The Benefit of Stackin
Multiple Peer-to-Peer Overlays

Tobias Amft Kalman Graffi

Heinrich Heine University, Diisseldorf, Germany
Computer Science Department
Technology of Social Networks Group

s

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

TECHNICAL REPORT TR-2017-002
HEINRICH HEINE UNIVERSITY, DUSSELDORF, GERMANY
COMPUTER SCIENCE DEPARTMENT

SEPTEMBER 2017

The Benefit of Stacking
Multiple Peer-to-Peer Overlays

Tobias Amft and Kalman Graffi
Technology of Social Networks Group, Heinrich-Heine University Diisseldorf, Germany
Email: [amft, graffi]@cs.uni-duesseldorf.de

Abstract—In the past decades, various concepts of peer-to-peer
(P2P) systems have found their way to applications in industry.
Each peer-to-peer application defines a set of basic requirements:
being reliable, robust, efficient, sometimes anonymous, sometimes
location-dependent. Due to the large variety of overlay protocols
and distributed services existing on the Internet, it is very
likely that multiple overlays coexist on single nodes. In this
paper, we investigate the synergy between multiple coexisting
overlays and broaden the insights about stacked and parallel
executed overlays. Specifically, we identify typical functionalities
and requirements of existing overlay systems and derive a core set
of modules necessary to create a complete overlay. Furthermore,
we discuss how to avoid redundant functionalities in coexisting
overlays and how to reduce operating costs. Finally, the benefits
of overlay synergies are demonstrated based on simulations of
Chord, Geodemlia and a Gnutella-like flooding overlay running
together on one peer. It can be seen that overlay synergies
between arbitrary types of overlays may result in increased
failure tolerance and reduced communication costs.

I. INTRODUCTION

Various peer-to-peer (P2P) overlays and applications have
been proposed during the last two decades as they define
a scaling alternative to regular client-server based applica-
tions. The main distinguishing characteristic of P2P systems
(overlays + applications) is the construction of a distributed
infrastructure which is utilized and provided by participating
nodes (peers) at the same time, mostly without any single
server organizing the intercommunication of peers. Prominent
examples are file-sharing systems like Bittorrent' which dis-
seminate data between peers without the help of a central
server. In this way, systems in this category avoid server
bottlenecks and failures, also their performance scales with
the number of participating peers.

Reseach on peer-to-peer systems has lead to a huge diversity
of different overlay solutions, each shipped with its own
message forwarding strategy (routing algorithm) tailored for
one specific purpose. Overlays in the group of unstructured
overlays usually provide simple forwarding mechanisms in
which data is transmitted to no specific peer, but rather to
randomly selected peers. Example overlays in this category
are Gnutella? or Bubblestorm[28]. In the group of structured
overlays, peers are sorted according to an individual identi-
fier which is considered in forwarding decisions. Chord[27],
Pastry[25], and Kademlia[23] are three of the best studied

Uhttp://www.bittorrent.com/
Zhttp://rfc-gnutella.sourceforge.net/

e we]

‘ Replication ‘ Caching ‘

Structured
Overlay

‘ Resources (Network, Storage, CPU)

Fig. 1. Example of an overlay stack that consists of different modules which
in combination form a full P2P system.

examples of the so called distributed hash tables (DHT). Due
to their system wide structure, structured overlays are able to
identify and find (look up) other peers responsible for a certain
part of the overlay, whereas objects in unstructured overlays
have to be searched explicitly.

P2P applications dominated Internet traffic almost to
decades and are now displaced by streaming services. the
likely tendency is that the interest and the practical usage of
P2P systems will probably hold on for the next few years.
Since most overlays serve one specific purpose only, it is likely
that multiple overlays might coexist on a single peer. The
introduction of different overlay layers and modules which can
be stacked together might lead to better performance than a
parallel execution of all plain overlays. Using specialized mod-
ules only and combining them to a desired overlay avoids to
implement Important functionalities multiple times and leads
to reduced operating costs. Maniymaran et al. [22] discuss
in their work a joint overlay consisting of an unstructured
and a structured component. They show that only parts of
the respective overlays have to be implemented to obtain full
functionalities. Lin et al. [20] thereupon classify common
synergies of gossip-based overlays and demonstrate how to
benefit of them. We extend previous work with new insights
on coexisting overlays in this paper.

A. Contribution

In this paper, we broaden the knowledge about coexisting
overlays through the investigation of typical overlay charac-
teristics. We introduce the idea of an overlay stack which is
the combination of individual modules which all serve one
specific purpose to reach a desired behavior. An example of

how different overlay modules could be combined is roughly
given in Figure 1. In Section III-B, we propose a simple
way to avoid duplicate costs by using one DHT as basis
for different P2P applications. We extend this approach in
Section III-C with the idea of an overlay stack, which allows
to add new overlay functionality without effort. Instead of a
shared DHT, the overlay stack takes advantage of a common
routing table, which is used and maintained by different over-
lay modules, like routing algorithms and update mechanisms.
With knowledge about overlay stacks at hand, we aim to find
basic functionalities and requirements of different overlays.
Therefore, we summarize and characterize typical overlay
parts, we identify interdependencies between them, and we
propose possible optimizations that lead to an observable
improvement of stacked overlays in comparison to single
executed overlays. In specific, our contribution is to answer
the following questions:

o Which basic functions and core elements are required to

form an overlay? - In Section II, we identify a core set of

modules which are required to form any desired overlay.

We also identify which functionality of an overlay is

application specific and which is overlay specific.

Do interdependencies between two overlay networks or

modules exist? - We identify redundant functionality in

stacked overlays and show which parts of an overlay col-
laborate. Further, in Section III-D, we present the design
of an overlay stack and discuss ways to remove redundant
parts so that costs are reduced. In our evaluation in

Section IV, we investigate in how far a coexistence of

overlays or overlay modules affect their performance.

o What is the quality, cost, and limitation of coexisting
overlays executed in parallel? - We identify and describe
in Section IV the benefit of different overlay modules
combined in an overlay stack in comparison to unmod-
ified overlays running in parallel. We show that the
operating costs of coexisting overlays can be lowered
while their quality remains.

« Finally, we show that coexisting overlays can improve the
stability of the whole system so that overall robustness
against churn increases.

B. Outline

The remainder of the paper is structured as follows: Section
IT describes core modules which can be found in typical over-
lays. In Section III, we discuss possibilities of coexistence and
identify core modules and patterns that are repeated in many
overlays to provide specific functionalities. In Section III-C,
we present the idea of an overlay stack and a common routing
table for the optimization of coexisting overlays. We perform
simulations to show benefits of coexisting overlays and present
the results in Section IV. In Section V, we summarize existing
work related to the field of stacked and coexisting overlays.
We conclude our studies and our evaluation in Section VI.

User ‘
Application ‘
A
Overlay f l '
1
- Network
RA -
K4
R4
Request
—
RT Reply
| Contacts

Fig. 2. Each overlay consists of mainly three modules: a routing table, a
routing algorithm, and diverse update mechanisms.

II. BASIC OVERLAY MODULES

Overlays consist of different core modules which in com-
bination result in a unique behavior of the P2P overlay. We
describe a set of core modules for overlays and discuss in how
far they can be optimized.

The overlay identifier describes the identity of a peer
in an overlay. In some structured overlays like Chord [27],
Pastry [25], or Kademlia [23], peers select a number out of a
given identifier space, e.g. all numbers in the interval [0, 2169)
or [0,2'?®) as identifier. Data objects that are stored in a DHT
are usually assigned to a number in the responding identifier
space, so that always a responsible peer can be assigned to the
data object. In this case, the overlay identifier is called overlay
key.

As overlay contacts we denote the combination of an
overlay identifier and one or more IP-port tuples. Overlay
contacts are used as containers to store overlay identifiers
and related IP-port tuples for any peer. Those containers can
be send to other peers to announce a peer’s identity in the
network.

Peer-to-peer overlays operate above an existing network
(e.g. the Internet) which provides end-to-end communication.
The link between network and overlays should be implemented
in a modular way so that it can be exchanged easily and
all modules of an overlay stack have access to the same
communication basis. In this way it is possible to optimize
communication mechanisms separately from the logic of im-
plemented overlays.

Routing table - Per definition, overlays are networks oper-
ating on existing networks and extend them with new routing
structures. For this reason, every overlay maintains overlay
contacts in a certain data structure, e.g. a list, a special table,
or only a single link. The part of the overlay which is supposed
to store overlay contacts is called the routing table (RT). The
routing table is mostly a passive module which never requests
data from any other overlay modules. On the contrary, other
modules can request the routing table for overlay contacts
or inform the routing table about new contacts. Most routing

tables order overlay contacts according to a specific criterion,
e.g. ordered by numbers, by distance, etc. Important is that
overlay contacts can be reordered in any routing table at any
time. The state of any routing table can be reconstructed at any
moment, if all necessary overlay contacts exist. This leads to
the following possible optimizations of routing table modules:

1) All overlay contacts can be put into one common routing
table, which offers methods to add any overlay contact.
Internally, the overlay contacts can be sorted according
to their purpose. Whenever an overlay contact is queried,
the routing table decides which contact fits best.

2) Some structured overlays like Chord [27] and Pastry [25]
operate with similar overlay identifiers. A peer is thus
able to re-use overlay identifiers across several distinct
overlays. Unstructured overlays can then benefit from a
common routing table in the way that all known contacts
could possibly be used as next hops during forwarding.

3) As described in [22], only parts of different routing tables
have to be implemented to obtain full functionality, also
with a common routing table, overlay contacts can be
re-used.

Routing algorithm - Each overlay defines at least one
routing algorithm (RA) whose purpose it is to forward mes-
sages until a proper recipient is found. Each peer receiving a
message decides locally, which known contact in the routing
table would be best suited as next hop for a given message. The
common goal of all peers is to forward and deliver messages as
fast as possible to a certain target node. The routing algorithm
needs access to the routing table to obtain knowledge about
other contacts and possible next hops.

Overlays are typically characterized by the routing al-
gorithms they use. Each routing algorithm requires special
overlay identifiers and expects a certain order in known over-
lay contacts. We observe that routing algorithms can further
divided into a core algorithm and an overlying operation.
The core algorithm is responsible for forwarding messages
according to predefined rules towards one or more target peers.
It can be best described as implementation of the route(key
— K, msg — M, nodehandle — hint) method described in
the KBR API [9]. The overlying operation decides when an
algorithm is successful or not, and it determines the purpose
of an operation. Usual operations are for example Chord’s
find_successor operation, or put and get operations for DHTs.

The strict separation into pure algorithm and operation
allows exchange between different implementation, so that for
example Chord’s find_successor operation could be based on
an unstructured flooding algorithm. Since routing algorithms
are essential parts of an overlay, it is hard to optimize them.
One possible optimization could be to summarize multiple
lookups or searches to one single lookup or search.

In general, routing algorithms can be categorized differently
according to specific purposes. In the following we describe
the three most prominent examples.

The first category of algorithms comprises iterative routing
algorithms (Fig. 3). In this category, a node p usually asks
well selected contacts from its routing table for better contacts

Routing
Operation

N4
Fig. 3. Tterative routing algorithm.
- Timer
- Logic
Response
Routing -t Routing
Operation | ecececececcamaaaaas » Operation
Ack A
v Start Deliver
. _ Request i
) - O e e \,
c

Fig. 4. Recursive routing algorithm.

Routing - Timer Routing
Operation | - Logic Operation
Deliver Repl
H Request i
\ > > >/
A LEELENA ELEEL -
B Response -
Fig. 5. Fully recursive algorithm.

(related to a given key) they know. Peers that are learned
in this way are further asked for better contacts. In this
way, peer p consecutively contacts selected peers until a peer
responsible for a certain key is found. The control of the
routing mechanism remains at the initiator of the lookup or
search (peer p) at any time, which decides when to stop the
forwarding mechanism.

Recursive routing algorithms make up the second category
of routing algorithms (Fig. 4). In this class, the initiator p of
a search of lookup selects one peer from its routing table as
next hop and forwards a corresponding lookup/search message
to it. Every peer receiving this message decides locally to
whom the message should be forwarded, with the goal being
to reach a responsible target node. The control about the
lookup/search is given to another node with every forwarding
decision. At some point, a node ¢ decides to be responsible
for an incoming message which contains the contact data of
initiator p. In this way, ¢ is able to contact initiator p directly
and answer the request, thereupon peer p stops the routing
operation successfully.

Fully recursive routing algorithms is the third category, as
seen in Figure 5. They are similar to algorithms from category

Overlay +
Application 1

Overlay +
Application 2

Resources (Network, Storage, CPU) ‘

Fig. 6. Multiple overlays coexist without knowledge and further connection.

two with one exception, a responsible peer ¢ does not respond
directly to incoming requests. Instead the response is routed
back the way it was forwarded. In this way, only the contacts
of next and previous hops are exposed during communication,
the sender and receiver of a message remain anonymous.

Update mechanisms - Overlays which are exposed to
churn, which is a frequent join and leave activity of partici-
pants, need mechanism to stabilize the overlay structure reg-
ularly. Different types of update mechanism can be observed.
On the one hand active update mechanism are frequently exe-
cuted to learn about participating nodes in the network. Passive
update mechanisms on the other hand typically just add peers
that are discovered during lookups, requests, forwarding, or
other processes. One special type of update mechanism is the
join operation which introduces new participating nodes to the
network. Its goal is mainly to find a certain set of nodes that
are initially added to the routing table. Considering update
mechanisms, they are a good point to optimize the overlay
stack, since for every purpose only one stabilize-mechanism
is needed. Redundant updates can be omitted. According to
the components of the stacked system, it may happen that one
update mechanism, e.g. for a structured overlay, automatically
discovers contacts that can be reused for multiple routing
tables.

III. TYPES OF OVERLAY SYNERGIES

In this section, we describe possible synergies of peer-
to-peer overlays, we identify basic parts typical peer-to-peer
overlays implement, and we derive a core set of functionalities
each overlay provides. To explain the behavior of coexisting
overlays, we compare different synergies and focus on the
following points:

« Structure of overlays during coexistence.

« Requirements to the overlay implementation.

« Functionalities a synergy allows.

« Interdependencies between overlays and their parts.

o Costs, quality, and limitations of specific overlay synergy.

A. Coexisting Overlays Without Knowledge

In the first category of coexistence, overlays and related
applications executed on one peer are not aware of each other.
Each peer-to-peer system (overlay + application) serves one
specific task, e.g. file-sharing, social interaction, or anonymous
communication. Multiple overlays could coexist on one peer in
this way, each occupying resources of the host system. Figure
6 shows an example in which multiple overlays run in parallel
on one host, consuming its resources like storage, bandwidth,
CPU, etc.

- At App 2

Structured
Overlay

‘ Resources (Network, Storage, CPU)

Fig. 7. A common DHT can be used as basic lookup service for multiple
overlay applications.

The coexistence of multiple overlays in this class does
not require changes in structure or implementation of the
corresponding overlays. New overlays are implemented with-
out knowledge about other solutions. Functionality is fully
provided by overlays in this category. Since no structure or
implementation needs to be changed, each overlay is able
to serve the special purpose it is designed for. On the other
hand, to add new functionality to the system, one either has to
implement an additional overlay or has to integrate new fea-
tures into an existing implementation. No interdependencies
arise between the coexisting overlays, as each solution can be
executed independently. The performance of overlays in this
category is influenced either by their own characteristics or by
the specific resources of the hosting peer. For example, small
bandwidth on the hosting peer could restrict the function of
multiple highly active overlays running in parallel.

In a performance-based comparison of this category, it is
seen that resource costs (bandwidth consumption, storage
consumption, CPU usage, etc.) increase linearly with the addi-
tion of new overlays to the hosting peer. The implementation
costs are the sum of all implementation costs for the respective
overlays. The benefit with this approach is that overlays remain
their full functionality without general loss of quality. Further
gain on the dynamism of the synergy system is that any overlay
can be added or removed from the hosting peer without effect
on the remaining overlays. Overlays in this synergy are not
limited in their functionality, but the resources of the hosting
peer influence the overlays directly.

Therefore it can be said that this class of synergies allow
quick changes to the overall system, but summarizes in return
all costs of participating overlays.

B. Common Overlay as Basis

In the second category of coexisting overlays, a reduction
in the overhead of parallel executed overlays is made by
the introduction of a common base for coexisting overlay
applications. Assuming that many applications can be built
on top of existing solutions for both structured and unstruc-
tured overlays, we shift the diversity of coexisting peer-to-
peer systems from the routing layer to the application layer.
One DHT is enough to provide a basic lookup service to
identify responsible peers to a given key. As a complement,
an unstructured solution then provides search functionality in
finding objects in the network. The DHT provides store and
retrieve functionalities according to the KBR interface [9] and
enables, in most cases, message forwarding in logarithmic

time. We have already shown in previous work [3], [17], [2],
that multiple contrasting application types can be build on top
of DHTs like Chord or Pastry. The applications benefit from
the layered structure since both the DHT and the application
can be optimized separately, new applications can be added to
the system at any time. An example of coexisting applications
atop a combination of one structured and one unstructured
overlay is given in Fig. 7.

This category of synergy requires a strict separation of
peer-to-peer systems into the two components of basic over-
lays and applications. The task of the basic overlay is to
provide communication in form of lookup service or (file-)
search. The applications on top implement further specialized
functionalities. Functionality is moved to the component in
which it is used. Redundant functionalities, such as similar
routing mechanisms and maintenance strategies, are avoided
through the use of a joint component for a specific purpose.
Additional functions can be added as new application on top
of the existing base overlay. Although different applications
are not dependent on each other, they are coupled to a
common structured or unstructured overlay. Unlike for the case
discussed in Section III-A where multiple overlays consume
the resources of the hosting peer, here the interdependencies
between overlay parts are shifted to another layer. Applications
are build atop an underlaying base overlay which provides
communication. The quality of this overlay influences the
applications on top.

Performance-based comparisons show that resource costs
are partially shared in this kind of synergy, and of note is
that the costs produced by periodically executed stabilization
algorithms are avoided. Instead of running one DHT for each
application, the basic costs can be reduced to one DHT that
serves every application. Also unstructured overlays benefit
from the synergy, because most routing algorithm in this cate-
gory do not require any order on neighboring peers. However,
the traffic costs for lookups and search operations initiated by
the specific applications can not be avoided. Implementation
costs are reduced with this approach since the overlay synergy
can be extended with new applications at any time. The
quality of the system in terms of successful lookups and
search operations is preserved in this class of coexistence,
as the basic overlay part is completely implemented on the
hosting peer. Depending on the base, the quality can be better
in comparison to the first category. Overlays like Pastry or
Geodemlia which update their structure on lookup activity
will benefit from multiple, sometimes simultaneously started
lookups. The limiting factor in this category are the basic
overlays which provide communication. All applications have
to fit the utilized core overlays. Failures in the basic overlay
will affect the applications located atop. Arsham Sabbaghi Asl
showed in his master’s thesis [4], that coexisting applications
that are coupled through a common DHT can influence each
other massively. Depending on the applications stacked upon
the DHT, and depending on the DHT itself, bad behavior
affects coexisting applications as well as good behavior does.

C. Specialized Overlay Modules

In this third category of coexistence, we divide overlays into
smaller parts (modules) which in combination result in a full
peer-to-peer overlay (Fig. 2). The problem of category two, in
which one or two basic overlays provide core communication
functionalities to applications located on top, is that the basic
overlays limit the functionalities of the whole system. Each
implemented application relies on the underlaying lookup
service and performs as good as this core, and some overlay
structures are too specialized to be covered by a usual DHT
like Chord [27] or Pastry [25]. If the synergy had to be
extended with further overlay specific functionalities, such as
a location-aware search or a special anonymization service,
one fundamental overlay would not be enough to provide the
necessary basics for communication. In other words, having
one structured and one unstructured overlay alone as basis will
never provide a complete core set of functionalities.

To overcome this limitation, we divide overlays in small
modules, each fulfilling one special task. The stacking of
different modules leads to a certain behavior and thus to
a certain kind of overlay. In this section, we identify and
describe typical overlay modules and their characteristics.
With this knowledge at hand we are able to identify redundant
functionality and suggest optimizations to the modules. In this
way, functionality is shifted to smaller modules which can be
stacked together to form a certain protocol or service which
offers same functionalities as one common overlay (Section
III-B). Moreover, the basic overlay, structured or unstructured,
can be formed through the stacking of different modules to
provide its service. If needed, additional overlay functionality
can be added without (re-)implementation of a full overlay. In
most cases, the addition of a few modules is sufficient.

The division of overlays and applications in small functional
parts requires a lot of discipline during implementation. Good
coding principles like modular programming foster the effect
of modular overlay implementations. Clear interfaces and strict
separation into compact modules allows to exchange overlay
modules with more optimized solutions. Functionality is
clearly separated and implemented in specific modules. To ob-
tain a desired behavior of a peer-to-peer system, different mod-
ules have to be combined. Therefore, a redundant functionality
can be avoided as every required function is implemented
only once in the overlay stack. New interdependencies then
arise in the modular implementation synergy, as applications
are no longer dependent on one basic communication over-
lay. Moreover, modules are dependent on the functionalities
of other specialized modules. Consequently, dependencies
between whole overlays are outsourced to smaller specific
modules.

A performance-based comparison of this class shows that
resource costs produced by redundant stabilization operations
are reduced in this category of synergy. The redundant costs
are avoided as the necessary overlay modules are initiated
once per peer. Implementations costs appear higher at first
sight in comparison to coexisting overlays in category one,

Application
App2 [Senicel|

KBR

Merger

Structured Overlay

Fig. 8. The overlay stack can be extended vertically, by adding new
applications, services, or other modules on top of existing modules. Grey
boxes with three dots indicate possible spaces for new modules.

Merger

Structured |:
Overlay 2

Structured
Overlay 1

all
i Overlay1l |

Fig. 9. The overlay stack can be enhanced horizontally, by adding new
overlays, or other modules into existing layers of the stack. Grey boxes with
three dots indicate possible spaces for new modules.

which are not aware of each other. This is because implemen-
tations of coexisting overlays have to follow similar design
principles and possess clear interfaces so that a combination
of implementation parts is possible. In the end, this makes
the addition of new functionalities an easy task. The quality
of stacked overlays is similar to existing overlay implemen-
tations, since modules can be combined anytime to form any
specific overlay. Depending on the implemented modules, the
overall quality of the system can benefit from the interaction of
modules. Overlays that check neighboring peers upon request
will benefit from the coexistence of other overlay modules
which start communication processes frequently. The range of
functionality is not longer limited in this category, due to the
ease of adding functions to the overlay stack. Similar concepts
and modules can be reused and optimized separately.

D. The Overlay Stack

In this section, we describe the idea of an overlay stack,
which is to combine different modules to obtain one or mul-
tiple overlays or overlay applications. The previous sections
summarize three possible synergies of overlay systems running
on one peer, the overlay stack can be, but has not to be,
a combination of all three synergies. Moreover, the overlay
stack is the idea to combine different overlay parts in a
way that a certain behavior is obtained and second, that the
implementation of duplicate modules and functionalities is
avoided.

In Section III-B we show that multiple applications can be
built on top of a shared DHT which provides basic lookup
functionality. Figure 8 gives an overview how the overlay stack
can be extended vertically by adding new applications on top
of a common DHT or other existing applications. Nevertheless,
using a common DHT as underlying lookup service might not
be suited as basis for all possible applications, for example
in cases in which more specialized routing mechanisms are
desired. Overlays for anonymous communication for example

Overlay 1

Overlay 2

1 1 1 1 1
CRT
(Common Routing Table)

Request
L —
Reply

Fig. 10. A common routing table can serve multiple overlays at once.

Updates Routing Table Routing Algorithm

Get Contacts from: Store Contacts Forward to:

Stabilze (Chord) Closest Finger (Chord)

Check Predecessor (Ch} S~a —1 Successor (Chord)
i | Chord | position
Area Update It - ~ Closest Contact (Geodemlia)
— [~
Keep Alive (Any) “- Random (Unstructured)
Position
Add() Get()
Fig. 11. A common routing table gives access to all overlay contacts stored
on a peer.

are difficult to be built on top of a normal DHT, as we elaborate
in our paper [3].

To enable a horizontal growth of the overlay stack (Fig. 9),
which is the addition of new routing protocols as basis for
applications on top, we introduce a common routing table.
Similar to a common DHT which offers basic routing function-
ality to applications, a common routing table offers a shared
storage for overlay contacts and can be accessed by other
overlay modules in the overlay stack, like those explained in
Section II. Figure 10 shows an example in which different
routing algorithms and update mechanisms access one routing
table.

Examining the overlay modules described in Section II, we
notice that routing table modules are the only modules which
are acting passively in an overlay. Overlay update mechanisms
and routing algorithms define the behavior of an overlay and
serve one specific purpose, for example to update successor
pointers in Chord. However, overlay contacts as described in
Section II can be used by multiple routing algorithms in most
cases. Flooding-based overlays for example do not expect an
overlay contact to have a certain identifier. Only IP-address
of a peer and port of the respective application are needed to
forward messages so that is does not matter which type of
overlay contact is used, be it a Chord contact or a Geodemlia
contact.

As to be seen in Figure 11, overlays running on the same
peer can take advantage of a shared routing table which is used
by each overlay running on the peer. The common routing
table is filled like standard routing tables: whenever a suitable
contact is identified by an overlay mechanism, it is added
to the routing table. Each overlay module, be it a routing
algorithm or a stabilization method, no matter to which overlay

it belongs, has access to all contacts in the routing table. The
common routing table may either pre-sort existing contacts
according to the different overlays specified, or contacts can be
sorted according to a specific purpose upon request from other
overlay modules. In addition to the common routing table,
our overlay stack implements a common module for network
functionality which offers basic communication functions to
all other overlay modules. Every time an overlay module of
peer A sends a message to another peer B, the common
network module adds all overlay contacts used by peer A to
the message. In this way, peers learn about all identities of
their surrounding neighbor contacts. The base communication
layer is designed not to manipulate overlay messages directly,
because the overlays can encrypt their messages.

In Section IV, we compare the efficiency of a modular
overlay stack with common routing table and common network
functionality to original overlay implementations running in
parallel.

IV. EVALUATION

For our simulations we used the event-driven simulator
PeerfactSim.KOM [12] [11] [14]. The number of simulated
nodes is set to 1000, which is not very high for standard
peer-to-peer simulations, but allows us to identify and study
possible benefits of coexisting overlays. Churn is activated
throughout all simulation.

The goal is to show that costs of coexisting overlays in terms
of traffic can be lowered through the reduction of stabilize-
mechanisms. At the same time the quality of the system can
be maintained through different synergies of overlay modules.
Moreover, we show that the stability of two coexisting overlays
can be increased through the use of a common routing table
(CRT).

A. Simulation Setup

In our simulations we study the coexistence of two struc-
tured overlays, namely Chord [27] and Geodemlia [16] and
one unstructured, Gnutella-like overlay which uses flooding
to disseminate data. We choose these three overlays as they
are very contrasting in their functionalities and requirements.
We show with this setup, that even a synergy between overlays
with different types of identifier spaces results in benefits.

Peers in Chord have a one-dimensional identifier and are
connected to peers that have the next higher identifier and to
peers that gave next lower identifier. In this way, Chord is able
to assign a responsible peer to any given identifier. Geodemlia
on the other hand, is a location-aware overlay which maps data
and peers to physical locations and allows a user to search
for location-based data. To do so, nodes in Geodemlia have
a two-dimensional identifier which represents the coordinates
they are located. Peers in Geodemlia additionally store contact
data to near and distant nodes so that messages can be routed
towards a desired location. The identifiers both overlays use
are contrasting in their structures. Peers in Chord are identified
by an integer number out of the interval [0,2!6Y), whereas
nodes in Geodemlia are identified by their physical location.

General Settings
PeerfactSim.KOM [12] [11] [14],
simple network module, no packet loss, exponential churn

Simulator details

Standard Settings in Scenarios
Churn start Minute 30
oY The interval in which lookups, area searches, and flooding
attempts are started is o = 120s
(approximately 10 percent of peers start lookups in each
overlay)
logy(N) * (fe + fg + fr) with N being the size of the
network, here N = 1000, f; being a factor for Chord (f.),
Geodemlia (f,), or Flooding (fy)
60 minutes

Common routing
table (CRT) size

Simulation time

A) Normal Overlay Behavior
Join phase until Minute 20, lookups and searches from Minute
20 on. o = 120s, 240s, 480s
Chord (unmodified), Geodemlia (unmodified), Flooding (un-
modified), overlay stack running Chord, Geodemlia, Flooding
simultaneously with CRT

B) Different Update Times
Join phase until Minute 20, lookups and searches from Minute
20 on. Chord update intervals = 30s, 60s, 120s, 240s, 300m
Chord (unmodified), overlay stack running Chord, Geodemlia,
Flooding simultaneously with CRT

C) Sudden Leave Events
Join phase until Minute 20, lookups and searches from Minute
20 on. Sudden leave events affecting 20%, 40%, 60%, 80%
of all nodes
Chord (unmodified), Geodemlia (unmodified), Flooding (un-
modified), overlay stack running Chord, Geodemlia, Flooding
simultaneously with CRT

Scenario

Overlay Settings

Scenario

Overlay Settings

Scenario

Overlay Settings

D) Isolation Events

Join phase until Minute 20, lookups and searches from Minute
20 on. Sudden isolation event affecting 20%, 40%, 60%, 80%
of all nodes

Chord (unmodified) (with and without Ring Reunion merger),
Geodemlia (unmodified), Flooding (unmodified), overlay stack
running Chord, Geodemlia, Flooding simultaneously with
CRT (with and without Ring Reunion merger)

E) Sudden Join Events
Join phase until Minute 20, lookups and searches from Minute
20 on. Sudden bootstrapping (no full join) affecting 20%, 40%,
60%, 80% of all nodes
Chord (unmodified), Geodemlia (unmodified), Flooding (un-
modified), overlay stack running Chord, Geodemlia, Flooding
simultaneously with CRT

Scenario

Overlay Settings

Scenario

Overlay Settings

TABLE I
SIMULATOR SETUP AND DIFFERENT SCENARIO SETUPS.

In Chord, peers periodically update contact information to
other peers to keep the network in a stable state, whereas in
Geodemlia, contact information are checked for validity if they
are used. New contacts are actively looked up in Chord and
contacts in Geodemlia are learned from bypassing messages.
The flooding-based overlay has no specific requirements on its
routing table or on the overlay contacts it uses. Upon receiving
a message, this approach selects a subset out of all known
contacts and forwards the message to all nodes in this subset.

In our simulations, we compare the unmodified, original
protocol versions of Chord, Geodemlia, and the Gnutella-like
flooding overlay, each running individually, to the overlay
stack approach in which all overlays are running in parallel and
a common routing table exists to maintain overlay contacts.
We simulate churn according to an exponential, in which, most
peers leave the network after short online times and few nodes
stay online for longer times before leaving the network. The

offline time of peers on the other hand is much shorter so that
peers join the network again, shortly after they have left. Churn
begins at Minute 30 in all our simulations (if not declared
differently), the mean session length is set to approximately
30 minutes. Each simulation stops after 60 minutes.

To be able to rate the success of the individual overlay
protocols, we analyze if lookups in Chord, area searches
in Geodemlia, or flooding attempts are successful. For this
reason, random lookups in Chord, area searches in Geodemlia,
or flooding attempts are started in our simulations, so that 10
percent of all peers executing Chord start lookups every o
seconds, 10 percent of all peers executing Geodemlia start
area searches every a seconds, and 10 percent of all peers
executing Gnutella start to flood the network every « seconds.

The common routing table in our overlay stack is limited in
its capacity to store overlay contacts, in order to save storage.
The size of the routing table is calculated the following:
logy(N) * (fe + fg + fr) with N being the size of the
network, here N = 1000, f; being a factor for the weight
of the respective overlay. As Chord needs a successor list
of size log,(NN), successor and predecessor pointers, as well
as approximately log,(N) contacts in its finger table, we
set fo = 3. We set f, = 12 because Geodemlia in our
evaluation stores contacts according to 4 directions in 12
different buckets, each having 3 slots. As the flooding-based
overlay reuses Chord and Geodemlia contacts, we set fr = 0.

Next, we describe the scenarios in detail, an overview about
the simulated scenarios is also given in Table I.

Scenario A) Normal Overlay Behavior: In this scenario, we
test the basic behavior of our overlay stack and show that its
overlays perform at least as good as the original overlays.
To do so, we compare the unmodified versions of Chord,
Geodemlia and Gnutella individually to an overlay stack in
which Chord, Geodemlia, and Gnutella share and use a com-
mon routing table. Additionally, we compare the unmodified
overlays to respective versions, in which the original routing
table is exchanged with a common routing table, but no other
overlays are accessing this table. Our intention here is to
show that the common routing table performs as good as a
normal routing table and we want to get a first insight into the
performance of our overlay stack. The setup is the following,
from Minute 0 to 20, peers join the network. Thereafter, peers
execute lookups, area searches, or search operations according
to the respective overlay. In this scenario, the periodic lookup
interval « is set to 120, 240, and 480 respectively.

Scenario B) Different Update Times: In this scenario, we
investigate the impact of Chord’s update mechanisms on the
Chord protocol. We compare the unmodified Chord protocol
to the overlay stack in which Chord, Geodemlia, and Gnutella
share common routing table. With this setup, we want to
find out, if Chord inside the overlay stack benefits from
other overlays in the overlay stack in terms of robustness
and self-stabilization. In this setup, peers join the network
from Minute 0 to 20 and start lookups (or area searches,
or flooding attempts) thereafter. In this scenario, the periodic
lookup interval « is set to 120 seconds, so that each peer in an

overlay starts a lookup, area search, or flooding attempt every
2 minutes with a probability of 10 percent. The interval for
Chord’s update mechanisms is set to 30s, 60s, 120s, 240s, and
300m.

Scenario C) Sudden Leave Events: In this scenario, we
compare the unmodified protocols to the overlay stack in the
case of sudden leave events of a big part of the overlay. Again,
peers join the network in the first 20 minutes of the simulations
and start lookups, searches, or flooding-attempts afterwards. At
Minute 30, X percent of the peers of a certain overlay leave
the network suddenly. We set X to 20, 40, 60, 80 percent of
the network. For the overlay stack, we simulate separately that
peers leave Chord, Geodemlia, or Gnutella. With this scenario,
we show the robustness and self-stabilization process of the
overlay stack.

Scenario D) Isolation Events: We compare the unmodified
version of Chord to the overlay stack during isolation events
in this scenario. Peers join the network in the first 20 minutes
of this scenario and start lookups, searches, or flooding-
attempts afterwards. 20, 40, 60, or 80 percent of the network
fall victim to a sudden isolation event at Minute 30. Peers
inside the isolated network are able to communicate with each
other. Communication to nodes outside the isolated region
is not possible. Furthermore, we compare the behavior of
the protocols with and without the Ring Reunion merging
algorithm for Chord-like overlays which we presented in [1].
We show with this scenario, that overlays coupled through a
common routing table influence each other so that modules
benefit from update and maintenance algorithms belonging to
other modules.

Scenario E) Sudden Join Events: In this scenario, we
compare the unmodified overlays to the overlay stack in the
case of sudden join events. We show with this scenario,
that overlays in the overlay stack benefit from the common
routing table during the join phase. In specific, we show that
bootstrapping is possible without explicitly joining other peers
in the network. In this setup, peers join the network in the first
20 minutes and start lookups, searches, or flooding-attempts
thereafter. Then at Minute 30, X percent of the peers suddenly
start Chord, Geodemlia, or Gnutella, without operating a full
join process which is to contact other peers initially to fill the
routing table of the respective overlay. We set X to 20, 40,
60, 80, 100 percent of the network.

B. Metrics

To analyze the overlay stack with its common routing table
and to compare it with the original overlay protocols, we
need some metrics describing the success and the costs of the
simulated protocols. In the following, we describe the most
Important metrics used in our simulations.

o Success and failure of lookup or search operations can
be measured depending on the three overlays. To measure
success of a lookup in Chord, we check if the successor
found by Chord’s find_successor operation is correct. A
successor of an identifier is considered to be correct, if no
other node is online which would be a better successor

of the identifier. To measure success of an area search in
Geodemlia, we check if the find_nearest_nodes operation
finds all nearest nodes according to a specified location.
The quality of flooding-based overlays can be measured
by introducing the half-life metric which denotes how
long it takes to flood half of the network and thereby
reach half of the nodes with a query message.

« Hops and delivery time are important metrics to rate the
efficiency of a lookup, area search or flooding attempt.
The number of hops or amount of visited nodes tells
us how many nodes are affected by a lookup or search,
the delivery time states, how fast the related operation
performs.

o Traffic costs in terms of sent and received messages,
as well as total bytes sent and received per time and per
peer are needed to value the costs produced by an overlay
solution.

C. Simulation Results

Simulation Results
Metrics Per Minute: Successful / Initiated lookups, Delivery Time, Visited
Nodes, Total Bytes Sent
Per Peer / Message: Delivery Time, Visited Nodes, Total Bytes Sent
Parameters| Scenario A) I = Periodic Lookup Interval(120s, 240s, 480s)
Scenario B) I = Chord Update Interval (30s, 60s, 120s, 240s, 300m)
Scenarios C and D) B = Size of Group B (80%, 60%, 40%, 20%)
Scenarios E) B = Size of Group B (100%, 80%, 60%, 40%, 20%)
A) Normal Overlay Behavior
A.l Unmodified Chord vs. Chord in Overlay Stack
A2 Unmodified Flooding vs. Flooding in Overlay Stack
A3 Unmodified Geodemlia vs. Geodemlia in Overlay Stack
[B) Different Update Times |
‘ B.1 ‘ Unmodified Chord vs. Chord in Overlay Stack]
C) Sudden Leave Events
C.1 Unmodified Chord vs. Chord in Overlay Stack
C2 Unmodified Flooding vs. Flooding in Overlay Stack
C.3 Unmodified Geodemlia vs. Geodemlia in Overlay Stack
D) Isolation Events
D.1 Unmodified Chord without Ring Reunion Algorithm vs.
Chord in Overlay Stack without Ring Reunion Algorithm
D.2 Unmodified Chord with Ring Reunion Algorithm vs.
Chord in Overlay Stack with Ring Reunion Algorithm
D3 Unmodified Flooding without Ring Reunion Algorithm vs.
Flooding in Overlay Stack with Ring Reunion Algorithm
D4 Unmodified Geodemlia without Ring Reunion Algorithm vs.
Geodemlia in Overlay Stack with Ring Reunion Algorithm
E) Sudden Join Events
E.l Unmodified Chord vs. Chord in Overlay Stack
E2 Unmodified Flooding vs. Flooding in Overlay Stack
E.3 Unmodified Geodemlia vs. Geodemlia in Overlay Stack

TABLE 11
OVERVIEW: SIMULATION RESULTS.

In the following, we evaluate the results of our simulations
according to the scenarios presented in Section IV-A. Table II
gives an overview on how our simulation results are numbered
and organized. We did not print error bars in our figures,
because the results of our simulations are very close, and they
are not needed to roughly describe the behavior of our overlay
stack.

For each scenario described in Section IV-A and Table I, we
first focus on the behavior of the respective overlay during the

simulation time. Therefore, we present for each scenario the
success rate of lookups or area searches or flooding attempts,
the average delivery time of messages, the average number of
visited nodes per lookup or area search or flooding attempt,
and the total amount of bytes sent in the network which is
approximately the number of received bytes in the network.
To rate the quality of a flooding attempt, we observe the time
needed, to flood half the network, which is denoted as the half-
life period. To show the load per peer and per message, we
present secondly the delivery time per message, the number
of visited nodes per message and the bytes sent per peer as
histograms. In order to be able to compare overlays in the
overlay stack directly to the unmodified version, we place
the results for an unmodified version of an overlay directly
alongside the results of respective overlay the overlay stack.
For example, in each Scenario X.1, where X is A,B,C,D,or
E, the results for unmodified Chord are directly placed to
the results of Chord in the overlay stack. Depending on the
different scenarios, we vary the interval in which lookups,
searches, and flooding attempts are started (Parameter I in
Scenario A), we vary the interval of update messages in Chord
(Parameter I in Scenario B), and we alter the number of nodes
leaving, joining, or getting isolated (Parameter B in Scenarios
C,D,E). The results for each scenario are further described in
the following.

1) Scenario A.1 Chord: In Figures 12 and 13, we compare
the unmodified version of Chord to its opposite in the overlay
stack for different lookup intervals. Focusing on the ratio of
successful lookups in both variants, it can be seen that Chord
inside the overlay stack, which is uses a common routing
table, solves as many queries correctly as the original Chord
variant. Considering the average delivery time, it can be seen
that the overlay stack version of Chord delivers messages
in approximately half the time compared to the unmodified
version. Reason for this observation is that the common
routing table in the overlay stack offers more and better fingers
than in the original protocol. As a result, approximately half
the number of nodes have to be visited during a lookup and
therefore less messages and less traffic has to be consumed in
the overlay stack. Comparing Figures 12(d) and 13(d), it can
be seen, that Chord consumes approximately the same traffic
regardless how often lookups are started, reason is, that most
lookups and thus most traffic is produced by Chord’s update
mechanisms.

2) Scenario A.2 Flooding: Considering Figures 14 and 15,
we observe that the half-life period of flooding attempts in the
overlay stack, which is to reach half the nodes in a network
through a flooding attempt, is approximately half the size
compared to the unmodified flooding overlay. In both versions,
we limit the number of forwarded copies of a message to
log,(N) per node only, with N being the size of the network
(here: 1000 nodes). The benefit of the overlay stack compared
to the unmodified single overlay version is, that the common
routing table offers a great variety of possible contacts to the
routing algorithm instead of limiting the set of contact nodes
to logo(N) nodes only. As a result, less routing loops occur

and more nodes can be visited during a flooding attempt, as
to be seen in Figures 15(c) and 14(c). Considering the total
number of bytes sent, it can be seen that the overlay stack
version consumes more traffic than the unmodified flooding
version.

3) Scenario A.3 Geodemlia: The comparison between the
unmodified Geodemlia version in Figure 16 and the Figure 17
shows no special behavior of the overlay stack version or
the original version of Geodemlia. Nevertheless, it can be
seen, that both approaches behave similarly and the overlay
stack version of Geodemlia performs at least as efficient as
the unmodified version. Investigating the average number of
visited nodes per message per time, it can be seen that the
Geodemlia algorithm visits almost all nodes in the network to
find the nearest nodes of an area.

4) Summary Scenario A: In Scenario A we have seen, that
overlays in the overlay stack behave similar to the unmodified
version of the respective overlay. Depending on the overlay,
Scenario A shows that under normal conditions operation costs
can be reduced with the common routing table. Considering
Chord for example proves, that costs for lookups can be
halved, comparing the flooding approaches, it can be seen,
that routing quality can be increased without cost growth.

5) Scenario B.1 Chord: We compare the unmodified ver-
sion of Chord to the overlay stack version of Chord in
Figures 18 and 19. Comparing the ratios of successful lookups
in both approaches, it can be seen that lookups are more
successful the more updates are executed in Chord. Focusing
the unmodified version of Chord in Figure 18, we observe that
lookups are not successful if no updates are made (I=300m).
Chord in the overlay stack on the opposite is able to perform
successful lookups even if no updates are made (I=300m). In
general it can be seen that the overlay stack version of Chord
performs lookups more successful than the original protocol.
The number of total bytes sent in Figure 19(d) supports our
assumption made in Section IV-C1 that the traffic consumption
in Chord is mainly induced by its update mechanisms. It
follows theoretically, that using the overlay stack with common
routing table, less updates are needed to perform as good as
the unmodified Chord variant with more updates. As a result,
the overlay stack can help to reduce traffic overhead while
Chord’s lookup performance is increased.

6) Scenario C.1 Chord: In Scenario C, we investigate the
impact of sudden leave events on the original overlay protocols
and on our overlay stack. It can be seen in Figure 20 that
Chord is able to remain stable if approximately 20 percent of
all peers leave the network suddenly at Minute 30. If more
peers leave the network, lookups in Chord are not successful
anymore. Considering Chord in the overlay stack on the other
hand (Figure 21, we observe lookups to be successful again
after a small time, even if 80 percent of the network suddenly
turns offline. Observing the traffic overhead, it can be seen
that during Minute 30 when most peers leave the network,
messages need up to 10 times longer to receive a target node
compared to the typical behavior.

7) Scenario C.2 Flooding: Investigating the flooding-based
overlay in Scenario C, we observe another benefit of the
overlay stack. It can be seen in Figure 22(c), that in the
unmodified version of the flooding overlay approximately the
same number of nodes are visited per message for different
sizes of parameter B. Reason is, that the original routing table
does not learn about failing nodes. In Figure 23(c) instead,
it can be seen that the number of visited nodes is similar to
the number of nodes in the network. This behavior occurs
because other overlays in the overlay stack notice contacts to
be failed and remove the dead contacts from the routing table.
The number of visited nodes increases slowly from Minutes
30 to 60, because some offline peers join the overlay again
due to churn.

8) Scenario C.3 Geodemlia: Figures 24 and 25 compare
Geodemlia in its unmodified version and Geodemlia as module
in the overlay stack. In this Scenario, the unmodified version
of Geodemlia is able to perform more successful lookups
than the overlay stack version during network failures. This
behavior might be a result from restructuring processes in
the underlying common routing table. Similar to the flooding
overlay in this Scenario, the unmodified version of Geodemlia
visits dead nodes during an area search whereas Geodemlia
in the overlay stack avoids to contact offline peers. Therefore
the number of visited nodes per message does not decrease
significantly during the sudden leave event.

9) Summary Scenario C: Scenario C shows that our overlay
stack has different impacts on its overlays. On the one hand,
Chord and the flooding-based overlay benefit from the overlay
stack. On the other hand, Geodemlia performs worse in the
overlay stack if big parts of the overlay turn offline suddenly.
Nevertheless, in this Scenario, the overlay stack benefits from
its modular structure. Individual parts of the stack which are
not performing as desired can be exchanged or optimized
separately. In this way, the performance of the whole overlay
stack can be improved through the individual optimization of
each module inside.

10) Scenario D.1 Chord without Merging Algorithm: In
Figures 26 and 29 we compare Chord in its original version
to Chord in the overlay stack in the presence of isolation
events. In Scenario D.1 no additional merging algorithm is
enabled which could unify the disrupted overlay parts again.
Similar to the results in Section IV-C1, Chord in the overlay
stack consumes less resources than the unmodified protocol, as
can be seen in Figures 29(b), 29(c), and 29(d). Figures 26(a)
and 27(a) show the ratio of successful lookup per initiated
lookup. It can be seen, that without merging algorithm, no
approach is able to reach 100 percent correct lookups. As
we described earlier in our paper [1], during isolation events,
multiple rings are formed in Chord. It might be possible
that lookups are successful in the separated rings, but our
metric requires lookups to be correct globally. As described
in Section IV-B, we mark lookups as successful if no better
successor for the related identifier can be found. However, in
this scenario it is likely that a better successor can be found in
the other isolated ring, so that the ratio of successful lookups

is equal to the maximum ratio of nodes in a group.

11) Scenario D.2 Chord with Merging Algorithm: Com-
paring Figure 28 to Figure 29, it can be seen that original
Chord and Chord in the overlay stack profit from a merging
algorithm like our Ring Reunion Algorithm proposed in [1].
In both variants, Chord is split into multiple rings at Minute
30. The Ring Reunion Algorithm manages in both cases to
merge communication islands in the isolate region and around
Minute 40 when isolation is over, the separated networks are
merged to one ring again. Again it can be seen that the average
delivery time of messages and the average of visited nodes per
message in our overlay stack have approximately half the value
of the original version.

12) Scenario D.3 Flooding: In Figures 30 and 31 we com-
pare the flooding-based overlay without merging algorithm to
its opposite in the overlay stack which is affected by the Chord
merger. In specific, Figures 30(c) and 31(c) show that the
flooding-based overlay in the overlay stack benefits from the
Ring Reunion Algorithm which merges the Chord overlay in
the overlay stack. We observe in Figure 31(c), that the number
of visited nodes per message is reduced from 100 percent to
approximately 60 or 80 percent at Minute 30, depending on
the size of the biggest group of nodes during isolation. From
Minute 40 on, 100 percent of all nodes in the network can
be reached again, since the common routing table provides
access to peers which have been unreachable during isolation.
Without merging algorithm, the number of nodes reached by
the flooding message does not increase after the isolation
event, as can be seen in Figure 30(c).

13) Scenario D.4 Geodemlia: In Scenario D.4, we compare
the unmodified version of Geodemlia to Geodemlia in our
overlay stack. We observe that both version do not differ
roughly. Althoug the original version of Geodemlia, as can
be seen in Figure 32, does not operate a merging algorithm,
area searches in the original Geodemlia version are successful
after the isolation event. The reason why area searches in
Geodemlia are possible after an isolation event is that peers
in Geodemlia use a big routing table which is not updated
actively. It happens therefore, that previously known contacts
remain in the routing table if no better contacts are met. Those
contacts which have been known before the isolation event
survive the isolation event and can be used again thereafter.

14) Summary Scenario D: We have seen in Scenario D,
that overlays in the overlay stack benefit from update mecha-
nisms executed in other overlays. Especially overlay merging
algorithms like our Ring Reunion Algorithm [1] can affect
all overlays in the overlay stack positively. It can be seen
that overlays with small routing table like the flooding-based
overlay evaluated in Section IV-C12 benefit the most from
commonly used routing tables. We also learn from Scenario
D.4 in Section IV-C13, that some overlays have a robust
routing table per se. Those overlays do not benefit from the
common routing table significantly, but their are not affected
negatively either.

15) Scenario E.1 Chord: In Scenario E.1, a group of nodes
start the Chord overlay without fully joining the network. We

want to find out in this scenario if new functionalities can
be bootstrapped in the overlay stack. Comparing the ratio of
successful lookups in the original Chord variant (Figure 34)
and the overlay stack version (Figure 35), we observe that
our overlay stack supports newly activated overlay modules
through the common routing table. Figure 35(a) shows, that
more than 40 percent of Chord lookups in the overlay stack
are successful shortly after up to 100 percent of all nodes start
the Chord protocol. In comparison, in the unmodified Chord
variant represented in Figure 34(a), more than 40 percent
successful lookups are reached if only up to 40 percent of
all node start the Chord protocol.

16) Scenario E.2 Flooding: Comparing both flooding-
based overlays in Scenario E.2, we observe again, that our
overlay stack is able to bootstrap new overlay functionality.
As can be seen in Figure 37(c), flooding in our overlay
stack reaches more nodes compared the unmodified flooding
approach, which can be seen in Figure 36(c). Like in previous
scenarios, the half-life period during flooding attempts is also
lowered through our overlay stack in this scenario.

17) Scenario E.3 Geodemlia: Also Geodemlia inside the
overlay stack benefits from a common routing table in the way
that more area searches are successful in the overlay stack
version than in the unmodified version. Figures 38 and 39
show that area searches are slightly more successful in the
overlay stack than in the single Geodemlia version. It can
also be seen, that the overlay stack consumes resources almost
equally to the original Geodemlia version.

18) Summary Scenario E: In Scenario E we have shown
that our overlay stack supports newly activated overlay mod-
ules during the bootstrapping phase. Although the success rate
of lookups, area searches, and flooding attempts of the three
overlays could not be increased extremely, it can be seen that
the overlay stack improves the quality of coexisting overlays
during joining phases slightly. It needs further investigation,
to find out how new functionalities can be fully started at
runtime without loss of quality. Again, the modular structure
of our overlay stack fosters the efficient optimization of
overlay modules so that the improvement of bootstrapping
functionality can be done in each overlay individually.

V. RELATED WORK

The key based routing (KBR) API [9] is an early description
of fundamental functionalities for structured (and partially
unstructured) overlays. Overlays implementing the KBR in-
terface can be extended with replication mechanisms like
PAST [10], publish / subscribe solutions like SCRIBE [26], or
further applications. Maniymaran et al. [22] create a joint over-
lay which comprises a structured and an unstructured overlay.
In specific, they identify contacts in the routing table which
can be reused in other overlays. Lin et al. [20] classify syn-
ergies of gossip-based overlays and demonstrate their benefits
within GossipKit [13], a framework for composing overlays.
Another overlay describing framework and language has been
introduced by Behnel et al. in [6] and [5]. Macedon [24],
later Mace [19], is an high-level language for the description

and automatic creation of overlays. A finite state machine is
used to realize overlays, the re-use of existing components or
the coexistence of multiple overlays is not considered. Other
solutions, such as OCALA [18] and Oasis [21], introduce new
layers in the network stack which enable to switch between
different overlays and applications. A convergence layer is
used in these works to multiplex and demultiplex traffic which
is sent between different overlays. This allows to used overlay-
based packet delivery besides regular IP-based routing.

Various existing works on peer-to-peer overlays already
follow the principles of overlay and application separation.
A case study on how to build layered DHT applications is
presented in [7]. A multi-layer frameworks for social networks
which places a distributed data plane on top of Pastry [25]
is described in [15]. Some works like [8] combine different
applications into one overlay.

VI. CONCLUSION

In this paper we studied the coexistence of different phys-
ical overlays on a single peer. We identified a core set of
requirements and functionalities overlays typically consist of
and derived different types of overlay synergies. For each
classification of synergy we discussed possibilities to re-
duce implementation and execution costs. We introduced the
concept of a common routing table which gives coexisting
overlays access to all known contacts. In our simulations we
investigated the effect of different overlay synergies on the
performance and stability of the participating overlays. It can
be observed that a shared routing table is able to increase the
robustness of the system which in turn reduces traffic costs
since less stabilization operations are needed. We further show
that our overlay stack allows to add new overlay functionality
on top of the common routing table and allows to switch on
and off new routing functionalities during runtime. Thus, the
bootstrapping of new overlay functionality is possible without
costly join procedures.

REFERENCES

[1] T. Amft and K. Graffi, “A Tale of Many Networks: Splitting and Merging
of Chord-like Overlays in Partitioned Networks,” Technology of Social
Networks Group, Heinrich Heine University, Diisseldorf, Germany,
Tech. Rep. TR-2017-001, 2017.

[2] ——, “Moving Peers in Distributed, Location-based Peer-to-Peer Over-
lays,” in Proceedings of the International Conference on Computing,
Networking and Communications (ICNC), 2017.

[3] T. Amft, B. Guidi, K. Graffi, and L. Ricci, “FRoDO: Friendly Routing
over Dunbar-based Overlays,” in Proc. of Int. Conf. on Local Computer
Networks (LCN), 2015.

[4] A. S. Asl, “Auswertung von parallel betriebenen, DHT-basierten Peer-

to-Peer Overlays,” Master’s thesis, Department of Computer Science,

Heinrich Heine University Diisseldorf, June 2017.

S. Behnel, “Slosl-a modelling language for topologies and routing in

overlay networks,” in Int. Conf. on Parallel, Distributed and Network-

Based Processing (PDP). 1EEE, 2007, pp. 498-508.

S. Behnel and A. Buchmann, “Models and languages for overlay

networks,” in Databases, Information Systems, and Peer-to-Peer Com-

puting. Springer, 2007, pp. 211-218.

Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,

and J. M. Hellerstein, “A Case Study in Building Layered DHT Appli-

cations,” in Proc. of ACM Int. Conf. on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications (SIGCOMM),

2005.

[5

=

[6

=

[7

—

[8] C. Chow, M. F. Mokbel, and X. Liu, “Spatial Cloaking for Anonymous
Location-based Services in Mobile Peer-to-Peer Environments,” Geoln-
formatica, vol. 15, no. 2, pp. 351-380, 2011.

[9] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica,
“Towards a Common API for Structured Peer-to-Peer Overlays,” in Proc.
of Int. Workshop on Peer-to-Peer Systems (IPTPS), ser. LNCS, vol. 2735.
Springer, 2003.

[10] P. Druschel and A. I. T. Rowstron, “PAST: A Large-scale, Persistent
Peer-to-Peer Storage Ultility,” in Proc. of IEEE Workshop on Hot Topics
in Operating Systems (HotOS), 2001.

[11] M. Feldotto and K. Graffi, “Comparative evaluation of peer-to-peer
systems using peerfactsim. kom,” in Proc. of Int. Conf. on High
Performance Computing and Simulation (HPCS), 2013.

, “Systematic evaluation of peer-to-peer systems using peerfactsim.
kom,” Concurrency and Computation: Practice and Experience, vol. 28,
no. 5, pp. 1655-1677, 2015.

[13] P. Grace, G. Coulson, G. Blair, L. Mathy, W. Yeung, W. Cai, D. Duce,
and C. Cooper, “Gridkit: Pluggable overlay networks for grid comput-
ing,” On the Move to Meaningful Internet Systems 2004.: CooplS, DOA,
and ODBASE, pp. 1463-1481, 2004.

[14] K. Graffi, “PeerfactSim.KOM: A P2P System Simulator — Experiences
and Lessons Learned,” in Proc. of Int. Conf. on Peer-to-Peer Computing
(P2P). 1IEEE, 2011.

[15] K. Graffi, C. Gro8, D. Stingl, D. Hartung, A. Kovacevic, and R. Stein-
metz, “LifeSocia. KOM: A Secure and P2P-based Solution for Online
Social Networks,” in Proc. of IEEE Consumer Communications and
Networking Conf. (CCNC), 2011.

[16] C. Gross, D. Stingl, B. Richerzhagen, A. Hemel, R. Steinmetz, and
D. Hausheer, “Geodemlia: A robust peer-to-peer overlay supporting
location-based search,” in Peer-to-Peer Computing (P2P), 2012 IEEE
12th International Conference on. 1EEE, 2012, pp. 25-36.

[17] B. Guidi, T. Amft, A. De Salve, K. Graffi, and L. Ricci, “DiDuSoNet: A
P2P Architecture for Distributed Dunbar-based Social Networks,” Peer-
to-Peer Networking and Applications, pp. 1-18, 2015.

[18] D. A. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica,
and K. Wehrle, “OCALA: An Architecture for Supporting Legacy
Applications over Overlays,” in Proc. of Int. Conf. on Networked Systems
Design and Implementation (NSDI), 2006.

[19] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat,
“Mace: language support for building distributed systems,” in ACM
SIGPLAN Notices, vol. 42, no. 6. ACM, 2007, pp. 179-188.

[20] S. Lin, F. Taiani, and G. Blair, “Exploiting synergies between coexist-
ing overlays,” in Proc. of Int. Conf. on Distributed Applications and
Interoperable Systems (IFIP). Springer, 2009, pp. 1-15.

[21] H. V. Madhyastha, A. Venkataramani, A. Krishnamurthy, and T. E.
Anderson, “Oasis: an Overlay-aware Network Stack,” Operating Systems
Review, vol. 40, no. 1, pp. 41-48, 2006.

[22] B. Maniymaran, M. Bertier, and A.-M. Kermarrec, “Build one, get one
free: Leveraging the coexistence of multiple p2p overlay networks,” in
Distributed Computing Systems, 2007. ICDCS’07. 27th International
Conference on. 1EEE, 2007, pp. 33-33.

[23] P. Maymounkov and D. Maziéres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Proc. of Int. Workshop on
Peer-to-Peer System (IPTPS), ser. LNCS, vol. 2429. Springer, 2002.

[24] A. Rodriguez, C. E. Killian, S. Bhat, D. Kostic, and A. Vahdat,
“Macedon: Methodology for automatically creating, evaluating, and
designing overlay networks.” in NSDI, vol. 4, 2004, pp. 20-20.

[25] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer Systems,”
in Proc. of IFIP/ACM Int. Conf. on Distributed Systems Platforms
(Middleware), 2001.

[26] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel,
“SCRIBE: The Design of a Large-Scale Event Notification Infrastruc-
ture,” in Proc. of Networked Group Communication, Int. COST264
Workshop, ser. LNCS, vol. 2233. Springer, 2001.

[27] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” in Proc. of Int. Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), 2001.

[28] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann, “Bub-
blestorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer Search,”
in Proc. of ACM Int. Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), 2007.

[12]

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

60

1.2 T T T T T
1k
0.8 [8
0.6 .
0.4 8
0.2 1=120s -
1=240s - - - -
1=480s
0 1 1 1 1 1
0 10 20 30 40 50
Time [m]
(a) A.1: Successful / Initiated Lookups (Ratio).
300 T T T T T
250 [~
200 [~
150 [~
100 [~
fii
50 ,:_120s — 2 _
=480s
0 1 1 1 1 1
0 10 20 30 40 50

Time [m]

(b) A.1: Average Delivery Time.

60

0 1 1 1 1 1
0 10 20 30 40 50 60
Time [m]
(c) A.1: Average Visited Nodes.
3e+06 T T T T T
250406 e N SN AN A ST
2e+06 [~ *
1.5e+06 [~ 1
1e+06 [~ *
500000 - 1=120s
1=240s - - - -
1=480s
0 1 1 1 1
0 10 20 30 40 50 60

Time [m]

(d) A.1: Total Bytes Sent.

Fig. 12. A.1: Unmodified Chord.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

0.8

0.6

0.4

0.2 |~

10 20 30 40

Time [m]

50

(a) A.1: Successful / Initiated Lookups (Ratio).

60

300

250 [~

100 [~

50 [

1=120s
1=240s -~~~ -

10 20 30 40
Time [m]

(b) A.1: Average Delivery Time.

50

60

2e+06
1.8e+06
1.6e+06
1.4e+06
1.2e+06
1e+06
800000
600000
400000
200000
0

(d) A.1: Total Bytes Sent.

Fig. 13. A.1: Chord in Overlay Stack.

10 20 30 40 50 60
Time [m]
(c) A.1: Average Visited Nodes.
T T T T T
B 1=120s]
L 1=240s - - - -
1=480s
| | | |
0 10 20 30 40 50 60
Time [m]

Half-life Period [ms]

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

60 T T

50

40 -

|_1=120s
1=240s - - -~
1=480s

10

0 10 20 30 40 50

Time [m]

(a) A.2: Half-life Period.

60

35000 T T

30000 [~

25000 [~

20000 [~

15000 -

10000 [~

5000 [~ |-240s - - - -

0 10 20 30 40 50

Time [m]

(b) A.2: Average Delivery Time.

60

1000 T T

800
700

400

300

J . . .

20 30 40 50

Time [m]

(c) A.2: Average Visited Nodes.

60

6e+06 T T T T T

5e+06 [~

4e+06 [~

3e+06

2e+06 [~

1e+06 [~

0 10 20 30

Time [m]

(d) A.2: Total Bytes Sent.

Fig. 14. A.2: Unmodified Flooding Overlay.

60

Half-life Period [ms]

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

25 T

20

15 -

0 10 20 30 40 50 60
Time [m]
(a) A.2: Half-life Period.
35000 T T T T T
30000 [~
25000 [~ B
20000 [~ B
15000 [~ B
10000 [~ B
1=120s
5000 [|-240s - - - - b
1=480s
0 l 1 1
0 10 20 30 40 50 60
Time [m]
(b) A.2: Average Delivery Time.
1200 T T T T T
1000 =
800 —
600 B
400 |
| | |
0 10 20 30 40 50 60
Time [m]
(c) A.2: Average Visited Nodes.
6e+06 T
5e+06 [
4e+06
3e+06 [
2406 [
1e+06 [
1=480s
0 1 L 1 1
0 10 20 30 40 50 60
Time [m]

Fig. 15.

(d) A.2: Total Bytes Sent.

A.2: Flooding Overlay in Overlay Stack.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

08 [~

0.2 [~

10 20 30 40 50

Time [m]

(a) A.3: Successful / Initiated Area Searches (Ratio).

60

7000

6000 [~

5000 [~

4000 -

3000 [~

2000 [~

1000 -

10 20 30 40 50
Time [m]

(b) A.3: Average Delivery Time.

60

1200

1000 [~

800 [~

600

400 [~

6e+07

5e+07

4e+07

3e+07

2e+07

1e+07

20 30 40 50

Time [m]

(c) A.3: Average Visited Nodes.

60

Time [m]

(d) A.3: Total Bytes Sent.

Fig. 16. A.3: Unmodified Geodemlia Overlay.

60

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2 T T T T T

04

1=120s
1=240s /- -~
1=480; .

0.2 [~

0 10 20 30 40 50

Time [m]

(a) A.3: Successful / Initiated Area Searches (Ratio).

60

7000 T T T T T

6000 -

5000 [~

4000 -

3000 -

2000 [~

1000 [~

0 10 20 30 40 50

Time [m]

(b) A.3: Average Delivery Time.

60

1200 T T T T T

1000 [~

800 -

20 30 40 50

Time [m]

(c) A.3: Average Visited Nodes.

60

6e+07 T T T T T

5e+07 -

4e+07 -

3e+07

2e+07 [~

1e+07 [~

Time [m]

(d) A.3: Total Bytes Sent.

Fig. 17. A.3: Geodemlia Overlay in Overlay Stack.

60

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

Time [m]

(a) B.1: Successful / Initiated Lookups (Ratio).

~
o
=]

-]
o
=]

o
=]
=]

'
=]
=)

[~
o
[=]

n
(=]
=]

-
o
=]

20 30 40 50 60
Time [m]

(b) B.1: Average Delivery Time.

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

20 30 40 50 60

Time [m]

(c) B.1: Average Visited Nodes.

10 20 30 40 50 60
Time [m]

(d) B.1: Total Bytes Sent.

Fig. 18. B.I1: Unmodified Chord.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

S .

10 20 30 40 50 60
Time [m]

(a) B.1: Successful / Initiated Lookups (Ratio).

600

Time [m]

(b) B.1: Average Delivery Time.

4.5

2e+06

1.8e+06
1.6e+06
1.4e+06
1.2e+06
1e+06
800000
600000
400000
200000
0

20 30 40 50 60

Time [m]

(c) B.1: Average Visited Nodes.

Time [m]

(d) B.1: Total Bytes Sent.

Fig. 19. B.I: Chord in Overlay Stack.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2 T T T T T

20 30 40 50 60

Time [m]

(a) C.1: Successful / Initiated Lookups (Ratio).

12000 T T T T T

10000 [~ A 7

8000 [~

6000 [~

4000 [~

2000

0 10 20 30 40 50 60
Time [m]

(b) C.1: Average Delivery Time.

0
0 10 20 30 40 50 60
Time [m]
(c) C.1: Average Visited Nodes.
3e+06 T T T T T
2.5e+06 [~
2e+06 [~
1.5e+06 [~
1e+06 [~ *
B=200 —
500000 - B=400 =~~~
B=600 -
B=800
0 1 1 1 1 1
0 10 20 30 40 50 60

Time [m]

(d) C.1: Total Bytes Sent.

Fig. 20. C.1: Unmodified Chord.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

0.2

0.4
B=200 —

(a) C.1:

20 30 40 50
Time [m]

Successful / Initiated Lookups (Ratio).

60

9000

8000 -

7000 -

6000 [~

5000 [~

4000 -

3000 [~

2000

1000

10 20 30 40 50

Time [m]

(b) C.1: Average Delivery Time.

60

2e+06
1.8e+06
1.6e+06
1.4e+06
1.2e+06
1e+06
800000
600000
400000
200000
0

20 30 40 50

Time [m]

(c) C.1: Average Visited Nodes.

60

Fig. 21.

7 B=200 —
B B=400 -~~~
- B=600 -
B=800 —
1 1 1
0 10 20 30 40 50
Time [m]

(d) C.1: Total Bytes Sent.

C.1: Chord in Overlay Stack.

60

60

50

40 -

20

Half-life Period [ms]
w
o
T

10 [

10 20 30 40 50 60

Time [m]

(a) C.2: Half-life Period.

35000

30000 [~

25000 [~

20000 [~

15000 -

Delivery Time [ms]

10000 |

5000 |

10 20 30 40 50 60
Time [m]

(b) C.2: Average Delivery Time.

1000
900

400

Visited Nodes
o
(=}
o
T

300
200 B=400
100 |,

10 20 30 40 50 60

Time [m]

(c) C.2: Average Visited Nodes.

4e+06

3.5e+06 [~

3e+06 [~

2.5e+06 [~

2e+06 [~

1.5e+06 [~

Total Bytes Sent

1e+06 [~

500000 [~

0

10 20 30 40 50 60

Time [m]

(d) C.2: Total Bytes Sent.

Fig. 22. C.2: Unmodified Flooding Overlay.

120

100 —

80 [

60 [

40 -

Half-life Period [ms]

20

35000

30000

25000

20000

15000

Delivery Time [ms]

10000 |

5000 [

1200

1000

800

600

Visited Nodes

400

200

6e+06 T

5e+06

Total Bytes Sent

1e+0

10 20 30 40 50 60

Time [m]

(a) C.2: Half-life Period.

0 10 20 30 40 50 60

Time [m]

(b) C.2: Average Delivery Time.

4e+06 [~

3e+06

2e+06 [~

0 10 20 30 40 50 60

Time [m]

(c) C.2: Average Visited Nodes.

6 -

Time [m]

(d) C.2: Total Bytes Sent.

Fig. 23. C.2: Flooding Overlay in Overlay Stack.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.6 [~ i!
1.4
1.2

0.8
0.6
0.4
0.2

0 10 20 30 40 50

Time [m]

(a) C.3: Successful / Initiated Area Searches (Ratio).

60

7000 T T T

6000 [~

5000 [~

3000 [~

2000 [

|
4000 - '
|
|
!
|
l
|
1000 [B-goQ - il

0 10 20 30 40 50

Time [m]

(b) C.3: Average Delivery Time.

60

1200 T T T T T

1000

800

600

400

200

0 10 20 30 40 50
Time [m]

(c) C.3: Average Visited Nodes.

60

3.5e+08 T T T T T

3e+08 [~

2.5e+08 [~

PRESTRE

2e+08 [~

1.5e+08 [~

1e+08 [~

5e+07 [~

Time [m]

(d) C.3: Total Bytes Sent.

Fig. 24. C.3: Unmodified Geodemlia Overlay.

60

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2 T T T T T

Time [m]

(a) C.3: Successful / Initiated Area Searches (Ratio).

7000 T T T T T

6000 -
5000 [~
4000 -
3000 [~

2000 |¢

1000 B-g0Q -

T
i
|
1
|
|
|]
|
|
|
|
|
1
.

0 10 20 30 40 50 60

Time [m]

(b) C.3: Average Delivery Time.

1200 T T T T T

1000

’ 0 10 20 30 40 50 60
Time [m]
(c) C.3: Average Visited Nodes.
5e+07 T T T T T
4.5e+07 [~
46407 [~
3.5e+07 [AR
REVERRYEY
3e+07 [\
2.5e+07 [
2e+07 [~
1.5e+07 [~
16407 [~
5e+06 [
0
0 10 20 30 40 50 60
Time [m]
(d) C.3: Total Bytes Sent.
Fig. 25. C.3: Geodemlia Overlay in Overlay Stack.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

0.8

0.6

0.4

7000 T T T T T
6000
5000
4000 —
3000 [~

2000

1000 B-600 -

20 30 40 50 60

Time [m]

(a) D.1: Successful / Initiated Lookups (Ratio).

|B=200 ——
B=400 -~ - -

B=800 —

Time [m]

(b) D.1: Average Delivery Time.

0
0 10 20 30 40 50 60
Time [m]
(c) D.1: Average Visited Nodes.
3.5e+06 T T T T T
3e+06
256406 ol
2e+06
1.5e+06 g
4 -
1e+06 ’ B=200
B=400 -~ - -
500000 B600 - -
B=800 — -
0 = 1 1 1 1 1
0 10 20 30 40 50 60

Time [m]

(d) D.1: Total Bytes Sent.

Fig. 26. D.1: Unmodified Chord without Ring Reunion Algorithm.

1.2 T T T T T
10 /——
g ||
2 08
g |
o
= |
2 067
o]
] |
@
Q
§ 0411
B=200 ——
0.2 [B=400 ~ -~ _
B=600
B=800
0 | | | |
0 10 20 30 40 50 60
Time [m]
(a) D.1: Successful / Initiated Lookups (Ratio).
4000 T T T T T
3500 [~
3000 [
@
E 2500 -
[
E
= 2000 -
>
g
£ 1500 -
a
1000
500
0 Il
0 10 20 30 40 50 60
Time [m]
(b) D.1: Average Delivery Time.
3 T T T T T
3
[}
°
o
=z
°
2
@
2
B=200 ——
B=400 -~ -~
05 T
?B=soo """""
/B=800 —
0 1 1 1 1 1
0 10 20 30 40 50 60
Time [m]
(c) D.1: Average Visited Nodes.
2.5e+06 T T T T T
2e+06 [~ N I
€
Q
@O 1.5e+06 [~ T
3
2
>
o
S e+06 B
=
K
500000 [~ *
0 | | |
(] 10 20 30 40 50 60
Time [m]
(d) D.1: Total Bytes Sent.
Fig. 27. D.1: Chord in Overlay Stack without Ring Reunion Algorithm.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

1k
0.8‘/

0.6 ‘!
o |

<

e

20 30 40 50 60
Time [m]

(a) D.2: Successful / Initiated Lookups (Ratio).

7000 T T T T
6000 [~ f
5000 f
4000 [i
3000 - T
2000 p_p090 ——]
B=400 -~ - -
1000 [B_gop -~ i
o B=800 ~ | \ | __"'—WM:..
0 10 20 30 40 50 60
Time [m]
(b) D.2: Average Delivery Time.
7

(]
0 10 20 30 40 50 60
Time [m]
(c) D.2: Average Visited Nodes.
8e+06 T T
7e+06
6e+06
5e+06 [~
4e+06
3e+06
2e+06 [B=200 —
B=400 -~ - -
1e+06 |~ B=600 —
B=800 —
0 1 1 1
0 10 20 30 40 50 60
Time [m]
(d) D.2: Total Bytes Sent.
Fig. 28. D.2: Unmodified Chord with Ring Reunion Algorithm.

1.2 T T T T T
1k
g ||
g o8]
8 |
= |
S 06t '
? | H
8 i
S o04f ' b
(2]
B=200 ——
0.2 ‘B=400 -~~~ 4
B=600
B=800
0 | | | |
0 10 20 30 40 50 60
Time [m]
(a) D.2: Successful / Initiated Lookups (Ratio).
4500 T T T T T
4000 [~
3500 -
T 3000 -
‘s
E 2500
IS
>
§ 2000 [
2 1500 [
1000
Il
20 30 40 50 60
Time [m]
(b) D.2: Average Delivery Time.
4.5 T T T T T
3
°
o
=z
°
2
2
>
Time [m]
(c) D.2: Average Visited Nodes.
6e+06 T T T T T
5+06 -
£ 4e+06 [
Q
@
3
S 3e+06 [
o
=
=
F 2e+06 [
1e+06 [~
0 | | |
0 10 20 30 40 50 60
Time [m]
(d) D.2: Total Bytes Sent.
Fig. 29. D.2: Chord in Overlay Stack with Ring Reunion Algorithm.

60 T T T T T

70 T T T T T
60 [50 [
7 50 [0
E E 40
2 af 3
£ £
& & 3o
2 s 2
K 2 ok
I — 4
20 [B=200 —— | \ \ B=200 ——
B=400 - - - - | | U |B=400 - - - -
10 FR_gOQ --eeer | ! R - 00
B=600 i i ; B=600
B=800 i i H B=800
0 1 1 L1 | NS 1 0 L
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [m] Time [m]
(a) D.3: Half-life Period. (a) D.3: Half-life Period.
35000 T T T T T 35000 T T T T T
30000 T 30000 I
! |
L | , L : i
& 25000 ' & 25000 |
E i E
g 20000 - i T g 20000 - B]
= | F :
> > ri
§ 15000 - | B § 15000 - "“ B
2 | 2 H
3 f 3 I
L | L i _
10000 [5_ng9 —— l 10000 [5_n00 —— |
B=400 -~~~ | B=400 -~~~ - |
5000 'B-g0o -~ | B 5000 [B_go0 -~ ll 7
B=800 — | B=800 — |
0 1 I L L L 0 I | | |
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [m] Time [m]
(b) D.3: Average Delivery Time. (b) D.3: Average Delivery Time.
1000 T 1200 T T T T T
900 [
800 - 1000 Ir
L |
W 700 . soof |
S 600 [] |
o o |
z z |
5 500 g 600 |
(7] = [7}
£ 400 2 l |
300 |
B=200 —— |
200 [B=400 -~ - - | _
100 | B=600 |
B=800 ~ |
0 0 | J L 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [m] Time [m]
(c) D.3: Average Visited Nodes. (c) D.3: Average Visited Nodes.
3.5e+06 T T T T T 7e+06 T T T T T
3e+06 6e+06 -
2.5¢+06 5e+06 [~
€ €
Q Q
(2] (2]
» 2e+06 [~ o 4e+06 [~
Q Q
= =
[} [}
= 1.5e+06 [= 3e+06 [
° °
- -
1e+06 [~ 2e+06
500000 [~ 1e+06
0 . 0 :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [m] Time [m]
(d) D.3: Total Bytes Sent. (d) D.3: Total Bytes Sent.

Fig. 30. D.3: Unmodified Flooding Overlay without Ring Reunion Algo- Fig. 31. D.3: Flooding Overlay in Overlay Stack with Ring Reunion
rithm. Algorithm.

1.2 T T T T T
']
o
2
[}
o
-
2
@
8
S
(2]
1 1 1
20 30 40 50 60
Time [m]
(a) D.4: Successful / Initiated Area Searches (Ratio).
7000 T T T T T
6000 |I B
|
& 5000 | B
E |
2 4000 - | T
F [
> |
§ 3000 |- I B
z |
2000 i T
|
1000 | B
|
0 1 t | 1 1
0 10 20 30 40 50 60
Time [m]
(b) D.4: Average Delivery Time.
1200 T T T T T
1000 -
o
3
o
= -
°
2
i
; -
1 1 1
30 40 50 60
Time [m]
(c) D.4: Average Visited Nodes.
7e+07 T T T T T
6e+07 - _
. 5e+07 [-
s
(2]
o 4e+07 [
Q
=
[}
= 3e+07 [
°
-
2407
1e+07 [~
0
0 10 20 30 40 50 60
Time [m]
(d) D.4: Total Bytes Sent.
Fig. 32. D.4: Unmodified Geodemlia Overlay without Ring Reunion

Algorithm.

Successful Lookups

Time [m]

(a) D.4: Successful / Initiated Area Searches (Ratio).

7000

6000

Delivery Time [ms]

2000

1000 |¢

5000 -

4000 -

3000 [~

30 40 50 60

Time [m]

(b) D.4: Average Delivery Time.

1200

1000 [~

Visited Nodes

6e+07

5e+07

4e+07

3e+07

Total Bytes Sent

2e+07

1e+07

Fig. 33.
Algorithm.

30 40 50 60
Time [m]

(c) D.4: Average Visited Nodes.

B=400 -~~~ _|

B=600
B=800
1 1 1
0 10 20 30 40 50 60
Time [m]

(d) D.4: Total Bytes Sent.

D.4: Geodemlia Overlay in Overlay Stack with Ring Reunion

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2

w
a
o

W
=1
=]

N
a
=]

n
=]
=)

-
a
[=]

-
o
=]

o
=]

= Ind w
- N oo ow oo

1000 ——
200 - - - -
=400
600
=800
0 10 20 30 40 50 60
Time [m]
(a) E.1: Successful / Initiated Lookups (Ratio).
T T T T T
|B=1000 ——
B=200 - - - -
0 10 20 30 40 50 60
Time [m]
(b) E.1: Average Delivery Time.
T T T T T

0.5
0 [1 1 1 1 1
0 10 20 30 40 50 60
Time [m]
(c) E.1: Average Visited Nodes.
2.5e+06 T T T T T
26406 oot T -
.
K
,
1.5e+06 [~ ’ -4
1e+06 [~
500000 [
0 <
0 10 20 30 40 50 60
Time [m]

(d) E.1: Total Bytes Sent.

Fig. 34. E.1: Unmodified Chord.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

10 20 30 40 50 60
Time [m]
(a) E.1: Successful / Initiated Lookups (Ratio).

T N}
A @ ® O
© © © o©

120

o
N A O ® O
© © © © o©

o

Time [m]

(b) E.1: Average Delivery Time.

1.8e+06

1.6e+06

1.4e+06

1.2e+06

1e+06

800000

600000

400000

200000

0

10 20 30 40 50 60

Time [m]

(c) E.1: Average Visited Nodes.

0 10 20 30 40 50 60
Time [m]

(d) E.1: Total Bytes Sent.

Fig. 35. E.1: Chord in Overlay Stack.

50

Half-life Period [ms]

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

40 -

20 [B=1000 ——

10 -

25000 [~

20000 [~

15000 -

B=200 - - - -

1 | 1

0 10 20 30 40 50

Time [m]

(a) E.2: Half-life Period.

60

35000 T T T T T

30000 [~ aay

B=1000 —

10000 [g _nog - - - -

B=400
5000 [~ B-600
B=800

0 10 20 30 40 50

Time [m]

(b) E.2: Average Delivery Time.

60

800 ,
i

700 [- : ‘
|
i

600 B Lpeeeannnnnnnneeen ‘ \

500 [~

300 [~
B=1000 —

200 ~ B=200 -~ -~
B=400
100 [~ B=600
B=800

30 40 50

=]
-
=)
n
=]

Time [m]

(c) E.2: Average Visited Nodes.

60

2.5e+06 T T

2e+06 [~

1.5e+06 -

1e+06 [~

500000 [~

Time [m]

(d) E.2: Total Bytes Sent.

Fig. 36. E.2: Unmodified Flooding Overlay.

100 —

Half-life Period [ms]

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

®©
=)

-]
=]
T

'
=)
o
[0

=
o
=]
=]

n
=]
T

20 30 40 50 60

Time [m]

(a) E.2: Half-life Period.

35000 T
30000 [~
25000 [~
20000 [~
15000 |~
B=1000 —

10000 [g o0 - - - -

5000 [~ B-600

|
|
i
|
i
i
!

20 30

Time [m]

(b) E.2: Average Delivery Time.

900 T

400 —

300 [B=1000 ——
| B=200 ----

200 [~ 5200 e

100 |- B=600

B=800

40 50 60

n
o

Time [m]

(c) E.2: Average Visited Nodes.

30 40 50 60

4.5e+06 T
4e+06 [~
3.5e+06 [~
3e+06
2.5e+06 [~
2e+06 [~
1.5e+06 [~
1e+06 [~

500000 -

0

Fig. 37.

Time [m]

(d) E.2: Total Bytes Sent.

E.2: Flooding Overlay in Overlay Stack.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

1.2 T T T T T

08 K RN B ,

0.6 [B
/
)
,
0.4 [B=1000 i =
B=200 -~ - 7 . T
02 - N awrs .
o i ; N
0 10 20 30 40 50 60
Time [m]
(a) E.3: Successful / Initiated Area Searches (Ratio).
7000 T T T T T
6000
5000
4000
3000
2000
1000 [
0
0 10 20 30 40 50 60
Time [m]
(b) E.3: Average Delivery Time.
900 T T T T T

20 30 40 50 60

Time [m]

(c) E.3: Average Visited Nodes.

4.5e+07 T T T T T
4e+07 -
3.5e+07 [~
3e+07 [~
2.5e+07 [~
2e+07 [~
1.5e+07 [~
1e+07 [~

5e+06 [~

0

0 10 20 30 40 50 60

Time [m]

(d) E.3: Total Bytes Sent.

Fig. 38. E.3: Unmodified Geodemlia Overlay.

Successful Lookups

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

9000

8000

7000

6000

5000

4000

3000

2000

1000

1200

5e+07
4.5e+07 [~
4e+07 [
3.5e+07 [~
3e+07 [~
2.5e+07 [~
2e+07 [~
1.5e+07 [~
1e+07 [~
5e+06 [~

Time [m]

(a) E.3: Successful / Initiated Area Searches (Ratio).

0 10 20 30 40 50 60

Time [m]

(b) E.3: Average Delivery Time.

0 10 20 30 40 50 60

Time [m]

(c) E.3: Average Visited Nodes.

0
0 10 20 30 40 50 60

Time [m]

(d) E.3: Total Bytes Sent.

Fig. 39. E.3: Geodemlia Overlay in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

25000 T T T T T
20000 |~ 7
15000 |~ T
10000 |~ T
5000 [{1=120s 7
1=240s -~~~
1=480s
0 Il 1 1 1 1
0 20000 40000 60000 80000 100000 12000¢
Message
(a) A.1: Delivery Time per Message.
20 T T T T T
18 |~ B
16 [~ 7
14 8
12 - n
10 .
8 i
6L i
4 [F1=120s B
2 | 1=240s - - -~ -
1=480s
0 1 1
0 20000 40000 60000 80000 100000 12000¢
Message
(b) A.1: Visited Nodes per Message.
350000 T T T T T

300000

250000

200000

150000

100000

50000

Peer

(c) A.1: Total Bytes Sent per Peer.

Fig. 40. A.1: Unmodified Chord.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

20000 T
18000 [~
16000 |~
14000 |-
12000 [~
10000 |~
8000 [~
6000 [

4000 [['1=120s
2000 |

0 20000

(a) A.1:

40000 60000 80000
Message

Delivery Time per Message.

100000 12000¢

-

N ®W A O N ® © O

T1=120s ——
|_1=240s -~ -~

-

0 20000

40000 60000 80000

Message

(b) A.1: Visited Nodes per Message.

100000 12000¢

220000 T

200000 |~

180000

160000

140000

120000

100000

80000

60000

40000

Peer

(c) A.1: Total Bytes Sent per Peer.

Fig. 41.

A.1: Chord in Overlay Stack.

1200

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

30400 T T T T T T T T T

30300 [~ T

30200 [~ 7

30100 [~ 7

30000 7

29900 |~ 7

29800 12405 - - - - 7

| | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800

29700
2000

Message

(a) A.2: Delivery Time per Message.

1000
900
800
700
600
500

400 n
300 [~ n

600 800 1000 1200 1400 1600 1800

2000

Message

(b) A.2: Visited Nodes per Message.

600000 T T T T T
500000 |~ 7
400000
300000
I
200000

100000 [=...

Peer

(c) A.2: Total Bytes Sent per Peer.

Fig. 42. A.2: Unmodified Flooding Overlay.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

35000

30000

25000 [~

20000 [~

15000 [~

10000 [~

5000 [~

0 100 200 300 400 500 600 700 800 900

1000

Message

(a) A.2: Delivery Time per Message.

1005
1000
995
990
985
980
975

970

965 -

1=120s
1=240s -~~~

960

170000

165000 |-

160000

155000

150000

145000

140000

135000

100 200 300 400 500 600 700 800 900 1000

Message

(b) A.2: Visited Nodes per Message.

0 200 400 600 800 1200

Peer

(c) A.2: Total Bytes Sent per Peer.

Fig. 43. A.2: Flooding Overlay in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

7000

6000

5000

4000

3000

2000

1000 -

1200

1000

800

600

400

200

0 500

6e+06

5e+06

4e+06

3406

2e+06

1e+06

| e Tt ===t St

2500 3000

1000 1500 2000

Message

(a) A.3: Delivery Time per Message.

| 1=120s
1=240s -

1=480s “'I

1000 1500 2000 2500 3000 3500

Message

(b) A.3: Visited Nodes per Message.

Peer

(c) A.3: Total Bytes Sent per Peer.

Fig. 44. A.3: Unmodified Geodemlia Overlay.

3500

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

7000

6000

5000

4000

3000

2000

1000 [~

1200

1000

800

600

400

200

0 500

6e+06

5e+06

4e+06

3e+06 |-

2e+06

1e+06

o ——

1500 2000 2500 3000

Message

(a) A.3: Delivery Time per Message.

3500

| 1=120s
1=240s -~~~

| | M |

1000 1500 2000 2500 3000

Message

(b) A.3: Visited Nodes per Message.

3500

600

Peer

(c) A.3: Total Bytes Sent per Peer.

Fig. 45. A.3: Geodemlia Overlay in Overlay Stack.

1200

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

25000 T T T T T
20000 [~ 7
15000 [~ T
10000 |- T
1=120s ——
1=240s - - -~
5000 [i1=300m 7
1=30s —
1=60s
0 1 1 | |
0 20000 40000 60000 80000 100000 12000¢
Message
(a) B.1: Delivery Time per Message.
40 T T T T T
35 - B
30 [B
25 - n
20 |- .
1 1 1 1
0 20000 40000 60000 80000 100000 12000¢
Message
(b) B.1: Visited Nodes per Message.
6e+06 T T T T T
5406 |- .
4e+06 [~ n
3e+06 |- .
2e+06 |~ 1=120s 7
1=240s -~ - -
1e+06 |- 1=30s .
1=60s
0 1 L 1]
0 200 400 600 800 1000 1200
Peer

(c) B.1: Total Bytes Sent per Peer.

Fig. 46. B.l: Unmodified Chord.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

25000 T T T T T
20000 |~ T
15000 |~ T
10000 |~ T
1=120s
1=240s - - - -
5000 {1=300m -]
1=30s —
1=60s
0 | | | |
0 20000 40000 60000 80000 100000 12000¢
Message
(a) B.1: Delivery Time per Message.
12 T T T T T
10 - T
sl _
6 _
L L L L
0 20000 40000 60000 80000 100000 12000¢
Message
(b) B.1: Visited Nodes per Message.
3.5e+06 T T T T T
3e+06 - T
2.5e+06 - T
2e+06 |~ T
1.5e+06 |~ T
i 1=120s |
1e+06 122408 - - - -
1=30s
500000 - 1=60s R
0) = L 1 L |
0 200 400 600 800 1000 1200
Peer

(c) B.1: Total Bytes Sent per Peer.

Fig. 47.

B.1: Chord in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

120000 T T T T T
100000 [~
80000 [~
60000 [~

40000 —
B=200 —

20000 [B=400 """~
¢=600 """""

0 20000 40000 60000 80000 100000

Message

(a) C.1: Delivery Time per Message.

12000¢

30 T T T T T

25 -

15 -

10

o

12000¢

-
0 7
0 20000 40000 60000 80000 100000
Message
(b) C.1: Visited Nodes per Message.
350000 T T T T T
300000
250000 |
200000
150000
100000 B=200 — |
- B=400 -~ - -
50000 [~ S NRo600
0 1 1 1 1
0 200 400 600 800 1000

Peer

(c) C.1: Total Bytes Sent per Peer.

Fig. 48. C: Unmodified Chord.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

40000

35000

30000

25000

20000

15000

10000

5000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000C

Message

(a) C.1: Delivery Time per Message.

-

N ®W A O N ® © O

B=;
[B=
|B=

B=

-

200
400 ~ -~ -
600 <
800

0

250000

200000

150000 |-

100000

50000

10000 20000 30000 40000 50000 60000 70000 80000 90000 10000C

Message

(b) C.1: Visited Nodes per Message.

0 200 400 600 800 1000 1200

Peer

(c) C.1: Total Bytes Sent per Peer.

Fig. 49. C.I1: Chord in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

30400

30300

30200

30100

30000

29900 |

29800 [

29700

600 800 1000 1200

Message

(a) C.2: Delivery Time per Message.

1000
900
800
700
600
500
400

300 [

200

100 |

300000

250000

200000

150000

100000

50000

200 600 800 1000 1200

Message

(b) C.2: Visited Nodes per Message.

0 200

400 600 800 1200

Peer

(c) C.2: Total Bytes Sent per Peer.

Fig. 50. C.2: Unmodified Flooding Overlay.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

35000

30000

25000

20000

15000

10000

5000

|B=200 ——
B=400 -~ -

w
Il

-]
o
(=]

400 500 600

Message

(a) C.2: Delivery Time per Message.

700

800

900

1200

1000

800

600

400 -

200

160000

140000

120000

100000

80000 |-

60000

40000

20000

500

Message

(b) C.2: Visited Nodes per Message.

0 200

400 600

Peer

(c) C.2: Total Bytes Sent per Peer.

Fig. 51.

C.2: Flooding Overlay in Overlay Stack.

1200

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

9000

8000

7000

6000

5000

4000

3000

2000

1000

1200

1000

800

600

400

200

0 500

7e+06

6e+06

5e+06 |

4e+06

3e+06

2e+06

1e+06

|B=200 ——
B=400 -~ - -

| | i e L

()

1500 2000 2500 3000 3500 4000

Message

: Delivery Time per Message.

4500

1000

1500 2000 2500 3000 3500 4000

Message

(b) C.3: Visited Nodes per Message.

4500

B=400 -~~~

B=200 — |

400 600 800

Peer

(c) C.3: Total Bytes Sent per Peer.

Fig. 52.

C.3: Unmodified Geodemlia Overlay.

1200

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

10000
9000
8000
7000

6000
5000
4000
3000
2000
1000

|B=200 ——
'B=400 - - - -

1
|
I
J

—

| ey T =y

()

1500 2000 2500 3000 3500

Message

C.3: Delivery Time per Message.

1200

1000

800 -

600 -

400 -

200

500

(®)

1000 1500 2000 2500 3000 3500

Message

C.3: Visited Nodes per Message.

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

(c) C.3:

Fig. 53.

600

1200

Peer

Total Bytes Sent per Peer.

C.3: Geodemlia Overlay in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

250000

200000

150000

100000

50000

B=200 —
B=400 -~~~

0 20000

40000 60000 80000
Message

(a) D.1: Delivery Time per Message.

100000

12000¢

30

25 -

15 -

10

o

350000

300000

250000

200000

150000

100000

50000

20000 40000 60000 80000

Message

(b) D.1: Visited Nodes per Message.

100000

12000¢

0 200 400 600 800 1000

Peer

(c) D.1: Total Bytes Sent per Peer.

1200

Fig. 54. D.1: Unmodified Chord without Ring Reunion Algorithm.

50000

45000 [~ b
40000 |~ b
7 35000 [~ B
E
@ 30000 [~ B
=
= 25000 |- B
=
£ 20000 |- i
3
2 15000 [~ B
10000 B
5000 B
0 Il 1 Il 1
0 20000 40000 60000 80000 100000 12000¢
Message
(a) D.1: Delivery Time per Message.
9 T T T T T
sl i
7k i
" i
o
°
o -
=z
°
2 _
2
> -
L L
0 20000 40000 60000 80000 100000 12000¢
Message
(b) D.1: Visited Nodes per Message.
220000 T T T T T
200000 b
180000 b
.. 160000 f; b
3
® 140000 b
3
3. 120000 b
]
£ 100000 b
2
80000 b
60000 b
40000 b
20000 ! ! ! !
200 400 600 800 1000 1200
Peer
(c) D.1: Total Bytes Sent per Peer.
Fig. 55. D.1: Chord in Overlay Stack without Ring Reunion Algorithm.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

250000

200000

150000

100000

50000

30

25

20

15

10

o

900000
800000
700000
600000 [*
500000
400000
300000
200000

100000

[B=400 -~ - - N

B=200 —

20000 40000 60000 80000 100000 120000 140000 160000 180000 20000C

Message

(a) D.2: Delivery Time per Message.

B=200
|B=400 -~~~

20000 40000 60000 80000 100000 120000 140000 160000 180000 20000C

Message

(b) D.2: Visited Nodes per Message.

B=200 ——
“““““““““ § B=400 - - - -

- =600 i
00
1 1 1 1 |
200 400 600 800 1000 1200
Peer

(c) D.2: Total Bytes Sent per Peer.

Fig. 56. D.2: Unmodified Chord with Ring Reunion Algorithm.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

45000

40000

35000

30000

25000

20000

15000

10000

5000

B=200 —
B=400 -~~~

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 20000C

Message

(a) D.2: Delivery Time per Message.

12

10 -

N

450000

400000

350000

300000

250000

200000

150000

100000

50000

Fig. 57.

20000 40000 60000 80000 100000 120000 140000 160000 180000 20000C

Message

(b) D.2: Visited Nodes per Message.

0 200 400 600 800 1000 1200

Peer

(c) D.2: Total Bytes Sent per Peer.

D.2: Chord in Overlay Stack with Ring Reunion Algorithm.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

Fig. 58.

30400

30300 [~ n

30200 [~

30100 [~

30000

29900 |

29800 [B-g00 -

B=200 —
B=400 -

B=800
1 1 1 1 1 1 1 1 1

29700

0 100

200 300 400 500 600 700 800 900 1000
Message

(a) D.3: Delivery Time per Message.

1000
9200
800
700
600
500
400
300

100 |,

B=200 —
200 [B=400 -~~~ -

300000

250000

200000

150000

100000 -

50000

rithm.

500 900 1000

Message

(b) D.3: Visited Nodes per Message.

Peer

(c) D.3: Total Bytes Sent per Peer.

D.3: Unmodified Flooding Overlay without Ring Reunion Algo-

35000

30000

25000 [~

20000 -

15000 [~

Delivery Time [ms]

10000 [

5000 B0 -~

1 1 1 1 1 1 1 | 'lél

500 600 700 800
Message

(a) D.3: Delivery Time per Message.

1000

1200

1000

600

Visited Nodes

500 600 700 800 900

Message

(b) D.3: Visited Nodes per Message.

1000

160000
155000

150000 |-

145000
140000
135000
130000

Total Bytes Sent

125000
120000
115000

110000

0 200

Fig. 59.
Algorithm.

400 600 800

Peer

(c) D.3: Total Bytes Sent per Peer.

D.3: Flooding Overlay in Overlay Stack

1200

with Ring Reunion

10000 T
9000 |~
8000 [~

7000
b

6000 [~
5000 [~
4000 [~

Delivery Time [ms]

3000 |
2000
1000

0 500

1000

1500

2000

Message

2500

(a) D.4: Delivery Time per Message.

3000

3500

1200 T

1000

©

=)

o
T

Visited Nodes
(=2
(=]
o
T

3500

400 B
B=200 ——
200 | B=400 =~~~ i
B=600
B=800 — -
0 | | | |
0 500 1000 1500 2000 2500 3000
Message
(b) D.4: Visited Nodes per Message.
7e+06 T T T T T
6e+06 |~ B
5e+06 B
T
Q
[})
o 4e+06 -
2
>
[
5 3e+06 B
o
-
2e+06
1e+06 7
(]
0 200 400 600 800 1000
Peer
(c) D.4: Total Bytes Sent per Peer.
Fig. 60. D.4: Unmodified Geodemlia Overlay without Ring Reunion
Algorithm.

1200

12000 T

10000 [~

8000

6000 [~

4000 [~

Delivery Time [ms]

2000

e

0 500

1000

1500

2000

Message

2500

(a) D.4: Delivery Time per Message.

3000

3500

1200 T

1000

800

600

Visited Nodes

400
B=200 —
| B=400 -
B=600
B=800 ’I -

200

0
0 500

1000

1500

2000

Message

(b) D.4: Visited Nodes per Message.

2500

3000

3500

5.5e+06
5e+06 [~
4.5e+06 |~
4e+06
3.5e+06
3e+06
2.5e+06
2e+06
1.5e+06
1e+06
500000

Total Bytes Sent

0

0

200

400

600

Peer

(c) D.4: Total Bytes Sent per Peer.

Fig. 61. D.4:

Algorithm.

1200

Geodemlia Overlay in Overlay Stack with Ring Reunion

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

25000 T T T T T T T T
20000 |~ 7
15000 |~ T
10000 |~ T
B=1000 ——
B=200 - - - -
5000 [; B=400 B
B=600 —
1 B=800
o L | | ul) | | 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Message
(a) E.1: Delivery Time per Message.
20 T T T T T T T T
18 - A
16 [~ 7
14 -
12 - n

0

300000

250000

200000

150000

100000

50000

10000

20000 30000 40000 50000 60000 70000

Message

(b) E.1: Visited Nodes per Message.

80000 90000

1 1 i

300 400 500 600

Peer

(c) E.1: Total Bytes Sent per Peer.

Fig. 62. E.1l: Unmodified Chord.

900

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

25000

20000 [~

15000 |~

10000 |~

5000

B=1000 ——
B=200 - - - -
t B-a00 - b
§ B=600 —
B=800

! I} 1 | L 1

0
0

10000 20000 30000 40000 50000 60000 70000 80000 90000

Message

(a) E.1: Delivery Time per Message.

12

10 -

N

:8;__,
1

200

| B=400 -
B=600
B=800

S

0

10000

20000 30000 40000 50000 60000 70000 80000 90000

Message

(b) E.1: Visited Nodes per Message.

200000

180000

160000 |

140000

120000

100000

80000

60000

40000

900

500 1000

Peer

(c) E.1: Total Bytes Sent per Peer.

Fig. 63. E.1: Chord in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

30400

300 400 500 600 700 800

Message

(a) E.2: Delivery Time per Message.

T T T T T T T T T 30400
30300 [~ B 30300
30200 [~ B - 30200

E
30100 * g 30100
=
=
30000 B § 30000
| B=1000 —— : 8
29900 g o0 - - - - 29900
B=400
29800 [~ B_goo — B 29800 [~
B=800
29700 ! ! ! ! ! ! ! ! ! 29700
0 100 200 300 400 500 600 700 800 900 1000
Message
(a) E.2: Delivery Time per Message.
T T T T
-, .
1 =1 o
1 °
| S 500 -
: i K
' =
' 2
v n >
i N
i ' 4
i
i 3
i
I I I I] 1 1
300 400 500 600 700 800 900 1000
Message
(b) E.2: Visited Nodes per Message.
250000 T T T T T T T T 140000
120000
200000 - . i
100000
€
150000 . a
i 2 80000
: s
]
100000 . g 60000
B=1000 —— =
B=200 - - - - 40000
50000 B=400 .
=~ -B=600 20000
- B=800 "+
0 1 1 1 . 1 0
0 100 200 300 400 500 600 700 800 900
Peer
(c) E.2: Total Bytes Sent per Peer.
Fig. 64. E.2: Unmodified Flooding Overlay.

400 500 600 800

Message

(b) E.2: Visited Nodes per Message.

100 200 300

400 500 600 700 800 900
Peer
(c) E.2: Total Bytes Sent per Peer.
Fig. 65. E.2: Flooding Overlay in Overlay Stack.

Delivery Time [ms]

Visited Nodes

Total Bytes Sent

7000 T T T T T
6000 [~ T
5000 [~ ! T
i i
4000 [~ ! ,
‘ '
3000 [~ N T
|
|B=1000 —— i ! i
2000 " g_nq9 - - - - i :
B=400 : I
1000 [~ g_goo — ‘ | B
B=800 i e
° 1 SR LY,
0 500 1000 1500 2000 2500 3000
Message
(a) E.3: Delivery Time per Message.
0 500 1000 1500 2000 2500 3000
Message
(b) E.3: Visited Nodes per Message.
4e+06 T T T T T T T T T
3.5e+06 |~ T
\
3e+06 ““ T
\
2.5e+06 ["~ b
26406 I \\‘ .
1.5e+06 |- TSl .
\ RRREI B=1000 ——
1406 - e e Theealll B=200 =~~~ -
*< B=400
500000 [~) . B‘=50‘0 T
\\ B=800
0 1 1 L 1 | 1 L
0 100 200 300 400 500 600 700 800 900 1000
Peer

(c) E.3: Total Bytes Sent per Peer.

Fig. 66. E.3: Unmodified Geodemlia Overlay.

Visited Nodes

Total Bytes Sent

Delivery Time [ms]

16000

14000

12000

10000

8000

6000

4000

2000

1200

0 500

1000 1500 2000 2500

Message

(a) E.3: Delivery Time per Message.

3000

1000

©
=)
=)

@
o
o

N
o
=]

200

6e+06

1000 1500 2000

Message

(b) E.3: Visited Nodes per Message.

3000

5e+06

4e+06

3e+06 [~

2e+06

1e+06

Peer

(c) E.3: Total Bytes Sent per Peer.

Fig. 67. [E.3: Geodemlia Overlay in Overlay Stack.

