE-ME, is available. The IAIK JCE
has a lot of different security algorithm schemes impleraéragnd an optional API for
elliptic curve cryptography is offered. The main advantager Bouncy Castle is the
availability of support for IAIK’s products, the drawback the commercially orienta-
tion is the closed source. IAIK advertises the speed of therdhms as a design focus.

3.2.6 Conclusion

Bouncy Castle and the IAIK JCE are both very interesting, buehdmwnsides that
have to be evaluated. Unfortunately, open source and fremaige appear to be a
contradiction to a good documentation and product suppte.lack of documentation
of the Bouncy Castle project can be countervailed with volynteports on the internet,
but it is not guaranteed, that the project will be continpdiveloped. IAIK on the other
hand keeps its sources under lock and key. Since free soueigis more to the demands
of the offline-authentication project, Bouncy Castle has lx@sen for implementation.
Because speed of Boncy Castle’s algorithm implementationsmigrbe guessed, speed
measurements are taken in Chapter 5.
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Chapter 4

The AuthToolkit

The DOM project requires secure offline-authentication for saesdike offline bar-
tering. Therefore, théduthToolkitproject has been developed as result of this thesis to
support authentication and signing with Java ME and SE. Withffline-authentication

of mobile devices is made possible by using short-range aamgation connections,
that can also be used for flow of application data after auitetion (or before, if ne-
cessary). Cryptographic operations in faghToolkitare performed by thBouncy Cas-

tle lightweight AP] which is implemented as security provider. Algorithms diogital
signatures that were to be integrated are RSA and ECDSA, bdithteé SHA-1 hash
function. TheAuthToolkitcan be used as base for other cryptographic extensions of the
DOM project, like data encryption.

Since it has to be evaluated, whether mobile devices aVailadw and in the near fu-
ture will support offline-authentication based on thiswafte with acceptable speed, the
testing applicationBCSpeedSBndBCSpeedMEvere written. They are presented with
testing results in Chapter 5. A demonstration applicati@wshg the possibilities of the
AuthToolkit has been developed and is presented in Chapter 6.

4.1 Recommendations

Since theAuthToolkitwill be used in theDOM project, general recommendations set
for DOM have to be fulfilled by theAuthToolkit too. It has to use cryptographic li-
braries free of charge and open source, which is complieddBouncy Castle security
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provider and RSA, respectively ECDSA, together with SHA-1r fiexibility toward
cryptanalytic progress and because of unknown speed of thedgcCastle provider,
both algorithms have to be implemented.

Besides offline-authentication, tAethToolkitshould be applicable to any scenario where
authentication is demanded. Hence the project perfornieatication by using arbitrary
input and output streams to other devices, which also altovise-authenticaion. More-
over, theAuthToolkitis designed generic to allow integration into projects fmralME
and SE, making authentication between any Java supportiohimes possible.

The components integrated into tAathToolkitcomprise signature methods, certificate
objects and th€hallenge-Response-ldentificatifam authentication as described in Sec-
tion|2.1.3.

4.2 Structure

The AuthToolkitis realized as a mobile library, enabling the implementatido Java
ME as well as into Java SE projects. Offline-authenticati®pr@esented in this thesis
needs digital signatures and certificates, this is why tbgept provides three packages:
signature,certificateandauthentication.

Package si gnat ure

The packagsi gnat ur e offers an interface and three classes implementing it:

Signer This is an interface for arbitrary signature algorithmstttiasses being part of
the signing package should conform to. It offers functiarskky pair generation,
signing and verifying generic messages. ImplementatioSs gner allow digital
signature operations not limited to certificates but anyteain

RSASigner An implementation of th&Si gner interface for the RSA algorithm. For
key generation, it allows specifying the key length, them@inumber certainty
(see Section 5|2 for an explanation) and the public key, lsat affers “default”
values sufficient for most applications on mobile device24LBits and a certainty
of (3)%.
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RSAOAEPSigner Mainly equivalent toRSASI gner , enhancefRSAOCAEPSI gner it
with the Optimal Asymmetric Encryption Paddig@AEP) encoding, making RSA
secure againgthosen ciphertext attackBR95]. The downside of this method are
effectively smaller block sizes, which slows down signiri¢pmger hash functions
like SHA-512 by a factor of 2, depending on the length of the R&#dulus.

ECDSASiIgner A third implementation of thé&i gner interface, which integrates the
ECDSA algorithm. When generating keys, prime curves with ZXB and 256
bits are available. These curves aremel192v] prime239vlandprime256v] as
defined iNANSI X9.62 Like the RSASI gner default values, a default curve is
available (192 bits).

If other signature algorithms become necessary foDx@d/1 project, they can easily be
added by another implementation of tBiegner interface.

Package certificate

Thecerti fi cat e package contains classes for managing certificates. Omlyfarn

mat is used in offline-authentication and therefore theschag hCer t has been de-
veloped. AnAut hCert instance represents a certain certificate as defined in Sec-
tion 4.3 together with the corresponding signature andeffecess to the certificate’s
fields.

Package aut henti cati on

Theaut hent i cat i on package copes with the process of authenticating devides. T
classAut hManager initializes and processes the authentication cycle betwee de-
vices. Calling an AuthManager object and passing it a comest nput St r eamand
Qut put St r eamis the only action a developer has to perform to implemeritentica-
tion. The process performs without any need of user intemnacintil completed, which
can be checked by reading status fields of the AuthManagem Tite exchange of ap-
plication data can begin.

AuthManager is adapted to work with Java ME peculiaritiée liheDi spl ay class
as user interface and uses the Bluetdotital Devi ce andRenpt eDevi ce to get
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information about devices. When these objects are not pasgathManager, the com-
mandline is used as output and Strings describe the comhperties. This enables
authentication also with Java SE and with any connectiornrgvegeams are available,
for example WLAN.

For detailed information on every method of the classasaDocshave been created
and are located on the CD in the folders of fighToolkitproject.

4.3 Implementation of Certificates

The certificate format used by the AuthToolkit is not accogdio X.509 to minimize
the computation time on mobile devices. Although parseesaanilable that process
the standardized X.509 format, the flexibility it offers istmeeded for the offline-
authentication purpose and so the management overheaé eanibed. Hence a simple
separation symbol (a new line) between each entry is definddhree specified entries
are:

C (Country), ST (State), CN (Common Name), unique identifieblipikkey, according
key algorithm, the public keys length, a “valid from” datedaan“valid to” date, the hash
function used to sign the certificate, as well as the sigeatself.

The order of the entries is fixed and can be seen in the samipigure 4.1.

4.4 Authentication Protocol

The flow of messages for offline-authentication implemerited the authentication

package of théuthToolkitproject follows the considerations of Section 2.1.5. THe di
ference is an extension to authenticate not only one pargntither but both to each
other. The actual information exchanged is shown in Figue 4
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c=Db Country, State and Common Name: Work as user identifier,
ST=NRW .
but do not have to be unique.
CN=demo@auth.de
ID=2 <~— |dentifier, unique.
alg=ECDSA
len=192 Algorithm name, bitlength and hash function name of the signature.

hashAlg=SHA-1
validSince=1156164189937
validUntil=1154930399985
pubKey:curve=primel92vl
0=BIgLjP+TkLEOAYq4Bkp+D
oMxOhlgLhrH6BakxG4gtJoOk
7e5T3a6TAYjTpbooyYIHO==

:AJk/72EWBhIXW52KR9QNBJmO:

I
[FeuJe3MOewALAGYsL7cnMYST| - The signature of the certificate.
'19bnggcbmx0insc3UbYCCZw==|

I

___________________________

} From when to when the certificate is considered valid.

The user's public key.

Figure 4.1: Sample certificate representing the structsszl un offline-authentication
certificates.
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Figure 4.2: Authentication protocol used in the AuthTobikicase of positive authenti-
cation. If certificates or responses have been proved to tegythe noticing
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Chapter 5

Test series on Java SE and ME

To estimate the expectable speed of offline-authenticatiatesktop computers and mo-
bile devices, two applications were developed for meaguha execution speed of RSA
and ECDSA invarious key lengths together with several SHA fiasctions.

5.1 Desktop Computers and Java SE

The testing project for desktop computers is caB£iSpeedSBENhen started, all test-
runs are processed successively until finished. Then a newiflibe created in the ap-
plication’s directory, calledCSpeedSE [ dat e] . t xt , where minimum, maximum,
average values and the standard deviation of each part of ®sat series is stored.

The sequence observed in one test series is always the same:

A random message of fixed length is hashed.
A key pair is created.

The message is signed.

The signature is verified.

A verification failure is stored.

apr®ODE

The verification result is mainly important for RSA due to thextainty of a key pair

being created from prime numbers. If the numbers are notgnerification fails.

Each sequence shown above is repeated one hundred timesdbtsin out conspicuous
slow or fast results. The number of repeatings is not enoaghlisolutely reliable re-
sults, but points out roughly the way Bouncy Castle is able peeéncreasing computing
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complexity.

The settings observed combined each RSA at 512, 768, 1024048his with SHA-1,
SHA-256, SHA-384 and SHA-512, as well as ECDSA at 192, 239 &tdazts with the
SHA variants. The RSA and ECDSA steps represent conventiahas from lower to
higher security. The different SHAs shall show effects dfedent message digest bit
lengths to the signing and verifying procedures. With RSAdifi@rences are expected,
because even SHA-512 is only as long the block length of tbee$t modulus.

The RSA public key value is fixed for each repeating’&21 = 65537, which is small
compared to the modulus lengths (512+ bits) and therefperations on the public key
are expected to be faster than on the private key. The prim@icty is set to 25, which
means that a found number is prime with a certainty 9f(%)25, which is the upper end
of values usually implemented.

The tests were run on aksus A8N-SLmainboard with alAMD Athlon64 3500+CPU
running at 2200MHz and one gigabyte DDR memory at 400MHzs Tépresents a mid-
range end-user system in mid 2006.

Results are presented in Figures 5.1 through 5.5 with seecalindlesticks. The boxes
of each stick show the standard deviation from the averalye vevhich is shown by a

horizontal line in the middle of each box. The vertical liréghe top and bottom of the
boxes indicate the measured maximum and minimum values.

The RSA key generation results shown in Figure 5.1 are |dgaidally scaled. But
still the creation times for longer keys cannot be approxaddy a straight line, proving
that use of RSA makes sense only when key generation is negessga seldom.

Figure 5.2 describes signing and verification times of RSA. l@Vherification at dif-
ferent key lengths takes about constant time because okégfublic key at26+ 1),
signing becomes slower with a power of more than two, which @pected in Section
ECDSA key generation measurements are shown in Figure 5.8. ndasured times
grow about linear compared to key sizes. It should be reglattiat the key length steps
are not equally caused through lacking availability of mavavenient curves in Bouncy
Castle. Of importance is also that already 192 bits of ECDSAcarssidered about as
strong as RSA 1024, as shown in table 2.2.5.

Signing and verifying with ECDSA results are described inurgg5.4. The signing
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Figure 5.1: RSA key generation on desktop, logarithmic scale
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Figure 5.2: RSA with SHA-1 signing and verification on desktop
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SHA-1 and SHA-2 with RSA 1024 and ECDSA 192 Signing, Desktop
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Figure 5.5: RSA 1024 and ECDSA 192 with different SHA algorithom desktop

times measured take about the same time as key creatiom, varmification is slower by
a factor of two, although it grows linearly also.

In Figurel 5.5, measured times of RSA 1024 and ECDSA 192 are shathrdifferent
SHA bit lengths. As expected, there appear no differencdstlaa chosen SHA algo-
rithm on desktop computers does not has to be a matter of speed

The results show that a computer of this class is able to ctangwen the most com-
plex operations (finding RSA key pairs of 2048 bits length) loat five seconds on
average. Noticeable outliers appear at RSA signing with 2083 which indicates be-
havior when even higher security levels become necessanyetNeless, the conclusion
is that key lengths on more powerful desktop systems shailchbsen from upper se-
curity levels, since performance is of no concern there.

The enormous advantage of shorter ECDSA keys compared to R8&aidy shown at
key generation. But also that signing and verifying is slotiemn RSA even at these
short key lengths has to be concerned, since key generatiaily is performed much
less frequently than signing and verifying.

Which algorithm (and which strength) to choose should be niggendent on the mo-
bile devices observed in Section 5.2.
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5.2 Mobile Devices and Java ME

The testing application for mobile devices is calB@SpeedMEWhen started, it de-
mands the user firstly to choose how often each test is rarD(55®or 100 times) and
then offers a list with possible combinations of algorithamsl hash functions. In con-
trast toBCSpeedSHt is not allowed to run all test combinations in a row withaser
interaction, since this would take way too long to finish. sTéased the problem that the
processing units were needed sometimes for other meangdesting (like when the
phone is called), what adulterated the results.

The mobile devices used for testing are the cellphdiekia 6600released in 2003,
Siemens S6fsom 2004 andSony-Ericsson M60Grom 2006. All three are modern mo-
bile devices able to run Java ME applications and to comnataigia Bluetooth and
GPRS, which are integrated in the offline-authenticationatestration application pre-
sented in Chapter 6. THdokia 6600implements only CLDC 1.0 and therefore lacks
floating point support. But because it is owned by the commaeéwrorks chair and was
available for testingBCSpeedMBEvas developed to run on this phone, too. The most un-
comfortable adaptation was to let the standard deviatiodigfdayed squared, because
calculating the square root is not possible with CLDC 1.0. ddinately, it hung up
during tests regularly, so only a few tests were ran upon it.

The other phone of the chair, tBéemens S6hung up reproducible when trying to com-
pute results when more than one test series were ran in a dtawiAg only one row of
tests to run and then showing results solved this problerthataall tests could also be
measured on this phone.

The Sony-Ericsson M600as being the newest of the devices available for testingema
no adaptations necessary.

The results are presented by candlesticks, which are egulan Section 5.1. All figures
show the measured times of tBeny-Ericsson M600which turned out to be the fastest
and most stable device.

A look at the RSA key generation measurements in Figure 5.@slioe same growth
as RSA on the desktop in Section 5.1, although about one hdiidnes slower. This
shows that the higher key lengths should only be considefégy creation happens
very seldom in the application. Keys used for authenticatiay be valid for years, so
even 2048 bits should be taken into account.

42



5.2. MOBILE DEVICES AND JAVA ME

Results in [msec]

Figure 5.6: RSA key generation on Sony-Ericsson M600i, litigaic scale
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Figure 5.7: RSA with SHA-1 signing and verification on SonyeEson M600i
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ECDSA Key Pair Generation, Sony-Ericsson M600i
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Figure 5.9: ECDSA with SHA-1 signing and verification on Sdfryesson M600i
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RSA signing and verification, shown in Figlre 5.7, is a matterfew seconds and much
faster than with ECDSA (see Figure 5.9), which takes ten tytBeconds.

In Figure[ 5.8, ECDSA key pair generation measurements ar@ided. The key pair
creation happens in less than 15 seconds and is nearly aasf&TDSA signing and
twice as fast as verifying. The implementation of ECDSA 23€ldsver on average com-
pared to ECDSA 256. Therefore, ECDSA 256 should be preferrE€SA 239, when
a higher security level than ECDSA 192 is necessatry.

Compared to the results of the desktop computer in Sectigrttfielmobile results are
slower by a factor of one hundred to one thousand times, dipgin the specific oper-
ation. Especially key generation is very slow on the mob#eices. The other operations
need seconds, instead of milliseconds as on the desktopijdb.fi

The differences between RSA and ECDSA show that the algorithohbose finally
depends on the emphasis key generation in contrast to a#ioficand signing in an ap-
plication has. In offline-authentication, key pairs neely twe computed once per device,
so RSA is a better option as long as ECDSA's speed is not funiyeraved in Bouncy
Castle.

Different hash functions, shown in Figure 5.10, do not seeiinave an effect on mea-
sured RSA 1024 times, so the decision can be made upon destedty level. With
ECDSA 192, average values with SHA-384 and SHA-512 raisadfgigntly compared
to SHA-1 and SHA-256, which may be caused through splittomger message digests
into more blocks that have to be processed.

Some of the RSA verifications failed, which is supposed to hesed by the way RSA
keys are generated in Bouncy Castle. A key is a randomly picketber, which is only
estimated to be a prime number. Té¢ertainty, to which a number should be prime, can
be specified when generating keys. If a chosen key pair is madenon-prime num-
ber, signing works but verification fails. All tests aboverbddeen made with a certainty
value of 25, meaning that a number is prime with a certaintylof (3)2°). The docu-
mentation of theBi gl nt eger . i sProbabl ePrinme(int certainty) in Java
SE mentions execution time proportional to the value. If thituence of the certainty
to speed irBouncy Castlalso behaves like this can also be tested Bi@SpeedMby
choosing the optiolRSA Certaintyat start. Then, RSA 512 test series (like above, each
series consists of 100 repeatings) with different primeéateties are measured.
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SHA-1 and SHA-2 with RSA 1024 and ECDSA 192 Signing, Sony-Ericsson M600
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The results in Figure 5.11 show, that the influence of a greatme certainty is much
less than proportional increase at RSA 512. Unfortunatebn ene verification with a
certainty of 100 failed, where a number is prime with a pralgtof (1 (3)1%°). So
the reason for failure has to be somewhere else. To copehathapplications using the
Bouncy Castle RSA algorithms should make a “test-run” afterdeeation: A random
number has to be signed and its signature verified afterwdidse result is good, the
key pair is considered okay. Otherwise, another key paiulshioe created.

With this method, a certainty of about 10 is enough to recaiveorking key pair in a
feasible amount of time.

A final note about the big differences between minimum andimas values, respec-
tively the width of the standard deviation. Key pair creatis, as already mentioned
above, a process of choosing a random number and then teéstipgmality. According
to that, a prime number can be found fast, even the first nutio@sen may be prime,
but it can also take many attempts.

Signing and verifying processes are better predictabky;, tappen within one magni-
tude. These differences are presumably due to the bit remiesn of the keys and
messages, which specifies how many low level multiplicatiand additions to make
when calculating RSA exponentiations or ECDSA additions.

Another factor that appears on mobile devices much stroiger on the desktop is the
operating system and other applications running in backgtpowhich consume signifi-
cant amounts of memory and processing time. Although otppliGtions were shut-
down when possible before startiBg SpeedMEhose influences are hardly calculable,
although surely significant.
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Chapter 6

Offline-Authentication Demonstration
Application

Implementingoffline-authenticatiomequires a mobile client, calleduthClientMEDemp

and a certificate management server, AlhServerDemoThe server is aimed at non-
mobile computers and therefore will be based on Java SE Wwéhstandard Bouncy
Castle Crypto API as security provider, while the mobile paitt ne developed using
Java ME and the lightweight Bouncy Castle Crypto API.

These projects show how tiAaithToolkitcan be used for the offline-authentication pur-
pose. TheAuthServerDemoacting as certificate authority, manages known user cer-
tificates, while the mobile clients register themselveshatgerver and can execute an
offline-authentication process. The server implementAtiteToolkitin the same way
the clients do, so the Bouncy Castle lightweight API is suffitte the server.

6.1 The AuthServerDemo

The AuthServerDem@s a straight forward implementation as a proof of conceptafo
server managing users and their certificates as PKI. MoleN&cds need a root certifi-
cate and a personified certificate for offline-authenticatsn theAuthServerDemds

owner of the root certificate and offers the service of cedte creation to members
connecting to it. The certificates are generated with indgrom provided by the clients.
When creating a root certificate at first start of the serves,atlgorithm to use can be
chosen: RSA or ECDSA. After initialization, waiting for cliesnbegins to supply them
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Figure 6.1: Flowchart of thAuthServerDemo

with certificates (see Figure 6.1), which have unique setiatbers.

The certificates are stored each in a single file in the workiingctory of the server.
Connecting a database to the server for certificate managesrsmply implementable
but not part of this thesis.

Another possible extension is a logic unit for calculatiradidity of certificates. This
concerns out-dated certificates as well as withdrawn onestifi€ate revocation with
offline-authentication has not been analyzed in this thesilsis currently considered un-
solved. An approach to handle this may be blacklisting caltjin this implies lists which
can become very large and have to be distributed and kepi-dpte on the mobile de-
vices.

The GUI is realized with Java’s Swing APl and consists of talast one for showing log
messages and another for the certificates stored, whichresenged in a table to show
their content and signature.
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6.2 The AuthClientMEDemo

The AuthClientMEDemas the second application of the demonstration designedrto r
on mobile devices. The implemented functionality com@igeding another device also

running anAuthClientMEDemand performing offline-authentication with this device.
Before this is possible, the mobile devices need uniqueficatt, which can be obtained

by connecting to thé&uthServerDemdescribed in Section 6.1.

Certificate Management

The private key and all certificates are stored in the apidics record store, which is
managed by Java ME. Other Java applications do not havesatodibss store for security
reasons. But the record store is somewhere on a physical mesoat is likely possible
to access this storage in some way. Therefore, at leastitta¢gokey should be encrypted
with a pass phrase in a serious application to block insjgbtigch is out of scope of this
thesis.

User Registration

New users receive their certificate by connecting to theesena TCP/IP over GPRS.
This registration is made simple to clarify the proceedingkeither the user identity
is checked as recommended in Section 2.1.5, nor is a secanaehused to exchange
certificates. Both is regarded as necessary to a seriousrmaptation.

The procedure is costly to the user and requires online @ity but has be done only
once for receiving a unique certificate. It simulates a sifiepl exchange of the CA's
and user’s information.

Whether RSA or ECDSA is used by the server and clients has to haedeat the first
start of the server, see Section 6.1. The client certificateggenerated on the mobile
devices during server registration, see Figure 6.2.
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User Interface

The GUI is a collection of Java ME displays, which indicate sitatus of the application.
A main menu offers the possibility to connect to another devor authentication or to

show known certificates. The latter is implemented as avisgre the user may choose
to verify the selected certificate, set it as current or dltercommon name of the certifi-
cate and then set it as current.

Besides these functions, the user’s original certificate thiedroot certificate can be
shown.

Offline-Authentication via Bluetooth

When two clients own a certificate, client-client connecsi@ne possible, which is im-
plemented over Bluetooth as one possibility of a freely atdd short range communi-
cation. The protocol implemented for offline-authenticatis presented in Section 4.4,
see also Figure 6.3. The user is informed about the progfesstioentication on the
device’s display.

The decision to use Bluetooth was made because WLAN is not pgosted by most
regular cell phones and infrared is often not supported angrand not suitable to the
envisioned scenario of detecting people.

Developing the Bluetooth connection turned out to be the mhiéfstult part of the appli-
cation. Although the Bluetooth framework of tB®M project was still in development,
it worked very well on the Java ME emulators from Sun and Sérgsson. So they
were chosen for implementation into tAethClientMEDemo Unfortunately, there ap-
peared problems on real devices regarding Bluetooth inguid/opening connections.
Only two devices of the brarBlony-Ericsson K75@ould be reproducibly connected, but
even there various errors occured. Therefore, the Bluetoathhas been redeveloped
on base of th&luetoothDemaupplied with theSun Wireless Toolkitvhich seems to be
the only implementation able to pair real mobile devicese difference to other projects
are mainly a more intense usage of threads.
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Cheating Authentication

There are two possibilities implementedidnthClientMEDemdo test the authentication
process against deceits: By setting another certificaterasntwne, the user can change
her “identity” for testing the resistance of offline-auttieation. The process has to fall,
because the private keys to other certificates are unknown.

The other option is to change the common name of a certifiddtze, the certificate
itself is altered and so the signature of this certificaté makt withstand the verifying
process.
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Chapter 7

Conclusion and Outlook

The offline-authenticatiorscheme presented in Section 2.1.5 enable®igaal Own-
ership Managemertroject to securely verify service members to each otherlitaee
never met before without the need to set up a costly serverextion. Because of the
underlyingPublic Key Infrastructurgthe system is scalable to fit even large numbers
of users. The implementdgibuncy Castle Crypto ARupports the special demands on
mobile devices and covers the cryptographic algorithms RSRElliptic Curve DSA,
both proved to be very useful for mobile purposes duringrtbigzal analysis in Chapter
2 and the test series in Chapter 5. The level of security tHey with the recommended
parameters will suffice offline-authentication for the neotiple of years, although math-
ematic and technological progress have to be closely obderv
TheAuthToolkitdeveloped during this thesis serves as foundation to offliteentication,
but may also be used for any other digital signature apphisatuitable to the DOM
project.

Speed measurements on cell phones showedditiptic Curve Cryptographyhas al-
ready passed the border to be used on mobile devices. If tttegpaeration of cell
phones offers advancements in calculation speed or the Batastle implementation
gets more optimized, it may become first choice in every appbn in need of authen-
tication or digital signatures.

The AuthServerDemand AuthClientMEDemare simplified examples for the realiza-
tion of offline-authentication, but can be easily adjusteditt the needs of th&®OM
project.
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CHAPTER 7. CONCLUSION AND OUTLOOK

7.1 Outlook

The next step is to include thuthToolkitinto theDOM project. There, a connection to
a database management system will be integrated for hgndier accounts server-sided
with extended certificate validation logic units.

The client devices will also be enhanced by fhehToolkitto support secure authenti-
cation to other service members. For this use, methods fore@ccess and storage of
the private key have to be developed.

If DOM applications benefit from data encryption, libraries bgsin the Bouncy Castle
security provider can be developed easily with the expedegained during this the-
sis.
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Chapter 8
Appendix

8.1 Setting up Bouncy Castle

In this section setting up the Bouncy Castle security provider Java SE environment
is explained. The installation is not easy there becausédssing documentation and re-
quires a couple of steps. With Java ME, usage of Bouncy Castiact more simple, as
described afterwards. The description expddisrosoft Windowsas operating system,
although all steps also apply to Linux, only the installattbrectories and folder slashes
have to be adapted\(* => “/"). As programming environmentSun Netbeants recom-
mended and described in the following, because it suppwetSun Wireless Toolkit

1. Assuming that alava Runtime EnvironmeifdRE) and alava Development Kit
(JDK) are already set up on the systedetBeansias to be installed. The newest
version,Netbeans 5.0can be obtained from [Mic06c]. Since applications for mo-
bile devices are to be developed, tebility Pack 5.0and theSun Java Wireless

Toolkitshould also be installed, which araﬁaﬁhﬁyailably onlimefiSun, too.
2. Now, Bouncy Castle has to obtained from [otBCO6]. Version is3dsed for

implementation of the applications in the following sensp but at the time of
writing, Bouncy Castle 1.33 is already out and should be chosecause it is
mainly a bug fix release without changed functionality. Tleeded file is called
bc- prov-[version].jar. It hasto be copied to the directoxyi b\ext of
the JREandthe JDK’s Runtime:

For exampleC: \j r e\l i b\ext andC: \j dk\j re\l i b\ext.
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CHAPTER 8. APPENDIX

3. Then, a list entry into the filpava. security has to be made, residing in
\l'i b\security in both the JRE and the JDK directories. The “X” has to be
replaced with the actual number in the list:
security. provider.X= \
org. bouncycastl e. j ce. provi der. BouncyCast | ePr ovi der
The position in the list is nearly arbitrary, it may be put amere but the first
place (Sun’s JCE has to stay there). A sequential numberingpartant for Java

to work with the providers.
4. To undo the key length restriction (see 3.1.3), a “unkmhistrength JCE Policy”

file from [MicO6b] has to be put intgl i b\securi ty. Bouncy Castle can now

be used with Java SE.
5. For use with Java ME, simply put the fitd dc_cl asses. zi p containing the

lightweight API somewheréetbeanscan find it, for example refer to it in a

project’s classpath as library.
6. An obfuscator, a program for renaming classes for obsgilgense of the source

code and removing unreferenced classes is crucial for BoGasyle on Java ME
for two reasons: Firstly, the size of the package is aboukB0@hich is already
too much for many mobile devices, and secondly, it tries foddi gl nt eger
andSecur eRandomin thej ava. * namespace, which is prohibited by MIDP
devices. Netbeanss supplied with theProGuard obfuscator, which has to be
configured to maximum obfuscation in the project’s settifmyBouncy Castle to
work.

8.2 Source Code

All packages discussed in this thesis are supplied withitesis on a CD, where also the
source code’s documentation and an electronic versioredh#tsis is located.
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