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Abstract

Structured peer-to-peer overlays define a robust and scalable alternative to the centralized server archi-

tecture. Hence those overlays can be used by various applications, in order to offer secure communi-

cation and prevention against espionage or censorship attempts from governments or cyber criminals.

Political revolutions in recent years have shown that it is inevitable for peer-to-peer overlays to be

aware of Internet isolations, due to governmental arbitrariness. In this thesis we characterize network

partitioning events and summarize criteria, which have to be focused on, to unify split ring-based

overlays, as soon as connectivity is established again between two or more network partitions. We

then present the Ring Reunion Algorithm, a novel merging algorithm, which automatically detects

network partitions and initializes merging operations. The algorithm includes methods to start par-

allelized merger instances autonomously and to reduce the amount of messages during the merger

process. In stable overlay states, the Ring Reunion Algorithm terminates quickly to limit unnecessary

message overhead. The Ring Reunion Algorithm, in its simple and parallelized version, is compared

to Chord-Zip, two variations of the Ring Unification Algorithm and the basic Chord protocol in a

detailed evaluation, which bases on realistic simulations of different scenarios. The evaluation results

prove that the Ring Reunion Algorithm is able to merge multiple isolated ring-based overlays effort-

lessly and in parallel. Even under heavy churn our approach merges separated networks quickly and

reliably. Meanwhile, instead of depending on the quantity of participating nodes, the message com-

plexity depends on the number of constructs that form the overlay which is currently supposed to be

merged. Therefore message overhead, caused by unnecessary merger attempts, is almost completely

avoided in an united overlay. Finally, considering our simulations, we give suggestions on how the

Ring Reunion Algorithm should be configured to merge different scenarios reliably, fast and with low

operational costs and message overhead.
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Chapter 1

Introduction

Surely, speech is the most outstanding ability of mankind. It contributes to communication, sympathy

and to disclosure of information among people all over the world. Precisely this is the reason why

freedom of speech and information dissemination should be seen as fundamental right of every human

being and has to be protected as such. Unfortunately, still many countries exist, in which freedom of

speech is suppressed by the respective government. According to the Amnesty International Report

2013, the right to speak freely was suppressed in 101 countries in 2012 [1].

1.1 Motivation

The important role of media in the context of information dissemination can not be denied. Already

in the year 1514, the German monk and seminal figure of the Protestant Reformation, named Martin

Luther, benefits from the progress in printed media, which has been driven forward by Gutenberg’s

work on his printing press in the fifteenth century. Without the ability to print books in large quantities

with low costs it had not been possible to publish Luther’s translation of the Bible in the way it was

done. Furthermore Gutenberg’s printing press and Luther’s Bible contributed to form and standardize

the German language in many ways. Probably the most important medium nowadays is the Internet,

which provides the ability to access information all over the Earth (and beyond). Therefore it is not

surprising that governments of many countries attempt to control parts of the Internet to control its

citizens likewise.

With the Golden Shield Project for example, the Chinese government "filters Internet traffic in and

out of the country" [2]. Further, China uses different techniques to suppress specific information

exchanges purposefully. Beside the usage of DNS poisoning, traffic to certain IP addresses is directly

blocked and discarded. Another technique used by the Great Firewall of China is based upon intrusion

detection system (IDS) mechanisms. Internet traffic is searched for keywords which are considered
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Chapter 1 Introduction

to be suspicious, e.g. if they concern political groups or activities that are not tolerated by the regime.

Connections which are tested positive for such keywords are forced to be closed by the Chinese

firewall [3].

Another drastic and current example of suppressing freedom of speech and the dissemination of in-

formation is the behavior of the Egypt government during the Arab Spring in early 2011. The unique-

ness of the protests during the Arab Spring is characterized by the enormous usage of social media

and familiar Internet platforms like Facebook, Twitter and YouTube, which mainly have been used to

organize demonstrations, to share informational content or simply to criticize the government. Fur-

thermore, social media was used to communicate with Western countries and to exchange information

with people living in other countries that were involved in the Arab Spring movement [4]. According

to the Institute of World Economy and International Relations (IMEMO), Facebook even outmatched

the Arabic TV channel Al Jazeera "in at least the speed of news dissemination" [5].

As a response to the revolutionary movements in North Africa, the Egyptian government instructed

mobile operators and Internet service providers to suspend their services. As a result most parts of the

Internet had been cut off. Only few governments had done this before: Nepal cut off Internet access

entirely in 2005, as did Myanmar two years later in 2007 [6]. From 27th of January 2011 until 2nd

of February 2011, approximately 93% of Egyptian networks had been unreachable [7]. First hints

that the Internet might break down had been given one day before as Twitter and Facebook suddenly

had been discovered to be unreachable [8]. Nevertheless, the entire disruption could not have been

foreseen or prevented.

The cases of Nepal, Myanmar or Egypt are rare examples of network partitioning that could be re-

peated any time. They show clearly that governments of countries with simple Internet infrastructure

are capable of stopping Internet traffic almost entirely. In such a case most Internet services, and there-

fore social media, are not reachable, because the provider’s servers are mostly located in the USA (like

Twitter, Facebook, YouTube, Yahoo, etc.). Another problem arises with traditional client-server ap-

proaches: a lack of privacy and trust. Centralized servers constitute a single point of failure and are

convenient to intercept and manipulate information directly. The NSA affair is a current evidence that

Internet services like Facebook, Yahoo, Twitter and so forth, which base on the client-server architec-

ture, are well suited for being spied, since almost all information about its users are gathered centrally

at the providers’ servers.

In contrast to the centralized server architecture, participants in a peer-to-peer network have basi-

cally equal rights. User-related information is distributed among the peers in a decentralized manner,

without the need of a dedicated server. The peer-to-peer architecture is therefore suitable for sharing

data or information dissemination without being stored on a central server. Nevertheless, as history

shows, it is important for peer-to-peer solutions to be aware of network partitions, as they might occur
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unexpectedly at any time, whether due to governments controlling the nation or because of natural

catastrophes, which might disrupt parts of the Internet, as an earthquake did in Taiwan in December

2006 [9]. In case a network partitioning event occurs, participants of a disrupted peer-to-peer overlay

should be capable of joining the common network again without administrative effort.

In this thesis we ascertain and evaluate criteria, which have to be focused on if ring-based peer-

to-peer overlays are wished to be reunited again after network failures. Thus, we analyze already

existing designs of overlay merging algorithms and introduce a novel merging algorithm, named Ring

Reunion Algorithm, which is able to unify separated overlay networks autonomously and reliable.

1.2 Characteristics of Network Partitioning

Networks, especially the Internet which is used by most peer-to-peer applications, constitute no re-

liable infrastructure per se, even less reliable are the users of these services. Hence, out of different

reasons, one or multiple nodes in an overlay, we take Chord as an example, may be separated from

the other members. This partitioning can be divided into two cases.

- Single nodes are separated individually

- Whole groups of nodes are separated

1.2.1 Separation of Single Nodes

The first case occurs very often in many overlays and is therefore considered and handled in most

structured overlays. This case includes all nodes, which fail suddenly, because they are separated

shortly, or for a long period from the overlay, for example if one user leaves the overlay without

warning, or if the connection between a node and the overlay is corrupted due to technical problems.

These membership dynamics (churn) are handled in Chord by using a list of redundant contact nodes,

which is denoted as successor list, so that in case of a failing node, Chord’s function is not affected.

If the previously failed node is capable of joining the overlay again, the Chord stabilize protocol will

insert the node into the existing ring at the right place. All in all, the ability to treat churn in a proper

manner is necessary to reconnect failing nodes with the overlay again. In the case of Chord, a single,

global ring is maintained.

3
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1.2.2 Separation of Whole Groups

The second case of partitioning is not considered in most overlays. It occurs when a whole group

of nodes, which are not necessarily dependent from each other and do not correlate in a specific

way on the overlay, but which are associated to a common group on network level, is separated

from the existing overlay. This scenario could occur if all failing nodes are assigned to the same

administrative domain, which departs from the common network, for example if a geographical region

is disconnected from the Internet, because of a natural catastrophe like a heavy earthquake, or because

an authoritative institution prohibits unrestricted access to the Internet. This case is more difficult to

handle than the first case, inasmuch as a global ring might be impossible to achieve. To get a better

impression of the explained scenario we have to discuss two more characteristics.

- Isolation

- Forming groups

Isolation

Whenever two or more geographical regions are separated from each other over a long period (iso-

lated), it might happen that Chord’s stabilize protocol will have replaced all outdated finger entries

with newer ones, which are only present in the node’s own region. Finger contacts that are part of the

inaccessible region are deleted and overwritten completely. If the separated regions are reconnected

again on network level, and both regions are capable of routing to each other, both regions will prob-

ably not converge to a common ring though. The reason for this behavior is obvious: not one node

maintains any routing information about at least one contact node in the other region. Consequently,

routing in a global overlay with both regions as participants is impossible. Both groups will remain

independent from each other. In Figure 1.1 two connected regions are shown on the left. On the right,

one region is isolated so that two rings are formed.

Forming Groups

When two regions are isolated from each other and no routing between them is possible, it may occur,

that more than two rings will arise after a certain stabilize period. Although nodes of individual

rings in the same region might be connected on network level, they could be incoherent in the overlay.

Reason for this occurrence is the limited amount of redundant routing information which is maintained

by the finger table of a single node. In a Chord ring almost all nodes are equally distributed, so that
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Region 1 Region 2

connected isolated

Figure 1.1: Ring is corrupted during isolation.

most participants of one specific region hold more routing information about nodes from the other

region than about nodes from the own geographic region. Hence, during isolation only those nodes are

formed to a group, which are represented in the same set of finger entries and successor or predecessor

pointers. Figure 1.2 shows an example of a common ring which breaks apart. After one region (A,C,D

etc.) became isolated, the remaining nodes might not be able to establish a common ring, as they only

hold references to a small number of other nodes.
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Figure 1.2: Groups are formed after one region has been isolated.

If an isolation lasts long enough and all finger entries are stabilized, several groups will remain,

which form independent rings. Communication within these individual rings will be preserved and

maintained. The functionality to include or even merge other rings is not given by default.
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1.2.3 Requirements for Merging Algorithms

In order to preserve the principles of peer-to-peer systems, that is to distribute responsibility equally

among all participants, merger algorithms should act locally on a specific node in a ring, without

requiring global knowledge about the entire ring. In addition, any merger should operate indepen-

dently, automatically and without administrative restrictions. Below, the most important criteria are

summarized, which should be focused on, if multiple overlays are supposed to be merged.

Discovery of Contact Nodes

As mentioned above in Section 1.2.2, two groups do not have the ability to communicate with each

other, if all routing entries are updated and only point into the node’s own ring, even if routing on

network level is possible after an isolation. Then it is necessary, that at least one node in one group

(the initiator) gets in contact with a node from the other group (contact node), to start a merging

algorithm.

Merging

If one merging algorithm is started by an initiator, the merger instance (token) should be passed from

node to node, so that in the end, a global ring is created. Each node has to decide, which node is

informed about the merging procedure next, how it handles information about other nodes, and how

routing entries, successor pointers and predecessor pointers have to be treated and updated. The major

goal of the merging algorithm is to modify and update routing information, that thereby a global,

common ring arises. Each node only has to know its successor to preserve correct routing, whereas

the adjustment of the additional routing table does not have to happen quickly. For the quality of a

merging algorithm, it is essential, that each node forwards the merger token to a suitable successor,

since this routing decision affects the function and performance of the entire merging algorithm.

Termination

Each merging algorithm should be terminated if a global ring is established. Instances of the current

merger, which are supposed to be started or have been started earlier, should be terminated imme-

diately, to avoid unnecessary messages and thereby bandwidth consumption. Further, each merging

mechanism should be able to handle churn. On the one hand a merging algorithm should detect nodes,
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which are separated from the global ring, and reconnect those nodes with the global ring, automati-

cally. On the other hand any merging algorithm should be aware that separations of individual nodes

could simply have been a result of churn, instead of isolated regions. In this case a quick termination

is desired. Finally, it is useful to control the amount of running merger instances in order to regulate

general costs and benefits. Each unnecessary merger instance should be stopped consequently.

Robustness

As mentioned previously, each merger should be able to handle departure and joining of single nodes

properly. Moreover it is important to consider packet loss, so that a merger algorithm does not termi-

nate early or multiple merger instances are executed uncontrollably. It might happen for example that

messages, which are sent by the merger algorithm, get lost during the forwarding of the merger token,

because the successor of one node fails. The respective node, which is currently responsible for merg-

ing, has to ensure that an other node is selected then to go on with the merger of the ring. Furthermore

it has to be taken into account that the node fails, which is currently responsible for merging. All in

all, message losses have to be considered and handled correspondingly.

Parallelization

Inasmuch as we focus on merging algorithms that act locally in a ring, without requiring knowledge

about the global ring, these mergers can be improved by starting multiple merger instances simulta-

neously and in parallel. Doing this, each merger instance has to obey the above mentioned topics. In

particular, it is very important that all merger instances terminate and do not hinder each other in their

performance.

Message Complexity

To identify a good merging algorithm we also have to consider the message and bandwidth consump-

tion of the respective algorithm. It is obvious, the less messages an algorithm produces, the less it

affects the underlying network. In addition a merging algorithm should produce the less messages,

the faster it merges separated overlays. Ideally, the message and bandwidth consumption should de-

pend on the number of constructs which arise during the merger, instead of the number of participating

nodes. One large ring should produce minimal overhead, whereas in multiple constructs the overhead

is accepted to rise.
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1.3 Outline

In this chapter we motivated our intend to merge different overlays with respect to partitioning events,

and listed criteria which have to be met to do so. The rest of this thesis is structured as follows:

In Chapter 2 we introduce Chord as popular example for ring-based peer-to-peer overlays. We sum-

marize one of the first works on the challenges of merging similar overlays in Section 2.2. As a next

step, in Section 2.3, we analyze the studies which are presented in Section 2.2 and focus on existing

Chord merging algorithms in the following sections. The Chord-Zip Algorithm [10] is summarized

and investigated in Section 2.4 and the Ring Unification Algorithm [11] is described in detail in Sec-

tion 2.5

In Chapter 3 we present a novel merging algorithm for ring-based overlays, named Ring Reunion

Algorithm, which has been designed, implemented and extensively evaluated in this thesis. We explain

the design of our Ring Reunion Algorithm in Section 3.1 and analyze it in comparison to the other

approaches in Section 3.2.

In Chapter 4 the simulation environment, which has been used for our evaluation, is shortly explained.

Furthermore, in Section 4.3, we nominate different metrics which are necessary to value the results of

our simulation and to ascertain the quality of the different merging algorithms.

We evaluate our Ring Reunion Algorithm in comparison to the existing merger algorithms and the

unmodified Chord stabilization protocol in Chapter 5. Therefore, we mainly focus on the ability of

each algorithm to handle network partitioning events. Secondly, we try to identify mechanisms which

increase the performance of a merger algorithm. A detailed description of the scenarios we simulated

in this thesis, can be found in Section 5.1. The evaluation of the simulation results can be read in

Section 5.2

Chapter 6 constitutes a conclusion of this thesis and gives a brief statement on further studies which

are not considered in this work.
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Related Work

In this chapter we present existing studies on the challenges of merging different overlay networks. In

Section 2.1.1 we focus on Chord as a representative work about ring-based overlays. One of the first

studies about the merging of similar overlays is presented in Section 2.2. Furthermore, in Section 2.3

we analyze this study. Two existing approaches to unify separated Chord rings are summarized and

analyzed in Section 2.4 and Section 2.5.

2.1 Background

Hash tables are capable of mapping keys to corresponding values, which are stored in a slot in an

array. Independently of the number of entries in the array, the hash function calculates the position in

the array at which an appropriate value to a given key is stored. In this way key-value pairs can be

found in, inserted into, or removed from the underlying array in constant time. Distributed hash tables

(DHTs) operate in a similar manner. Mainly, the difference to hash tables is that the underlying table,

and therefore the responsibility for a given key, is distributed equally among multiple participants in

a common network (see Figure 2.1). Thus, each member represents a part of the hash table, so that

changes of the number of participants in the network hardly affect the performance of the distributed

hash table. Even during the joining and leaving of individual members a distributed hash table is able

to provide its service. In order to determine a responsible participant for a given key, routing infor-

mation to close neighbors is stored by each member of the network. To increase routing performance,

each participant maintains additional routing information to distant members in the network. Thus the

search for responsible members is denoted as key-based routing. DHTs can mainly be characterized

by their decentralized behavior: no server is needed and therefore a single point of failure is avoided,

as well as by their robustness against membership failures, and lastly by their scalability in large-scale

networks: each participant only stores a small fraction of information about the network. On top of

this service one can imagine multiple types of applications (e.g. distributed databases, distributed
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file systems, etc.). Popular implementations of distributed hash tables are Chord [12], Pastry [13],

Kademlia [14], CAN [15], or P-Grid [16].

Keys

Hash Table DHT

ArrayHash Function

A

B

C

Hash( A)

Hash( C)

Hash( B)

Key A Key B

Key CPeers

Figure 2.1: Hash Table and Distributed Hash Table.

2.1.1 Chord

Probably, Chord is the best known example for ring-based overlays, which implements a distributed

hash table (DHT). Because of its simplicity, and its provable correctness and performance, Chord is

inevitable for education and research on overlays. The Chord protocol supports only one operation:

to find a node that is responsible for a given key. One could imagine an application on top of this

protocol, which associates keys with data items, and stores those items in a distributed manner.

In Chord, each node, and each key is assigned to an m-bit identifier by a consistent hash function. All

nodes are arranged on a circle, ordered by their identifier, and connected to the node with the next

higher identifier. Below, the next node on the identifier circle is denoted as successor, the previous

node on the circle is called predecessor. The last member is connected to the first, so that the circle

(Chord ring) is closed. The most desirable characteristic of a consistent hash function is its ability to

balance load with high probability. Therefore keys are distributed equally among participating nodes.

Furthermore only O(1/N) keys have to be moved to a different location if an Nth node joins, or leaves

the Chord ring. Each key is assigned to the first node (successor) whose identifier succeeds the key’s

identifier, or is equal to it.

Key Lookup

Searching for a node, which is responsible for a given key, simply means to search for the key’s

successor. For a seeking node, the easiest method to find a key would be to initiate a query, that is

passed around the Chord ring via the nodes’ connections to its successors. To increase performance,
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every node maintains an additional routing table with up to m entries (actually only O(log N) entries

are necessary within a circle of N participants), which is called the node’s finger table. Its kth entry (kth

finger) holds information (identifier, IP address, and port) about the first node in the Chord ring that

succeeds (the node’s identifier + 2(k−1)) mod 2m, where k ∈ [1,m]. An advanced, and scalable method

to find a responsible node is to pass a query to the largest finger, that precedes the target identifier.

The node, whose successor is responsible for the given key identifier, returns the information about

its successor via the previously traversed path. Each node is able to forward a query mostly halfway

along the Chord ring, and therefore at least halves the distance between a node and the key identifier.

Thus a query will be resolved in O(log N) steps within a circle of N members.

Figure 2.2 shows the path of a lookup for key 58 which has been initialized by node 14. The lookup

is forwarded via the closest preceding finger entries until the target node’s predecessor (node 50) is

reached. Finally, node 50 forwards the lookup to the target node (58).

62
2

14

28

3034

48

50

58
+ 1  28
+ 2  28
+ 4  28
+ 8  28
+16  30
+32  48

+ 1  50
+ 2  50
+ 4  58
+ 8  58
+16   2
+32  28

via finger

via successor

Figure 2.2: Chord Lookup: path of query for key 58, started at node 14.

Joining, Leaving, and Maintaining the Chord Ring

Chord needs to handle nodes, which join or leave the network suddenly. In a periodically changing

environment it is necessary for all nodes, to hold valid pointers to their successors, since this is the

only criterion to ensure correct lookups. Chord contains two mechanisms (stabilize protocol), which

periodically update finger tables and successor pointers. Foremost are updated by frequently assign-

ing each finger k to the current successor of (node’s identifier + 2(k−1)) mod 2m. The latter are adjusted

by asking one node’s successor to return its predecessor. If this predecessor fits better as the node’s

successor, it is stored as the node’s current successor. Nevertheless each participant is periodically

informed by its preceding node about its assumption to be the node’s predecessor. To join an existing
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Chord ring, a node simply has to ask a familiar contact node to search for the successor of the joining

node. After obtaining its successor, incorrect or missing finger entries and pointers are updated au-

tomatically by the methods mentioned above. In case a set of N nodes joins another set of N nodes,

and all successor pointers are correct, lookups will still take O(log N) time with high probability, be-

fore all finger entries and pointers are adjusted [12]. To increase further robustness, each Chord node

maintains a list of its first r successors. When a node fails or leaves the Chord ring, suddenly, and

without an announcement, lookups will be successful anyhow, because each node holds more than just

one successor. Even if every node fails with a probability of fifty percent, the closest successor to any

query key can be found with high probability in O(logN) steps, assuming a list of length r = O(logN)

in a stable circle with N participants [12].

2.1.2 Chord Variants

Chord is one of the pioneering works on distributed hash tables and therefore has been optimized and

extended in many ways. Below, examples of various chord extensions are listed to emphasize Chord’s

educational value.

B-Chord

In B-Chord [17] finger tables and lookups are modified to generalize Chord from one-sided lookups

to two-sided lookups. In contrast to Chord, the finger table in B-Chord maintains successor and pre-

decessor pointers. Lookup performance is improved by choosing the most fitting pointer for reaching

a target node. This choice of a path with better locality leads to less routing costs and less routing la-

tency. In Addition, B-Chord uses a combination of the physical distance between two nodes and their

distance in the current overlay. By this means, B-Chord traverses less physical hops during lookups

than Chord.

EpiChord

In EpiChord [18] a reactive routing state management strategy is used to decrease lookup costs. Finger

tables in EpiChord are exchanged by caches, in which multiple successor and predecessor pointers are

maintained. Routing information is extracted out of basic query replies and temporarily stored in the

caches. In case that not enough queries are started to obtain suitable routing information EpiChord

uses Chord’s proactive approach to fill its routing table. Additionally, in EpiChord parallel queries are

started to avoid lookup timeouts due to expired routing entries.
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Re-Chord and Ca-Re-Chord

Re-Chord [19] is a distributed self-stabilizing protocol which extends Chord with the function to

recover from any initial network state. Re-Chord extends a method called local linearization [20],

which converts an arbitrary graph into a sorted list of nodes. The fingers of Chord are redefined

as virtual nodes in Re-Chord. In addition, certain rules are used to stabilize the resulting Re-Chord

network. If Re-Chord has reached a stable state, Chord can be seen as a sub-graph of Re-Chord. As

Re-Chord is prone to churn during the stabilization process, it has been extended to a churn aware

variant, introduced as Ca-Re-Chord [21].

S-Chord

S-Chord [22] is an extension to Chord, which enables bidirectional forwarding of messages within a

Chord ring and routing in a symmetric manner. Finger tables in S-Chord are therefore divided into two

parts. One part is responsible for traversing the Chord ring clockwise, the other part is responsible for

traversing it anti-clockwise. On the contrary to Chord, in which finger entries are located at positive

distances of powers of two, distances between nodes and its finger entries in S-Chord are of powers

of four and guide into positive and negative direction. Hence, the size of the routing table in S-Chord

remains the same as in Chord.

2.2 Tale of Two Networks

In [23] Datta et al. attempt to characterize challenges of merging two structured overlays, which

base on the same protocol. The authors claim, the peer-to-peer research community had ignored the

problem of merging two partitions of a structured overlay in the past. Reason for this omission would

be the way most of the empirical information of peer-to-peer systems had been gathered. Experiments

had been under a controlled setting with the intention to create only one overlay. None of those

experiments had faced network partitioning problems, instead common bootstrap nodes had been

used to ensure that separated overlays would not be created. Furthermore most of the knowledge

about structured overlays has been derived from unstructured overlays, which can be merged easily

since no peer has any specific responsibility. Peers that come in contact with each other establish

neighborhood relationship and simply forward all messages they receive.

As the authors of [23] write, structured overlay networks have three characteristics in common. First,

the key-space is distributed among peers, so that each peer is responsible for a specific domain. Sec-

ondly, a graph topology among the peers ensures efficient routing and connectivity, even under churn.
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Thirdly, a routing algorithm enables the forwarding of messages, in order to serve a routing request.

Therefore a structured overlay has to achieve two goals to be functionally correct. For one thing, it

should be possible to reach the correct peers which are responsible for a given key (correctness of

routing, achieved by routing protocol). For another thing, all peers should maintain all corresponding

keys they are responsible for, and none other (correctness and completeness of keys-to-peers binding).

The latter is achieved by proper synchronizing content among replica peers, and by moving keys to

its corresponding peer, in case network changes occur.

A case study is done by the authors to compare ring-based overlays (Chord) with overlays, which use

prefix-based routing and structural replication (P-Grid), as the authors describe the responsibility of

multiple peers, which are mutual replicas then, for exactly the same key-space partition. The way

Chord maintains its topology and handles churn provided good static resilience, but the merger of

two ring-based overlays disrupted its operations [23]. The authors claim ring-based overlays could

not operate correctly, until they were merged completely. On the contrary, structural replication in

P-Grid provides robustness against churn and prevents the correctness of routing to be violated during

network mergers. P-Grid enables access to all resources that have been accessible in a partition before,

but access to all resources is only possible when all partitions are synchronized.

2.2.1 Case-Study Chord

Chord is described as one of the most extensively studied systems, that is mainly used in other overlays

because of its well developed algorithms (for further explanation see Section 2.1.1). Besides, the au-

thors of [23] define a ring network to be weakly stable if, for all nodes p, predecessor(successor(p) =

p is true, and strongly stable if in addition, there exists no peer s on the identifier space where p< s< q

and successor(p) = q. The ring invariant is violated when peers join or leave the network, but can

easily be reestablished and become strongly stable within O(N2) rounds of stabilization if no churn

occurs.

When two peers from different partitions (P1 and P2) would meet each other, they were not able to

realize the difference of their origin, as the authors of [23] write. Thus both peers would replace their

successor and predecessor pointers by the currently discovered pointers if they were suitable. This

replacement would lead to a cascading effect, which caused all members to reconfigure its pointers.

Any ring merger algorithm would work similarly to this effect, moreover, information about updated

pointers had to be passed to the immediate neighbors, and churn had to be dealt with, too. Such a

process would take O(N1 +N2) steps, where N1 and N2 represent the number of peers in partitions P1

and P2.

Only functional correctness of routing was assured after the merger. Queries would be forwarded
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to peers which were most likely responsible for a given key. To be able to locate objects that had

previously been available in any individual network, the ring had to be reestablished and stabilized

first. During the merger, the overlay’s function would be completely destroyed. To gain access to all

keys that had existed in any partition, it would be still necessary to move all keys to the peers, which

had become responsible for it. If partitions P1 and P2 comprised N1 and N2 peers, then during a merger,

the number of pointers to be corrected was approximately N1(1− e(−N2/N1))+N2(1− e(−N1/N2)). As

a consequence the minimum transfer of data from Partition P1 to P2 would be N1(1− e(−N2/N1)) ·α ·
D2/(N1+N2) where D2 denotes the number of keys in P2’s key set D2 so that |D2|= D2, and α is the

fraction of exclusive keys in both partitions (|D1∩D2|= α · |D1∪D2|).

2.2.2 Case-Study P-Grid

In P-Grid both, partitions and keys are represented as a set of m-bit identifiers, where m denotes the

depth of a binary-tree (see Figure 2.3). Each peer corresponds to a leaf in a binary-tree, consequently

each peer is associated with a path, which guides to a specific leaf. For search and routing func-

tionality, for each level of the binary-tree, peers maintain references to other peers in complementary

sub-trees, so that routing complexity is bounded by the tree’s depth. Since references to peers are cho-

sen randomly, different instances of a P-Grid network may exist for a fixed set of peers. As a result,

routing has to be greedy in P-Grid. Furthermore multiple peers may be associated with exactly the

same key-space partition to provide fault-tolerance. Those peers are mutual replicas, which execute

an anti-entropy algorithm to synchronize and update their content.

A

 1* E,F
01* C

 1* G
01* C

 1* E,F
00* B

 0* A,C
11* G

 0* B,C
10* F

 0* B,D
10* E

 1* F,G
00* A

 0* A,B
11* G

0* 1*

00* 01* 11*

B C D E F G H

10*

Figure 2.3: Example of a P-Grid instance.

Whenever two peers, with different paths, meet each other in P-Grid, they exchange information about

other peers to improve routing efficiency. Peers which share the same path in the prefix tree execute

an algorithm to combine their content and become mutual replicas. For those peers it is difficult to

obtain knowledge about its replicas, since there is no proper structure among those peers. Thus the

algorithm is rather probabilistic. Despite this fact, the synchronization algorithm has to be performed
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on each replica, which is responsible for the same key space. In case one peers’ path is prefix of

the other peers’ path, the peer with the shorter path can simply use the network joining algorithm to

extend its path. In any case, when new peers join the overlay as structural replicas or existing peers,

routing is not affected, and originally accessible keys (before the merger operation) will always be

found (during the merger operation), since no routing information needs to be updated nor is affected

by the joining process. All keys that previously have been available in other networks are accessible to

all peers after the synchronization is finished. Adding reference to other peers is done in background,

without interrupting the function of the overlay, too. Further on, no data has to be transferred among

peers in case of changes in the key-space partition a certain peer is responsible for.

2.3 Analysis of P-Grid

The work of Datta et al. [23] is one of the first elaborations that introduce the idea of merging similar

overlays and focuses on problems which have to be faced with the design of merging algorithms. The

author’s goal is to "explore the design space to better identify the features of overlay networks that can

either facilitate or hinder merger of overlays - and hence get a better insight for (re-)designing such

systems" [23]. To achieve this goal the authors compare Chord to P-Grid and describe the differences

between those overlays. Nevertheless, they do not investigate any criteria which characterize the

merging of ring-based overlays. Finally, their central statement about Chord is that "such a merger

operation of ring topology based overlay will typically cause a complete interruption of the overlay’s

functioning" [sic] [23] and therefore lookups were not possible during a merger, even if they are

executed in either of the previously stable rings. P-Grid, which by the way is developed by the same

authors, was better suited to handle network mergers, as the authors of [23] write.

In Figure 2.4 the path of both nodes Y and Z is extended to 10* and 11*, respectively. Information

about the new path can be obtained from nodes E,F ,G or H. Other peers do not have to update their

routing tables necessarily, but they might do so over time as a background process.

To defend Chord, one has to mention that multiple nodes in P-Grid are mutual replicas, so that it is no

surprise that lookups to specific nodes are always possible, even during a merger. In fact the P-Grid

merger is not a real merging algorithm since no routing information is changed during the merger.

Only in case the size of the overlays which are to be merged differs, routing information is added to

some nodes in the initial smaller overlay.

Another fact is that Chords goal is to distribute responsibilities for specific keys among all peers in the

overlay. Against that, in P-Grid multiple nodes share the same responsibility for a specific key and no

proper structure exists among the replicas. Thus two different problems might occur in P-Grid:
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- No robustness in one instance: because of the randomly chosen routing information, one path

might not be reachable if one node fails. If node C in instance N1 fails (Figure 2.4), path 01*

can only be reached from node H which is not present in any other routing table.

- Partitioning might occur without being detected: not all replicas might be reachable and acces-

sible. In Figure 2.5 nodes A,D,F and G are connected to each other and nodes B,C,E and H

form another instance. Thus two P-Grid instances are built independently. Node X is able to

reach both instances, but no other node is aware of node X’s existence.

Replica synchronization in P-Grid is probabilistic. Hence, the overlay is not well suited as a basis for

further studies. Although the authors of [23] reveal a first idea which problems might occur during a

network partitioning event and during the merger of an overlay, they do not give any advice, but rather

draw a quick comparison between two different overlays.
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Figure 2.4: State of P-Grid instances after merger.
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Figure 2.5: Example for partitioning in P-Grid instance.

2.4 Chord-Zip

In this section we present the preceding work about the Chord-Zip Algorithm [10]. In Section 2.4.1 we

summarize the studies on the Chord-Zip Algorithm. Further, we present a more detailed description

of the Chord-Zip Algorithm from Section 2.4.2 to Section 2.4.6.

Unfortunately, there are no code listings or more detailed explanations about the Chord-Zip Algorithm

in [10]. Thus, the Chord-Zip Algorithm is reconstructed in this work by considering all available

information, as far as it is possible. A notation in pseudo code of our interpretation of the Chord-

Zip Algorithm can be seen in Listing 2.1. Although the Chord-Zip Algorithm is not implemented

completely in this work, its reconstructed approach gives many insights on difficulties that have to be

considered while designing a merger algorithm.

2.4.1 Summary of Chord-Zip

The authors of [10] suggest that enough information, required to merge two Chord rings, is already

stored at any peer, which belongs to either of the rings, so that each node is able to rearrange its

locality without global knowledge. In case an initiator node becomes aware of any other contact node

in another ring, it will be able to start a query for its successor in the other ring (denoted as alternative

successor). Thereafter, the initiator node updates its next neighbors (predecessor, successor) and asks

the alternative successor for its predecessor, its successor list, its finger table, and for the data space

partition it will be responsible for after the merger. Finally, the initiator node combines its successor

list and its finger table with those, it obtained from the alternative successor, and passes its original

routing information to the alternative successor. The merging process is repeated by every node, until

it arrives the initiator node again, so that the merger is finished.
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The execution time of the merger, which is composed of one Chord join operation and the merge

signal, can be improved by determining different initiator instances that start the merger algorithm

individually. Initiator nodes block bypassing signals in order to terminate the algorithm. For par-

allelization, the authors introduce two methods. First, nodes in both rings could start the merger

algorithm concurrently. Secondly, some nodes could have the privilege to appoint further initiator

nodes (for example finger entries).

In case the node with the merger token detects a broken connection to its (alternative) successor, it can

choose the next node in the successor list for merging. If the node with the token fails, the initiator

node can start a new merger instance after a specific timeout. Ways to handle keys, present in both

rings, could be to select one key, or return both upon a request.

2.4.2 Discovery of Contact Nodes

The authors of the Chord-Zip Algorithm give no solution to this problem. They rather refer to external

applications or neighbor selection algorithms which find proper candidates in the other ring by them-

selves. Using such an algorithm might not perform good as the number of contact nodes is limited to

close neighbors only.

2.4.3 Merging

In Chord-Zip an initiator node starts the merging process. This initiator starts a simple Chord lookup

(line 2 in Listing 2.1) to a contact node and receives its alternative successor in the other ring, which

is to be merged. With the newly found alternative successor, the initiator can exchange routing infor-

mation and forward the merger token to unify further nodes. Therefore each node sends its successor,

successor list and finger table to its alternative successor (see lines 4 and 14 in Listing 2.1). Each

receiver of such a Zip-Ping message answers with a Zip-Pong message which contains predecessor,

predecessor list and finger table of the respective node in their original states. The merger token is

forwarded by the initiator to its alternative successor, which has been obtained from the initial lookup.

Other nodes, which are not an initiator, treat those successors as their alternative successors, which

were send via Zip-Ping message to the respective node. By this means, the merger token will be

forwarded through both rings, which are to be combined. The authors of [10] do not consider the

case in which the identifier of the alternative successor follows the identifier of the own successor on

the Chord ring, regrettably. Figure 2.6 shows node n which does not consider its current successor as

next node although it is closer to node n than the alternative successor. As a result, n’s successor is

skipped and not properly merged. The chord stabilize protocol is needed then to connect n’s successor

afterwards.
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Listing 2.1: Chord-Zip Algorithm.

1 receipt of STARTZIPPER(contact) from m at n
2 sendto contact : LOOKUP (n.id)
3 if altSucc is received from contact within time interval γ then
4 sendto altSucc : ZIPPING (n.succ, n.succList, n. f ingerTable)
5 n.isInitiator := true
6 end if
7 end event

8 receipt of ZIPPING (m.succ, m.succList, m. f ingerTable) from m at n
9 sendto m : ZIPPONG (n.pred, n.succList, n. f ingerTable)

10 if n.isInitiator = true then
11 combine()
12 n.isInitiator := false
13 else
14 sendto m.succ : ZIPPING (n.succ, n.succList, n. f ingerTable)
15 end if
16 end event

17 receipt of ZIPPONG (m.pred, m.succList, m. f ingerTable) from m at n
18 if n.isInitiator = false then
19 combine()
20 end if
21 end event

n n's successor

n's alternative successorn's new predecessor

n's old predecessor

Figure 2.6: Node n skips its own successor in Chord-Zip.

Finally, each node obtains routing information from its alternative predecessor and from its alternative

successor. This information can be compared to the node’s own routing information and both can be

combined to achieve best results (lines 11 and 19 in Listing 2.1). Doing this, all successor and prede-

cessor pointer will be updated and every finger entry will contain the most fitting routing information.

The initiator node has to wait for the Zip-Ping message of the last node, which executes the merger

algorithm, before it is able to combine all routing information (see Figure 2.7).

20



2.4 Chord-Zip

combine()

combine()

combine()

Initiator Node 1 Node 2
T
i
m
e

Zip Ping

Zip Pong

combine()

Node n

Zip Ping

Zip Pong

Zip Ping

Zip Pong

Zip Ping

Zip Pong

Zip Ping

Zip Pong

Figure 2.7: Messages in the Chord-Zip protocol.

2.4.4 Parallelization

The authors of the Chord-Zip Algorithm as well suggest to take advantage of the merger’s locality

by starting multiple Chord-Zip instances in parallel. Therefore multiple initiator nodes had to be

determined simply, which in addition should block bypassing signals. As an alternative only one

initiator could be defined and other nodes could have the privilege to ascertain supplementary initiator

nodes, for example by using their finger entries. Precise explanations how the parallelization might

be realized are not given by the authors in [10]

2.4.5 Termination

The authors of [10] suggest that initiator nodes should block bypassing merger tokens, so that if multi-

ple instances of the Chord-Zip merger existed, each initiator could stop the merger token immediately

and hinder it from being passed to nodes, which have been merged already. Unfortunately, the au-

thors of [10] do not describe how long an initiator node should hold this state and block bypassing

messages. If one initiator blocks messages for too long, it might additionally happen that it blocks

merger instances, which should be forwarded by this node. Furthermore, the authors of [10] do not

explain how one node, which is not an initiator, should stop the merger algorithm, if, for example, a

node in the own ring should be merged inadvertently. The Chord-Zip Algorithm has been tested by

its authors without the presence of packet loss or churn. They "assumed 50 msec message delays and

5 sec stabilization periods, both with 5% jitter" during their simulations [10]. As described below,
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in Section 2.4.6, the Chord-Zip Algorithm uses message retransmission in case of message timeouts

or discarded messages. If one node receives multiple messages (because of retransmission) from the

same sender, all those duplicated messages are treated like independent messages, which have to be

forwarded. By this incident, multiple Chord-Zip instances are duplicated and started, but not stopped

directly. Moreover, the amount of executed merger instances is not controllable any more. One could

imagine an extension with which nodes mark incoming messages with a time stamp and keep them,

until a specific timer expires. Duplicated messages and thereby duplicated merger instances could be

detected and stopped. If TCP is used for communication, it would be possible to consider sequence

numbers as indicator for retransmission and duplicated messages. In addition, this extension had to

take into account that multiple rings could be merged simultaneously. To compare Chord-Zip with the

other merging algorithms anyway, we do not use packet loss in simulations that include Chord-Zip, as

the above mentioned extension could be realized somehow with further expenditure.

2.4.6 Robustness

The authors of Chord-Zip give good advice how packet loss should be handled. If one node detects

that its alternative successor is failing, before it has been able to pass over the merger token, the

corresponding node can chose an optional alternative successor from the list of successors, which has

been received via Zip-Ping message before, and forward the merger token to it. In case the node fails,

which is currently holding the token, the authors suggest that the initiator node should start a new

merger instance after a specific timeout. As a positive side effect an other problem is circumvented:

the initiator only knows one alternative successor, since this node has not received a Zip-Ping message

with an affiliated successor list at the beginning of the merger. Although Kis et al. [10] consider packet

loss in their merging algorithm, they do not incorporate loss in their simulations. In fact, the Chord-

Zip Algorithm is not able to handle duplicated messages properly, which leads to an uncontrolled

number of merging instances. Hence, the Chord-Zip Algorithm might never terminate completely.

2.5 Ring Unification Algorithm

In this section the simple Ring Unification Algorithm and the gossip-based Ring Unification Algo-

rithm [11] are summarized in Section 2.5.1. From Section 2.5.2 on, the Ring Unification Algorithm

is examined with respect to the merging criteria listed in Section 1.2.3. The main difference of this

algorithm to the other approaches is its ability to operate bidirectionally by starting modified lookups

rather than forwarding a merger token via the ring.
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2.5.1 Summary of the Ring Unification Algorithm

The authors of [11] regret that the aspect of network mergers had been ignored in the context of

structured overlay networks. Although large-scale peer-to-peer systems were highly related to the

problem of network partitions and mergers, those systems had just been studied under frequent joins

and failures of nodes (churn). Furthermore it was widely believed that ring-based structured overlays

were intrinsically ill-suited for network mergers.

Therefore the authors of [11] focus on the problem of dealing with partition mergers at the routing

level and present an algorithm for merging any number of similar structured, unidirectional ring-

based overlays. Their presented algorithm uses a parameter to adjust the trade-off between message

complexity and time complexity, called fanout parameter. Whenever a peer detects that another peer

in its routing table is not reachable any more, the routing information of the failed node is moved into

a passive list, which is maintained by each node individually. In order to unify a partitioned overlay

again, each node periodically tries to get in contact with nodes from its passive list. If one node is

detected to be reachable again, a ring merging algorithm is started on both nodes. In case two different

network partitions had never been part of a common network, and thus no partition is registered at one

of the other partition’s passive lists, a system administrator can insert an active node into the passive

list of any node in the other ring to start a network merger manually. To avoid false-positives, every

node that joins the network generates a globally unique random nonce. If one node is detected by

the algorithm to be alive again, the node’s current nonce is compared with that in the passive list to

distinguish previously failed nodes from new nodes, which coincidentally have the same overlay and

network address.

Simple Ring Unification Algorithm

The simple Ring Unification Algorithm uses a queue, which is periodically checked by every node and

contains any alive nodes detected in the passive list. The Ring Unification Algorithm is then started

on the newly found node as well as on the node which detected the other node. Both nodes are advised

to start a lookup to the other node in their own ring. Similar to lookups in Chord, the lookup request

is passed through the ring via the closest preceding fingers of the target identifier. The node which

is responsible for the identifier itself or whose successor is responsible for the identifier, instructs

the node from the other ring to consider the responsible node and its predecessor or the responsible

node and its successor, as its new neighbors. The target node then starts lookups to its possible

neighbors and updates its predecessor and successor afterwards. As a result the merger proceeds in

both directions, clockwise and anti-clockwise.
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Gossip-based Ring Unification Algorithm

In addition to the simple Ring Unification Algorithm the gossip-based Ring Unification Algorithm

starts multiple instances of the merger algorithm at random nodes with uniform distribution. The en-

hancement should increase the algorithm’s performance during churn and other pathological scenarios

that would immediately terminate the simple Ring Unification Algorithm. The fanout parameter is de-

creased every time a random node is picked, to ensure that a constant number of merger instances is

created and to avoid that too many messages are produced. After evaluating the algorithm with dif-

ferent parameters, the authors suggest a fanout value around 3-4 as a good trade-off between message

and time complexity.

2.5.2 Discovery of Contact Nodes

In [11], the simple and gossip-based Ring Unification Algorithm use a passive list, which detects

nodes that are suitable contact nodes. Therefore, all nodes, that are suddenly detected to be unreach-

able, are inserted to the passive list, which is maintained by every node. Each node periodically pings

contact nodes in its passive list. If contact nodes are detected to be alive again, they will be removed

from the passive list and inserted into a queue, out of which merger algorithms are started. One

disadvantage of such a passive list is, that only those nodes can be merged, which had been known

previously. Changes of the routing information in each individual partition might make the content

of the passive list useless, because information about previous contact nodes might be outdated and

some nodes may not exist any longer. In that case, a system administrator could insert a contact node

to a specific node manually, and thereby start a merging algorithm.

2.5.3 Merging

The Ring Unification Algorithm (Listings 2.2 and 2.3 from [11]), which in its basic form consists

of two parts, completely differs from the Chord-Zip Algorithm. When using the Ring Unification

Algorithm, the initiator commands the contact node to start a merger, as well. The contact node uses

the initiator node as its own contact node, so that both nodes try to merge each other respectively.

The merging process is, by its nature, started in both rings, so that two instances are executed in

parallel. The method MLookup carries the merger token closer to the contact node via the closest

preceding finger method, which is used in Chord, too. If then the node, which is to be merged,

is located between the node, which holds the merger token, and its predecessor or its successor, the

method TryMerge is called. In TryMerge, a node examines if the contact node fits better as predecessor

24



2.5 Ring Unification Algorithm

Listing 2.2: The Simple Ring Unification
Algorithm.

1 every γ time units and detqueue 6= /0 at p
2 q := detqueue.dequeue()
3 sendto p : MLOOKUP (q)
4 sendto q : MLOOKUP (p)
5 end event

6 receipt of MLOOKUP (id) from m at n
7 if id 6= n and id 6= succ then
8 if id ∈ (n,succ) then
9 sendto id : TRYMERGE (n,succ)

10 else if id ∈ (pred,n) then
11 sendto id : TRYMERGE (pred,n)
12 else
13 sendto closestprecedingnode(id) :

MLOOKUP (id)
14 end if
15 end if
16 end event

17 receipt of TRYMERGE (cpred,csucc) from m at n
18 sendto n : MLOOKUP (csucc)
19 if csucc ∈ (n,succ) then
20 succ := csucc
21 end if
22 sendto n : MLOOKUP (cpred)
23 if cpred ∈ (pred,n) then
24 pred := cpred
25 end if
26 end event

Listing 2.3: Gossip-based Ring Unification
Algorithm.

1 every γ time units and detqueue 6= /0 at p
2 〈q, f 〉 := detqueue.dequeue()
3 sendto p : MLOOKUP (q, f )
4 sendto q : MLOOKUP (p, f )
5 end event

6 receipt of MLOOKUP (id, f ) from m at n
7 if id 6= n and id 6= succ then
8 if f > 1 then
9 f := f −1

10 r := randomnodeinRT()
11 at r : detqueue.enqueue(〈id, f 〉)
12 end if
13 if id ∈ (n,succ) then
14 sendto id : TRYMERGE (n,succ)
15 else if id ∈ (pred,n) then
16 sendto id : TRYMERGE (pred,n)
17 else
18 sendto closestprecedingnode(id) :

MLOOKUP (id, f )
19 end if
20 end if
21 end event

22 receipt of TRYMERGE (cpred,csucc) from m at n
23 sendto n : MLOOKUP (csucc,F)
24 if csucc ∈ (n,succ) then
25 succ := csucc
26 end if
27 sendto n : MLOOKUP (cpred,F)
28 if cpred ∈ (pred,n) then
29 pred := cpred
30 end if
31 end event

or successor than the current pointer. For better comparability, lines 18 and 22 in Listing 2.2 and lines

23 and 27 in Listing 2.3 will be replaced by a direct method call, so that no delays occur when

sending messages via the local loop-back interface. In fact, this delay could hinder the algorithm to

perform properly, as the successor pointer would be updated (line 25 in Listing 2.3), before MLookup

is executed, and therefore the merger algorithm, which operates in clockwise direction, would be

terminated early. Basically, the passive list or the choice of any random contact can be used to find a

contact node in the other ring, since the merging mechanism is separated from the technique to find

proper contact nodes.
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2.5.4 Parallelization

The gossip-based Ring Unification Algorithm takes advantage of the possibility to start multiple

merger instances as well. To achieve that all initiator nodes are distributed equally, the nomination of

new initiator nodes is integrated in MLookup (lines 8-11 in Listing 2.3). With each step in MLookup, a

new initiator node is selected randomly out of the own routing table, and a command to start a merger

instance is sent to it. The number of additional instances is limited by the fanout parameter (using 1

as fanout value is equally to use the simple Ring Unification Algorithm). Furthermore the usage of

multiple instances increases the algorithm’s robustness during churn and the following pathological

scenario is circumvented: if successor and predecessor pointers of all nodes point into the own ring,

but the additional pointers refer to the other ring, an MLookup will leave the own ring and terminate

the merger immediately.

2.5.5 Termination

In both Ring Unification Algorithms the merger algorithm is kept running by frequently starting

lookups to neighboring candidate successors or predecessors (TryMerge in Listing 2.2). Only if a

node is advised by another node to start a lookup to itself or to its successor, the merging algorithm

is stopped (see MLookup in Listing 2.2). Finally, if multiple rings are successfully merged, the re-

spective node which holds the merger token, sends a MLookup with its successor as target to itself, so

that its successor becomes the candidate successor in TryMerge and the merger instance will be ter-

minated thereupon. As mentioned before, the original algorithm would result in prematurely updated

successor pointers, so that the merger would terminate early (consider lines 18-21 in Listing 2.2). In

contrast to the authors of the Chord-Zip Algorithm, the authors of the Ring Unification Algorithm do

not discuss packet loss and retransmission in their paper. But since the introduced detqueue (line 2

in Listing 2.2) periodically tries to merge available nodes, a concept for retransmissions in case of

delayed or discarded messages is not necessary.

2.5.6 Robustness

Although the authors of [11] do not consider packet loss in their study, the Ring Unification Algorithm

is able to cope with loss, since the passive list detects communication failures periodically. Failing

nodes and messages that get lost are therefore spotted and the passive list is able to react thereupon.

Alive nodes can be merged then, as soon as they are given to the queue (detqueue) of the Ring Uni-

fication Algorithm. Even under churn the algorithm is able to behave as predicted, without the need

to distinguish churn from isolation scenarios. Like the Ring Reunion Algorithm, the Ring Unification
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Algorithm terminates early if nodes in the own ring are suggested as contact nodes for the merger

algorithm. In principle, the Ring Unification Algorithm should therefore be able to merge multiple

rings simultaneously, too.

Chapter Conclusion

In this chapter we have presented related work and background information on the topic of overlay

mergers. We summarize Chord in Section 2.1.1 as it is the best studied ring-based overlay we know.

Furthermore, Chord has been object of previous investigations as described in Section 2.2. The authors

of [23] claim that routing in ring-based overlays, especially in Chord, would not be possible during a

merger. Furthermore, we have analyzed an overlay, the authors prefer, in Section 2.3 and have shown

that this overlay can not be compared to Chord directly.

Two existing algorithms have been introduced and further examined in Section 2.4 and in Section 2.5.

Doing this, we have focused on certain criteria which have to be paid attention to if separated overlays

are supposed to be unified. It has to be clear how reachable nodes are discovered again, how the

information of an ongoing merger operation is disseminated, and finally it is necessary that a merging

algorithm terminates properly. Since the presented algorithms act locally in a Chord ring, it is possible

to parallelize the mergers.

Next, in Chapter 3, we present the Ring Reunion Algorithm, a novel merger algorithm for ring-based

overlays which has been developed as part of this thesis. In Section 3.1 we examine the design of our

algorithm with respect to necessary merging criteria and later, in Section 3.2, we compare the Ring

Reunion Algorithm to the mergers which have been presented in this chapter.
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Chapter 3

Ring Reunion Algorithm

In the previous chapter the most important studies on the topic ’merging of networks’ have been intro-

duced. Primarily the work of Datta et al. [23] gives a first insight on difficulties that have to be faced if

two similar overlays, especially ring-based overlays, are merged. Kis et al. [10] and Shafaat et al. [11]

extend these insights by developing different merging techniques to show that it is possible to merge

ring-based overlays. With the knowledge about existing merging algorithms, which are described in

detail in Section 2.4 and in Section 2.5, a new merging mechanism has been designed, implemented

and evaluated in this work. In this chapter we introduce our newly developed Ring Reunion Algo-

rithm. A detailed description about the design of our approach is given in Section 3.1. In addition,

Listing 3.2 shows an elaborate implementation of the Ring Reunion Algorithm in pseudo code. This

work is a first approach to analyze the existing solutions and to compare those approaches to the Ring

Reunion Algorithm. Thus, Section 3.2 analyzes the performance of the different algorithms.

The reason why Chord has been chosen as an example for ring-based overlays in this work is that the

above mentioned studies base on Chord and mostly all knowledge about overlay mergers is derived

from those. Furthermore Chord is one of the most famous overlays, well studied and has a high

educational value. In contrast to Chord, the idea of merging similar overlays is much younger. This

work should be seen as a contribution to this topic, to gain better insights on the merging of ring-

based overlays, which might be transferable to other structured overlays, like unstructured overlays

had enriched the knowledge about structured overlays a few years ago. Unfortunately, most overlay

designs make no or only little suggestions about how network partitions should be handled or might

be merged. In general, the advantage of ring-based overlays is that they are very tolerant against

failures and robust against membership dynamics (churn). Chord for example achieves its robustness

through its stabilize protocol, which by itself reconnects the ring whenever individual nodes join or

leave the overlay voluntarily or involuntarily. A simple approach to merge two similar overlays could

be to send a signal through one ring which orders the corresponding nodes to leave this ring one after

another and to join the second ring in turn. Chords stabilize protocol would then supervise the correct

integration of all joining nodes.
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3.1 Design of the Ring Reunion Algorithm

In this section we present the design of the Ring Reunion Algorithm which automatically detects

network partitions and initializes merging operations thereupon. Below, in Section 3.1.1, we point out

how the algorithm finds new contact nodes. Section 3.1.2 explains how our algorithm merges different

network partitions. Furthermore, we focus on its ability to reduce traffic overhead (Section 3.1.3), we

describe its ability to start parallelized instances autonomously (Section 3.1.4) and we point out how

the algorithm terminates, in order to limit costly resources (Section 3.1.5).

3.1.1 Discovery of Contact Nodes

The idea of the passive list is picked up in this work and tested for all introduced merging algorithms.

The authors of the Ring Unification Algorithms do not specify a size for the passive list or the queue

in which detected alive nodes are kept (line 2 in Listings 2.2 and 2.3). Therefore we will test the

passive list with unlimited size. Another method which will be tested in this work, is a list of random

contact nodes, which every node could obtain from a bootstrap node during the joining of an overlay.

Periodically, each node tries to get in contact with a random contact out of this active contact list,

via ping pong messages. If one node is discovered to be alive and reachable, it is considered to be

merged by the initiator. Doing this, it does not matter if the contact node lies in an other geographical

region or in the same region as the initiator. Actually, during the isolation of two regions, no contact

nodes in the other region can be merged, but as we saw earlier in Section 1.2, groups might be formed

inside of a region. If then one node randomly chooses a contact node from the own region, but from

another group, at least both groups are merged, with the goal that a global ring is created in this region

(see Figure 3.1). The problem with the passive list is that two groups which are located in the same

isolated region might not be merged, since those groups did not know about the other group before,

which is furthermore the reason both groups have been formed independently from each other.
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Figure 3.1: Example: groups in the same region can be merged during isolation.
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3.1.2 Merging

In this work the basic Chord-Zip merging mechanism is adopted, changed and extended. Likewise

to [10], the Ring Reunion Algorithm starts a lookup to a newly found contact node, in order to obtain

an alternative successor. For this purpose, the passive list or the active contact list can be used,

as it can be with the Ring Unification Algorithm, since within the Ring Reunion Algorithm, merging

mechanisms are separated from searching techniques, too. If then a contact node is found, the initiator

starts the merging algorithm by sending its successor to its alternative successor (if altSucc∈ (n, succ),

line 11), or by sending the alternative successor to its successor (if altSucc /∈ (n, succ), line 14 in

Listing 3.1). In Figure 3.2 node n decides to send the merge message to the nearest succeeding node,

which might be n’s own successor (3.2(a)) or its alternative successor (3.2(b)).

Listing 3.1: Ring Reunion Algorithm.

1 receipt of STARTMERGER(contact) from m at n
2 sendto contact : LOOKUP (n.id)
3 if altSucc is received from contact within time interval γ then
4 MERGE (altSucc)
5 end if
6 end event

7 receipt of MERGE (altSucc) from m at n
8 pred := m
9 if n 6= altSucc then

10 if altSucc ∈ (n,succ) then
11 sendto altSucc : MERGE (succ)
12 succ := altSucc
13 else
14 sendto succ : MERGE (altSucc)
15 end if
16 end if
17 end event

The receiver of a merge message considers the contact information, which has been sent within the

message, as its own alternative successor. The sender of the message is treated like the receiver’s

alternative predecessor and used as new predecessor, if it fits better than the current predecessor. By

this way the correct order of the global ring is kept, and the merger token is passed through both rings,

until they are merged. In contrast to Chord-Zip, the Ring Reunion Algorithm does not combine finger

entries during a merger process, in order to prevent current routing behavior from being affected, as

can be read in Section 3.2.
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Figure 3.2: Ring Reunion Algorithm selects suitable alternative successor.

3.1.3 Probability

We extend our algorithm by introducing a probability for starting a merger instance, in order to limit

the number of merging processes and bandwidth consumption. Whenever an alive node is found by

one nodes active contact list, a random value γ is picked. If one node is member of an overlay construct

with size sizec, it starts a merger instance only if γ is below or equals α/sizec, with parameter α , for

which suitable values are specified in our evaluation in Chapter 5. If, for example, the probability

is given by 1/sizec, only one node per ring starts a merger instance on average. To estimate sizec,

i.e. the size of the current network, we follow an approach similar to [24]. We calculate the average

responsibility range, respp, of a node p by considering the identifier ranges of its successors and

finger entries. The estimated number of nodes in the overlay construct is then given by sizec =
2160

respp
.

As a result every construct initiates α merger instances in a specific interval, instead of starting one

instance per node. As shown in the evaluation, the merger performs well with this concept. In our

comparison we use this method also in combination with the Ring Unification Algorithm, to examine

its performance.

n
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n
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n
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Figure 3.3: Affected nodes, in case the distribution algorithm is used.
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3.1.4 Parallelization

To improve the Ring Reunion Algorithm, a further algorithm has been designed to start multiple

merger instances simultaneously and independently (Listing 3.2). The distribute method is started

every time a merger instance is started (line 2). As a result, the initiator node informs its furthermost

finger contacts to initiate new merger instances. Thereupon those finger contacts inform their second

furthermost finger contacts respectively et cetera, that thereby the information to start new instances is

equally distributed among all nodes in the initiator node’s ring (lines 7-10). Concurrently, a distributed

counter is decreased with each message, so that exactly 2maxInstances− 1 additional merger instances

are initialized, where maxInstances is a fixed parameter (see line 7). Hereafter all nodes that have

received a distribute message start the merge method (line 11) and begin to merge a given ring (lines

14-24). Figure 3.3 demonstrates that with each step i, 2i nodes are asked to start a merger instance so

that, for example, after 3 steps 23 = 8 instances are started.

Listing 3.2: Ring Reunion Algorithm with parallelization.

1 receipt of STARTMERGER(contact) from m at n
2 DISTRIBUTE (0,contact)
3 end event

4 receipt of DISTRIBUTE (cnt, contact) from m at n
5 sendto contact : LOOKUP (n.id)
6 if altSucc is received from contact within time interval γ then
7 while (cnt < maxInstances) do
8 sendto fingerEntry(lastEntryPos− cnt) : DISTRIBUTE (cnt +1, contact)
9 cnt := cnt +1

10 end while
11 MERGE (altSucc)
12 end if
13 end event

14 receipt of MERGE (altSucc) from m at n
15 pred := m
16 if n 6= altSucc then
17 if altSucc ∈ (n,succ) then
18 sendto altSucc : MERGE (succ)
19 succ := altSucc
20 else
21 sendto succ : MERGE (altSucc)
22 end if
23 end if
24 end event
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Figure 3.4: Verification of Ring Reunion Algorithm (1): two nodes try to merge ring at the same time.

In addition to the parallelization, the Ring Reunion Algorithm is capable of merging multiple rings

simultaneously. Figures 3.4 and 3.5 show a scenario in which two nodes try to merge one node (22)

at the same time. Since one merge message will always be received first, the second Ring Reunion

instance will always merge a ring that has been merged previously. In this example node 11’s merge

message is received by node 22 shortly after node 15’s merge message has arrived at node 22. Arrows

describe forwarded merge messages. Solid lines denote the successor pointers from one node to its

successor. When both merger instances are terminated, a single ring is created.
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Figure 3.5: Verification of Ring Reunion Algorithm (2): two nodes merge ring at the same time.

3.1.5 Termination

The Ring Reunion Algorithm terminates if the received alternative successor is equally to the node

which holds the merger token (line 16 in Listing 3.2). That is, the node has been commanded to merge

itself. if then one node obtains a contact node from the own ring, a lookup is started in this ring to

find the successor node of the node’s id. Consequently the node receives itself as the successor node

for its id, whereupon the merger instance is terminated. Because of this behavior, the Ring Reunion

Algorithm recognizes if a given contact node is already merged so that it is able to stop immediately.
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An example is given in Figure 3.6: node n came in contact with a node from its own ring and asks it for

its alternative successor (1). The contact node starts a Chord lookup to find n’s alternative successor

(2-3). The alternative successor is then given to n (4). Node n tries to merge the given node and stops

immediately, as it is equal to the given alternative successor (5-6).

1) 2) 3)

4) 5)

find_successor(n.id)

n

contact 
node

lookup request
lookup reply

n n

n n

alt. successor is n

6)

n

merge(n) n = n: stop merger

Figure 3.6: Example: one node tries to merge own ring.

3.1.6 Robustness

The Ring Reunion Algorithm has been designed in the way that it is capable of using acknowledge-

ments optionally, if messages are forwarded. In case a merger message or a responding acknowl-

edgement gets lost, a node can react quickly and retransmit the last message. If then one message is,

because of timeout and retransmission, received by a node for the second time, the second merger in-

stance terminates quickly, as the first merger instance (received via first message) already has merged

the ring locally. Nevertheless, the robustness of the Ring Reunion Algorithm does not depend on

acknowledgements. Like in the Ring Unification Algorithm, the passive list can be used here to start

new, independent Ring Reunion instances, regardless of whether messages get lost and nodes fail or

not. As an alternative to the passive list, nodes have the option to merge random nodes from the active

contact list, which are found to be alive by pinging them. This method contributes to increase the

merger’s robustness, as different nodes are merged periodically. If one instance is terminated because

of packet loss or churn, this method ensures that further merger instances are initialized, as soon as

a suitable contact node is found. The active contact list is obtained by every node during the join

process from the bootstrap manager. Additionally this list could be updated and filled with contact

nodes which have been found via IP-scans.
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3.2 Performance Analysis

All presented merger algorithms have in common that they act locally on a specific node in a ring,

without requiring global knowledge about the entire ring. Thereby each node forwards information,

which is essential for merging the overlay, to an appropriate node, without violating the typical char-

acter of peer-to-peer applications: responsibility is distributed equally among all peers. Nevertheless,

the performance of the merging algorithms differs clearly. Below, we analyze the introduced merging

algorithms ( [10] and [11]) and compare them to the Ring Reunion Algorithm. Therefore, in Section

3.2.1, we focus on the time complexity of the algorithms and in Section 3.2.2 we examine their mes-

sage complexity. In Section 3.2.3 we examine the circumstances under which lookups are possible

during a merging operation.

3.2.1 Time Complexity

For routing correctness only successor pointers have to be correct in a Chord ring. The finger entries

are optional to increase Chord’s lookup performance. An efficient merger algorithm therefore should

be faster than Chord’s stabilize protocol in combination with a simple join-leave approach, like the

one introduced at the beginning of this chapter.

Chord-Zip

In Chord-Zip a lookup is necessary to start a merger instance. The token is then passed through the

ring by all nodes. Therefore the complexity of the execution time of the Chord-Zip Algorithm is

O(N + log N), if no messages are duplicated and N is the number of all involved nodes.

Ring Unification Algorithm

The Ring Unification Algorithm also has to merge all N nodes. To achieve this, MLookups are started

frequently, which perform like normal Chord lookups. As a result the total execution time complexity

of the Ring Unification Algorithm is O(N · logN). Still, two minor performance reductions can be

found in the Ring Unification Algorithm. The closest preceding finger method which is used in

MLookup (Listing 2.2) always forwards a search in clockwise direction, even if nodes are merged

anti-clockwise (consider lines 22-25 in Listing 2.2 and Figure 3.7). Additionally, it might occur that

few nodes are missed to be merged.
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mlookup(p)
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trymerge
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candidate successorcandidate predecessor

candidate predecessorcandidate successor

clockwise 
merger

anti-clockwise 
merger

Figure 3.7: Ring Unification Algorithm operates in both directions: clockwise and anti-clockwise.

Ring Reunion Algorithm

For the Ring Reunion Algorithm an initial lookup is needed to start the merger. After that, the merger

token is passed through the ring, once for each node until the algorithm terminates. Consequently, the

time complexity of our algorithm is given by O(N + log N).

3.2.2 Message Complexity

In order to increase performance and to avoid costly bandwidth consumption, a merging algorithm

should operate quickly and produce as few messages as possible. Ideally the number of forwarded

messages depends on the number of constructs which arise during a merger, rather than on the number

of participating nodes.

Chord-Zip

In Chord-Zip every node sends a Zip-Ping message to its alternative successor pointer and receives

a Zip-Pong message in turn. Besides, we assume that each initiator node starts a merger algorithm

as soon as it receives a suitable contact node. Therefore Chord-Zip forwards approximately twice as

many messages as nodes exist, which are supposed to be merged.
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Ring Unification Algorithm

The Ring Unification Algorithm probably needs more messages to merge multiple rings than the other

algorithms, since this algorithm starts kind of a lookup for every node which should be merged. There-

fore O(N · logN) messages are produced during a merger, where N is the total number of participating

nodes. Against that, the Ring Unification Algorithm starts to merge instances simultaneously, one

to operate clockwise and another one to operate counter-clockwise. Besides, the algorithm is only

started if an alive node is found within the passive list, so that the number of started merger instances

is reduced reasonably.

Ring Reunion Algorithm

With the Ring Reunion Algorithm a merger token is forwarded by each participating node once.

Thus the quantity of messages correlates to the number of nodes that are merged in general. If the

Ring Reunion Algorithm is used in combination with the passive list, the number of merger instances

relates to the number of nodes which are found to be alive. If instead, the alive contact list, with

a specific number of contact nodes, is iterated periodically by each node to find new contact nodes,

and a probability with which every node starts a merger instance is used, the message overhead is

further reduced. With this method it is possible to start a fixed number of instances per construct,

averagely, so that the bandwidth consumption does not depend on the number of nodes, but on the

current number of constructs.

3.2.3 Lookups During Merger

As mentioned earlier, Chord’s lookup performance bases on its finger entries, which have to be up-

dated frequently to unfold Chord’s full potential. In [12] the authors of chord demonstrate that if a

stable Chord ring with N nodes and correct finger pointers is given, and "another set of up to N nodes

joins the network, and all successor pointers (but perhaps not all finger pointers) are correct, then

lookups will still take O(log N) time with high probability", (Theorem IV:4 in [12]).

Lookups in Chord are forwarded via the method closest_preceding_node() until a finger is reached,

which is the closest preceding node of the target id, without being responsible for it. Actually, to

reach the node which is responsible for the target id, the closest preceding finger forwards the lookup

to its successor (see find_successor() in Listing 3.3). This behavior ensures that lookups are always

resolved by a successor pointer as last step, in case a finger entry might be corrupt or not close enough

to the target id. If lookups are started then, they will be forwarded to the closest finger and not more
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than as much nodes have to be visited as nodes had been merged. Therefore lookups will still take

O(log N) time after the merger. For this reason, no finger entries are combined in the Ring Reunion

Algorithm, since this is not necessary, nor will this feature increase performance. Another reason

not to copy this concept from the Chord-Zip algorithm is that the combination of finger entries never

yields correct values for all finger entries.

Listing 3.3: Basic Chord methods.
n.create()

predecessor = nil
successor = n

n.join(n′)
predecessor = nil
successor = n′.find_successor(n)

n.find_successor(id)
if id ∈ (n,successor]

return successor
else

n′ = closest_preceding_node(id)
return n′.find_successor(id)

n.closest_preceding_node(id)
for i = m downto 1

if f inger[i] ∈ (n, id)
return f inger[i]

return n

Listing 3.4: Chord’s methods for stabilization.
// called periodically
n.stabilize()

x = successor.predecessor
if x ∈ (n,successor)

successor = x
successor.notify(n)

n.notify(n′)
if predecessor is nil or n′ ∈ (predecessor,n)

predecessor = n′

// called periodically
n.fix_fingers()

next = next +1
if next > m

next = 1
f inger[next] = find_successor(n+2next−1)

// called periodically
n.check_predecessor()

if predecessor has failed
predecessor = nil

The combination of finger entries should not be done for on last reason. The authors of [23] criti-

cize that ring-based overlays would not be able to perform lookups during a merger, even lookups

addressed to the own ring would fail. If finger entries are combined then, like in Chord-Zip, it is not

comprehensible, from which ring a single finger entry originates. If then a lookup is started during the

Chord-Zip merger, it is not obvious in which ring the lookup will be forwarded. As soon as the lookup

is forwarded by a node which has already combined its finger entries, the lookup is passed into one

of the two involved rings randomly, depending on the finger entry, which has been chosen as better

candidate. In Figure 3.8 for example, node n in ring R1 starts a lookup for t. Depending on how node

p has combined the gathered routing information, the lookup is forwarded within the own ring (top)

or into ring R2 (bottom), because node k has been considered to be closer (than s) to node t now.

If the finger entries are not combined, but rather adjusted by the Chord stabilize protocol, it is possible

that lookups are successful during the merger. Either the lookup is passed to a part of the ring which

has not been merged yet, or the lookup stops in a part of the ring which had been merged already. In the

first case the finger entries in nodes that have not been merged yet have not changed, so that the target

id is directly reachable via the closest preceding finger and the following sequence of successors. In
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Figure 3.9 node n’s requests are forwarded within ring R1 as finger references have not been updated

yet. Finger entries are only updated in parts of both rings that have already been merged.
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Figure 3.8: Lookup during merger after routing information has been combined.
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n t
closest preceding node successor

Figure 3.9: Successful lookup during merger.

Similar to Theorem IV:4 in [12], during a merger, each lookup is forwarded closer to the target id,

and with high probability only O(log N) successors have to be traversed until the responsible node is

found, since all nodes are distributed equally in Chord.

It might happen though, that Chord’s stabilize protocol modifies finger entries during the merger. In

that case, Chord searches a suitable successor for a finger entry via a normal Chord lookup, which

uses the closest_preceding_node() method. Thereupon, if the closest preceding finger has been found,

all successors are traversed, until a node among these successors is found, which fits better as finger

entry. Consequently, a finger entry is replaced by a new one if, and only if a better fitting successor

exists for this entry after the merger.

In case the lookup is addressed to a part of the ring which has not been merged by then, the lookup

will not leave the initiator node’s ring, as no better finger entries are known for this part of the ring.

However, if a target id is placed in a part of the ring which has been merged already, it does not matter
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if finger entries are updated, since this part of the ring can be seen as global ring now, and therefore

Theorem IV from [12] holds. The assumption in [23] that Chord was not able to execute correct

lookups during a merger can be refused.

Chapter Conclusion

In this chapter we have presented a detailed description of our Ring Reunion Algorithm. How it

discovers new contact nodes has been examined in Section 3.1.1: a list of well known contacts is

iterated periodically in order to find reachable contact nodes. Traffic overhead is reduced by estimating

the size of the overlay construct one node is currently in and by limiting the overhead to a fixed number

of messages per overlay construct (Section 3.1.3). We have described the algorithm’s ability to start

parallelized instances autonomously in Section 3.1.4 and we have discussed the importance of the

algorithm’s termination in Section 3.1.5. An accurate implementation of the Ring Reunion Algorithm

in pseudo code has been proposed in Listing 3.2.

In Section 3.2.1, we have focused on the time complexity of the presented algorithms and in Sec-

tion 3.2.2 we have compared the message complexity of the Ring Reunion Algorithm to the other

approaches. Additionally, we have analyzed the active contact list which is iterated periodically to

find new contact nodes and which calculates a probability with which merger instances are started.

With this method the bandwidth consumption does not depend on the number of nodes, but on the

current number of overlay constructs. In Section 3.2.3 we have demonstrated that lookups in Chord

are possible during a merger procedure.

In Chapter 4 we describe the simulation environment which has been used for our simulations, we

briefly describe the implementation of the merger algorithms, and we describe metrics which are used

to judge the quality of the presented merger algorithms.
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Implementation

In the previous chapters the most important criteria have been summarized, which should be consid-

ered when a merging algorithm is designed. For this purpose, the Chord-Zip Algorithm, the Ring

Unification Algorithm and our newly designed Ring Reunion Algorithm have been compared with

each other. In this chapter we focus on the implementation of the Ring Reunion Algorithm. There-

fore, in Section 4.1 we give an overview on the simulation environment which has been used for our

simulations. A brief summary about the implementation of the merging algorithms we evaluate in

Chapter 5 is given in Section 4.2. The most important metrics which are analyzed in our simulations

are described in Section 4.3. Within the last two decades many network simulators have been devel-

oped and established, like ns-2 [25], ns-3 [26], OverSim [27] in combination with OMNeT++ [28],

etc.. Since we are looking forward to test the merger algorithms with Chord, the chosen simula-

tion engine should be able to simulate peer-to-peer systems. Although ns-2 and ns-3 are both well

known and provide realistic simulations in many ways, both simulators do not offer any possibility to

test peer-to-peer overlays. Therefore PeerfactSim.KOM [29] has been chosen for our simulations, be-

cause this simulator is easy to use and provides multiple possibilities to simulate peer-to-peer overlays

and applications.

4.1 PeerfactSim.KOM

The PeerfactSim.KOM simulator has been developed at the TU Darmstadt at the Multimedia Commu-

nications Lab (KOM). Since 2011, the simulator has been extended and maintained at the University

of Paderborn (UPB) and the Heinrich Heine University of Düsseldorf (HHU). The concept of the sim-

ulator is related to the ISO/OSI reference model and should be well structured and usable for a large

variety of scenarios. Primarily, multiple peer-to-peer scenarios are supported without being depen-

dent of a specific peer-to-peer architecture. Therefore the simulator is based on a plug-in concept and

consists of different components which can be combined and extended for simulating any use case.
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4.1.1 Components

The simulator’s main component is the Simulation Engine, which is the core of the discrete event-

based simulator. The Simulation Engine therefore contains important parts like the Event Scheduler

or the Event Queue, which both in combination regulate the execution of pending tasks. Further, the

Simulation Engine coordinates the other components of the simulator. During a simulation, each peer

is represented by a host, which comprises different ISO/OSI layers and holds information about its

state, for example upload and download bandwidth, consumed bandwidth, CPU power, storage, etc..

The Event Scheduler distributes all simulated events to the different layers of the hosts, which react

on those events hereupon. Finally the Simulation Engine logs different outputs and provides a GUI to

visualize executed simulations.

Above the Simulation Engine different layers are located, which can be configured independently

of each other and combined according to the users wish, to cover as many scenarios as possible.

Although the layers refer to the ISO/OSI reference model their design is focused on the simulation of

peer-to-peer systems. The lowest layer is the network layer, which is connected to a component called

subnet and to the transport layer inside each simulated host. The subnet component connects all hosts

with each other and simulates traffic between individual hosts via the Internet. The transport layer is

located on top of the network layer to provide end-to-end communication services on higher layers.

The most important layer for peer-to-peer simulations might be the overlay layer. PeerfactSim.Kom

comes with an already implemented selection of interesting overlays like Chord [12], CAN [15],

Kademlia [14], Gnutella [30], etc.. In addition, the application layer allows the user to run different

applications on top of a selected overlay. Either the user configures a simulation to use an already

implemented application like a file-sharing application or a lookup generator, or the user creates his

or her own application which can easily be integrated into existing implementations.

For evaluations of individual simulations it might be useful or even necessary, to obtain specific data

and information, which are produced during a simulation. PeerfactSim.KOM does not provide any

mechanism to obtain all possible kinds of data, instead it comprises a monitoring architecture, which

has access to different fundamental information. Furthermore, multiple analyzers are implemented,

which already give access to basic information like bandwidth, number of online hosts, sent and

received messages and much more. Directly after a simulation, this collected data is plotted with

gnuplot. Besides, it is possible that developers implement own analyzers and integrate them into

PeerfactSim.KOM to obtain specific data, which is not collected by the simulator by default. For this

purpose the Java class org.peerfact.impl.util.oracle.GlobalOracle can be used, which gives access to

all hosts during a simulation. In Addition the simulator provides abstract analyzer classes, which are

helpful to gather data during a simulation and plot them afterwards.

44



4.1 PeerfactSim.KOM

Listing 4.1: Example of a XML configuration file.

1 <? xml v e r s i o n = ’ 1 . 0 ’ e n c o d i n g = ’ u t f −8 ’ ?>
2 < C o n f i g u r a t i o n >
3 < D e f a u l t >
4 < V a r i a b l e name=" seed " v a l u e =" 0 " / >
5 < V a r i a b l e name=" f i n i s h T i m e " v a l u e =" 60m" / >
6 < / D e f a u l t >
7
8 < S i m u l a t o r C o r e c l a s s =" org . p e e r f a c t . impl . s i m e n g i n e . S i m u l a t o r "
9 s t a t i c =" g e t I n s t a n c e " seed =" $ seed " f i n i s h A t =" $ f i n i s h T i m e ">

10 < / S i m u l a t o r C o r e >
11
12 < NetLayer c l a s s =" org . p e e r f a c t . impl . ne twork . s i m p l e . S i m p l e N e t F a c t o r y ">
13 <LatencyModel
14 c l a s s =" org . p e e r f a c t . impl . ne twork . s i m p l e . S i m p l e S t a t i c L a t e n c y M o d e l " / >
15 < / NetLayer >
16
17 < T r a n s L a y e r
18 c l a s s =" org . p e e r f a c t . impl . t r a n s p o r t . D e f a u l t T r a n s L a y e r F a c t o r y " / >
19
20 < Over l ay
21 c l a s s =" org . p e e r f a c t . impl . o v e r l a y . d h t . chord . chord . components . ChordNodeFactory " / >
22
23 < Moni to r c l a s s =" org . p e e r f a c t . impl . common . D e f a u l t M o n i t o r "
24 s t a r t =" 0 " s t o p =" $ f i n i s h T i m e ">
25 < A n a l y z e r
26 c l a s s =" org . p e e r f a c t . impl . o v e r l a y . d h t . chord . ba se . a n a l y z e r . C h o r d S t r u c t u r e A n a l y z e r " / >
27 < / Moni to r >
28
29 < H o s t B u i l d e r
30 c l a s s =" org . p e e r f a c t . impl . s c e n a r i o . D e f a u l t H o s t B u i l d e r "
31 e x p e r i m e n t S i z e =" 30 ">
32 <Group groupID=" Germany " s i z e =" 30 ">
33 < NetLayer / >
34 < T r a n s L a y e r / >
35 < Over l ay / >
36 < / Group>
37 < / H o s t B u i l d e r >
38
39 < S c e n a r i o c l a s s =" org . p e e r f a c t . impl . s c e n a r i o . CSVScena r ioFac to ry "
40 a c t i o n s F i l e =" chord−a c t i o n s . d a t "
41 componen tClass =" org . p e e r f a c t . impl . o v e r l a y . d h t . chord . chord . components . ChordNode ">
42 < / S c e n a r i o >
43 < / C o n f i g u r a t i o n >

4.1.2 Simulations

Scenarios in PeerfactSim.KOM are defined by configuration files, which are represented by a struc-

tured XML file. Each configuration file contains the components of the simulator which are supposed

to be used for a given scenario. Listing 4.1 shows an example of such a configuration file. Within
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the given file the Simulation Engine, a simple network layer, the default transport layer and the Chord

overlay are used. Furthermore the usage of an Chord structure analyzer and the number of given hosts

is determined. In lines 40 and 41, the scenario is extended by determining the class of the used over-

lay and the reference to an action file that is executed during simulation. This action file may contain

commands that are executed by the component class at a given time. Germany 1m-8m join callback

for example (stored in chord-actions.dat) tells all simulated hosts from group Germany to join the

overlay which is chosen by the component class from minute 1 to minute 8.

4.2 Implementation

As mentioned previously in Chapter 3, we consider ring-based overlays in this work, as they are very

popular and robust against failures. Therefore the merging algorithms which are supposed to be sim-

ulated have been implemented directly into the existing Chord implementation of the simulator. Each

merging algorithm has been implemented in a separate Java class, so that each merger could easily

be used in combination with other ring-based overlays, after little adoptions. In PeerfactSim.KOM it

is possible to pass any parameter to any simulated Java class via the XML configuration script. We

modified the class org.peerfact.impl.scenario.CSVScenarioFactory, so that it is possible to start a sim-

ulation with different merger algorithms and parameters, which are plotted and compared with each

other directly. Mainly each merger process consists of two parts: the contact list and the merger.

4.2.1 Contact List

The contact list is the method which is necessary to find a contact node in another ring. Hence the

contact list searches for nodes which can be used to initiate a merger algorithm. In this work we

consider three different methods that can be used to find a contact node.

- Start merger manually

- Discover contact nodes via passive list

- Discover contact nodes via active contact list

Manually

This method is the simplest way to find a contact node: a specific user or an administrator can pass a

contact node to the initiator node manually, so that a merger instance is started hereupon. For this pur-

pose we extended the class org.peerfact.impl.overlay.dht.chord.base.components.ChordBootstrapManager
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with the method getRandomAvailableGroupContact(), which returns a random contact node from a

specific group. It is possible then to start each merging algorithm manually via the command merge-

Group out of a scenario action file.

Passive List

The idea of the passive list has been introduced in [11] by Shafaat et al. and has been implemented

in this work. Every time a message transmission fails, the contact information of the receiving node

is passed to the sender’s passive list, which tries to get in contact with each failed node periodically.

Nodes which are detected to be alive again (by using ping-pong messages) are instantly handed over

to the chosen merger algorithm. Nodes which do not respond to a ping message, are further kept in

the passive list.

Active Contact List

Another method to find suitable contact nodes is to select a random node from a list of possible contact

nodes. Such a list for example could be passed to a specific node manually by a system administrator.

Another option would be to obtain such a list from the bootstrap node, which is used by each node

to join the overlay. Additionally, each node could execute IP-scans frequently to find alive nodes

and to update its active contact list. As a last option multiple servers could store lists of participants

and give parts of those lists to requesting nodes. In this thesis the ChordBootstrapManager which

is provided by PeerfactSim.KOM is used to obtain an initial contact list. Periodically, each node

selects a node form the list, which is considered then as contact node candidate. Ere this contact

node is contacted and merged, the active contact list calculates α/sizec, the probability with which

the active contact list passes the newly found contact node to the merger. Therefore approximately

α nodes per overlay construct with size sizec, start a merger algorithm each period. If then one node

is permitted to merge the contact node, it sends a ping message to the contact node. Only if a pong

message is received within a small time frame, the active contact list hands the contact node over to

the appropriate merger algorithm.

4.2.2 Merger

The merger is the most important part of the merging process. The chosen merger algorithm obtains a

contact node from the respective contact list and tries to merge this contact node hereafter. Since the

above mentioned merger algorithms operate in a similar way the idea of the detqueue in combination
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with the passive list can be used by any other merger to store available contact nodes. In combination

with a detqueue, every merger class periodically starts a timer, on whose expiring a single contact

node is taken from the detqueue and merged in addition.

Using the Chord-Zip Algorithm or the Ring Reunion Algorithm it is necessary to start a lookup to

obtain a suitable alternative successor. Both algorithms ask the contact node to search for the alter-

native successor and wait for its response. For this purpose we modified a simple join operation, so

that either the alternative successor is given to the asking node, if the contact node is reachable, or the

contact node is passed to the contact list (passive or active) again if it does not respond to the node’s

query. Similar to Chord-Zip, the Ring Reunion Algorithm can use retransmission optionally in case a

merge message or a distribution message gets lost. The Ring Unification Algorithm does not need to

perform an initial lookup, instead the contact node is directly merged, since successor and predecessor

nodes are approached via MLookup.

If the Ring Reunion Algorithm is used, the distribution algorithm is executed directly after the alter-

native successor is found via join operation. If one node then receives a distribution message, it starts

a join operation hereupon and distributes its knowledge to other nodes in its finger table, as long as

the counter of the distribution message is less than a specific value. Finally the merging algorithm is

started in order to unite multiple rings to a common ring.

4.2.3 Isolation Model

Currently, PeerfactSim.KOM is able to isolate different groups at a given time for a fixed duration. In

order to enable the isolation of any region at any time and to disable the isolation of any region in-

dependently, we extended the simulator (especially org.peerfact.impl.scenario.CSVScenarioFactory),

so that isolation events can be defined in every PeerfactSim.KOM action file. To isolate group Norway

at minute 30 for example, one could write Isolation Norway 30m disconnect into the corresponding

action file. Isolation Norway 60m connect on the other hand will undo the isolation again.

4.3 Metrics

To be able to compare the merger algorithms with each other, it is necessary to specify criteria which

explain the performance and correctness of a single merger. First of all a merger should be able to

merge multiple rings in a certain time, that means multiple rings should be combined in the way that

one global ring is created as a result. Second, a merger should be capable of arranging all successor

pointers in a proper way, since this is the most important criterion that routing within a ring is possible.
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In order to gather this metrics, a new analyzer has been integrated into PeerfactSim.KOM by extending

the class org.peerfact.impl.analyzer.AbstractFileAnalyzer. This new analyzer periodically checks in

which way the successor pointers are related to each other, writes those information into a file and

plots the results afterwards.

4.3.1 Number of Constructs

With this metric, all successor pointers are investigated and the current number of constructs is ob-

served, which is represented by the way the successors are arranged. Consequently, we distinguish

between three different constructs: full circles, hanger ons and chains (see Figure 4.1).

full circle hanger-on chain

Figure 4.1: Possible overlay constructs which arise during a merging process.

To ascertain the number and kinds of constructs, information about peers and their successor pointers,

especially the topology they describe, are copied into an array by the analyzer. Each connection

between peers and successors is then traversed in order to determine if a full circle exists. Within a

second iteration the analyzer examines if some nodes form a chain which is freestanding (chain) or are

attached to a full circle (hanger-on). With this information it is easy to decide if a single global ring is

created or not, but it is not possible to determine the number of correct pointers with this information.

For example: two constructs could stand for two independent rings or a full circle and a single node

that is attached to the ring. The statement that more than one construct exists is not accurate enough

to evaluate the performance of a merger algorithm.

4.3.2 Correct Pointers

For better evaluation of any merger algorithm we have to determine the number of correct successor

pointer at a specific time. Therefore we extended the analyzer in the way that each successor pointer

is periodically compared with the value it should contain in a single global ring. Consequently, this

metric describes perfectly the fraction of current correct pointers in comparison to overall correct

pointers.
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Chapter Conclusion

In this chapter we have focused on the implementation of the merging algorithms. In Section 4.1

we have therefore given a brief overview on the simulation environment which has been used for our

simulations. We have explained how merging algorithms obtain new contact nodes (4.2.1) and how

those algorithms operate (4.2.2). The most important metrics, which are used in our simulations to

rate the quality of the different merger algorithms, have been described in Section 4.3. We use the

number of overlay constructs as a metric, to determine roughly the point in time at which a single

overlay construct is formed. Since this metric is not precise enough, we determine the number of

correct successor pointers at a specific time in order to determine the operational time of any merger

algorithm accurately.

In the next chapter we describe simulation setups which are examined to judge the presented merger

algorithms. In Section 5.2 of Chapter 5 we present the results of our simulations and point out why

the Ring Reunion Algorithm outperforms the other merger approaches.
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Evaluation

In this chapter we evaluate the behavior of each merging algorithm in order to obtain insights on the

quality of the different merging mechanisms. The most important criterion to be verified is whether a

merging algorithm is able to unite a disrupted overlay or not and which mechanisms and properties of

one algorithm are necessary to do so. Secondly, we try to identify mechanisms which help further to

increase the mergers’ performance. Thus, we focus in our evaluation on the following metrics:

- Periodically, all successor pointers are investigated in order to determine the number of over-

lay constructs that are formed during our simulations. We distinguish between three different

constructs which might arise: full circles, hanger-ons and chains. Using the number of over-

lay constructs as a metric allows us to determine the point in time at which only one construct

is created. Therefore, we can easily decide whether one merger algorithm is able to unify all

network partitions to a single construct.

- For better evaluation of the presented merger algorithms, we determine the number of correct

successor pointers at a specific time, as the number of constructs is not accurate enough. With

this metric it is possible to determine the operational time of any merger algorithm precisely.

In our evaluation the number of correct successor pointers is presented as fraction Pcurrent
Pglobal

, where

Pcurrent denotes the number of all successor pointers which are currently correct and Pglobal

denotes the number of correct successor pointers in a single global ring, i.e the number of all

nodes in a scenario.

- In order to rate the quality of the merger algorithms, we focus on the mergers’ traffic overhead in

terms of messages and bandwidth consumption. Ideally, the produced messages of any merger

algorithm will relate to the number of constructs in the underlying network.

Below, in Section 5.1 we will describe the setups of our simulations. In Section 5.2 we are going to

discuss the results of each simulation. Thus, time designations below refer to simulated time.
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5.1 Scenario Setups

For our simulations we use the event-based peer-to-peer simulator PeerfactSim.KOM in order to ob-

tain realistic results and insights on our research. As described in the previous chapter, all our simu-

lations are based on the Chord overlay which has been implemented in the simulator already. Every

simulation has been run with 10 different random seeds, so that all values in the graphs represent the

average of 10 different values. Each algorithm has been tested separately and independently from

other merging algorithms. In addition, each simulation uses GNP coordinates [31] to describe delays

in the fundamental network realistically. Reasonable approximations for jitter and message delays are

integrated into the simulator by using measurements from the PingEr project [32].

In most of our simulations we do not consider churn and packet loss, as both attributes might obscure

the characteristic behavior of a specific merging algorithm. First, in Section 5.1.1, we investigate

scenarios in which the merging process is manually initiated in order to measure the operational

time of each merging algorithm. Next, in Section 5.1.2, we enable automatic partition detection and

merging to simulate realistic cases.

5.1.1 Merging Manually

In the scenarios, which are listed below, only one contact node per Chord ring is given manually to a

suitable initiator node. Hence, only one merger instance per Chord ring is started. We investigate in

scenario Setups A.1, A.2 and A.3 the merging quality of Chord-Zip, the Ring Unification Algorithm

and our Ring Reunion Algorithm. Setup B.1 constitutes a direct comparison of the performance of

the mechanisms Ring Unification and Ring Reunion.

A.1: Merging Two Rings

Within the first scenario we examine the Chord-Zip Algorithm, the simple Ring Unification Algo-

rithm, the gossip-based Ring Unification Algorithm, the Ring Reunion Algorithm and the Ring Re-

union Algorithm with four parallel instances. Further, we tested Chord’s behavior without any merger

algorithm executed and Chord’s behavior if the initiator node sets its successor pointer directly to the

contact node. This scenario should reveal if a specific algorithm is capable of unifying two separated

Chord rings and give a first feeling for how each algorithm performs under simple conditions. As de-

scribed above each algorithm has separately been simulated with 10 random seeds, message delay and

jitter. Packet loss has not been enabled to get better insights on the basic properties of each algorithm.

From the beginning of the simulation to the 150th minute, all of the 1024 participating nodes join one
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of two Chord rings, so that after 150 minutes two rings with 512 nodes in each ring are created. In

the 180th minute the merger algorithms are started manually. To ascertain that exactly one merger

instance is started in each simulation, one contact node is given (via scenario action script) to another

node from the other ring respectively. This scenario is similar to the case in which an administrator

gives a contact node to a specific node to initialize a merger. The duration of the whole simulation is

limited to 360 minutes, so that each merger algorithm should unite the two rings within the remaining

180 minutes.

A.2: Merging Three Rings

Within the next scenario we investigate the Chord-Zip Algorithm’s, the simple Ring Unification Al-

gorithm’s, the gossip-based Ring Unification Algorithm’s and the Ring Reunion Algorithm’s (1 and

4 instances) ability to handle multiple merger instances simultaneously. As we see later, this property

turns out to be important if multiple instances are started automatically whenever a contact node is

detected, because in such a case it might happen that one contact node is supposed to be merged by

two initiator nodes from different rings at the same time. Although this problem might occur every

time when two regions are connected again after an isolation phase, it must not hinder the merging

algorithm to terminate before, or long time after, a global ring is created. In its current version the

PeerfactSim.KOM simulator does not provide the functionality to form multiple Chord rings directly.

Therefore we extended it with the ability to form groups directly via action script. At the beginning of

this scenario three different Chord rings are created with 341, 341 and 342 nodes respectively. Within

the 10th minute, two nodes, each selected from one of the two rings with 341 nodes, start to merge one

and the same contact node from the 342-node ring. Again, the contact node is given to the initiator

nodes via the scenario action script. After 180 minutes the simulation is finished.

A.3: Merging Five Rings

In the following, we extend the simple scenario in which two nodes start to merge one and the same

node simultaneously, to study whether multiple rings can be merged within a more complex situation.

Further, we would like to know if it is possible to merge two rings, even if both are merged by other

rings concurrently. This time we simulate the simple Ring Unification Algorithm, the gossip-based

Ring Unification Algorithm, the Ring Reunion Algorithm and the Ring Reunion Algorithm with four

parallel instances, again 10 random seeds per algorithm. Unfortunately the Chord-Zip Algorithm fails

to merge three rings at the same time, since it does not know when to stop its instances. Thus, we

do not consider the Chord-Zip Algorithm in this scenario. At the very beginning of each simulation

five rings are formed with 160, 231,271, 205, 157 nodes, denoted as group Latin America, Germany,
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Florida, Czech Republic and South Africa respectively (see Figure 5.1). In the 10th minute one node

from South Africa starts to merge a node from group Latin America. Hereafter, in the 60th minute one

node from Florida starts to merge a random node from Latin America, while one German node starts

to merge one node from group Florida. Meanwhile one node from the Czech Republic starts to merge

a contact node located in Latin America as well. The simulation is again stopped after 180 minutes.

Germany
Florida

South Africa

Czech Republic

Latin America1 2

1 and 2 indicate the starting points 
of the individual merging phases.

Time

Figure 5.1: Scenario in which five groups are merged.

B.1 Comparison of Performance

Since it was found that the gossip-based Ring Unification Algorithm, which starts four additional

instances in our simulations, performs similar to the Ring Reunion Algorithm, we found it interesting

to compare the algorithms’ performance during the unification of two Chord rings with 5121 nodes

in each ring. Therefore two Chord rings are formed at the beginning of each simulation. In the 10th

minute a contact node from one group is, again manually via action script, given to the initiator node

which is located in the other group. The simulation is finished after 180 minutes. The gossip-based

Ring Unification Algorithm is tested with a fanout parameter of 4, since this value is suggested by the

algorithm’s authors in [11]. The Ring Reunion Algorithm is executed in this scenario with 1, 4, 8 and

16 parallel instances.

5.1.2 Merging Automatically

The previous scenarios have in common that in each simulation only one contact node is manually

given to another node, so that a merging instance is started. This simulation can be compared to a real

situation in which a network administrator wants to merge two or more Chord rings. Within those

simulations the methods which are used to detect alive contact nodes, as described in Section 4.2.1,

are disabled, to get a feeling for the fundamental character of each merging algorithm. Below, the

automatic searching techniques are enabled to study the algorithms’ behavior if multiple instances

are started in a realistic scenario. Further, our goal is to determine which algorithms are qualified to

reunite overlay nodes independently after network failures.

54



5.1 Scenario Setups

C.1: Study of Passive List

First of all we investigate the passive list in combination with the Chord-Zip Algorithm, the sim-

ple Ring Unification Algorithm, the gossip-based Ring Unification Algorithm and the Ring Reunion

Algorithm with one instance and four parallel instances. Every algorithm has been executed in 10

simulations with different random seeds, message delay and jitter. The passive list has been config-

ured in the way that every 3 minutes an active node, if one is found, is passed to the respective merger

algorithm, which then starts the merging process. At the beginning of the simulation all nodes join a

common Chord ring. After 150 minutes 1024 nodes have joined a global Chord ring and the joining

phase ends. In the 180th minute a group of 310 nodes is, due to an isolation event, separated from the

other nodes. During the isolation, nodes in both separated regions search for other reachable nodes.

With high probability multiple groups are formed directly after the isolation starts (see Section 1.2.2).

During this time frame, all nodes that reach other contact nodes start merger instances. After one hour,

i.e. in the 240th minute, the isolation is canceled so that all nodes are reachable by other nodes again.

After 360 minutes the simulation is stopped.

The same scenario has been examined with the usage of a random contact list. Using this method,

every node periodically selects a random node out of a list which contains all simulated nodes. In

addition each node estimates the size of the construct it is currently in and starts a merger instance

with probability 1/sizec, where sizec is the estimated number of nodes in the current overlay construct,

so that only one merger instance per construct is created on average.

C.2: Study of Active Contact List

Since in a realistic scenario not all nodes are directly accessible or even known by other participants,

the random contact list can not be used effectively in real life. Therefore we limited the random

selection to a small quantity of 160 contact nodes, which are randomly chosen by the bootstrap node

and given to each node that joins the overlay. With this scenario we try to find out if such an active

contact list of 160 random contact nodes is sufficient to reunite a disrupted Chord ring. We are

confident that this is possible, since all nodes are equally distributed among the random lists so that

every node at least knows one node which is located in another region or knows a participant which

knows such a node. The simulation begins with a join phase in which 1024 nodes join a common

Chord ring. During a join operation each node asks its bootstrap node to deliver a list of 160 random

nodes, which is stored by the nodes then. After 150 minutes the join phase is finished. In 240-second

intervals each node checks if the next contact node on the active contact list is reachable. If this is

the case, it starts to merge the contact node, even if it is located in the own ring. If all 160 nodes

are inspected, the node starts to contact the first node on the active contact list again. In the 180th
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minute, a group of 310 nodes is separated from the other nodes. During this isolation phase, groups

within the same region are able to form a common ring, since the merging algorithm ensures it. After

60 minutes, i.e. in the 240th minute, the isolation is suspended so that the 310 nodes are reachable

again. After 360 minutes the simulation is finished. With this scenario we examine the gossip-based

Ring Unification Algorithm and the Ring Reunion Algorithm (1 and 4 instances). 10 random seeds

for each algorithm, jitter and message delay have been simulated. The Chord-Zip Algorithm has not

been considered, since it already fails to merge more than two rings simultaneously.

C.3-5: Study of Probability

The previously introduced active contact list is now tested in combination with a probability which

is concerned by each node before it initiates a merger instance. With this scenario we examine the

gossip-based Ring Unification Algorithm and the Ring Reunion Algorithm (1 and 4 instances), again

with 10 seeds per simulation, message delay and jitter. Again, every 240 seconds the active contact

list selects a possible contact node. Before it is merged though, each node estimates the size of the

construct it is part of. Hereupon the node picks a random value and initiates the merger only if this

value is below or equals α/sizec, where α is 1, 5, 10 or 100 in this simulation and sizec is the estimated

number of nodes in the current construct. By this means, only 1, 5, 10 or 100 merger instances are

started per construct every 240 seconds on average. Similar to the previous scenario a Chord ring with

1024 participants is formed from minute 0 to minute 150. After 180 minutes a group of 400 nodes

is isolated, after 240 minutes it is connected again to the remaining groups and after 360 minutes the

simulation is finished.

D.1: Complex and Realistic Scenario

This scenario represents a complex and more realistic scenario in which multiple regions are isolated.

Again we examine the active contact list in combination with the gossip-based Ring Unification Al-

gorithm and the Ring Reunion Algorithm (1 and 4 instances) with 10 random seeds per simulation,

plus message delay and jitter. As described in the previous scenario setup, 1024 nodes join a common

Chord ring during the first 150 minutes. A group of 400 nodes is isolated from the 180th minute to

the 240th minute. In addition another group of 50 nodes is isolated from the 200th minute to the 240th

minute. From minutes 240 to 300 a third group of 100 nodes is isolated from the other regions. To

reduce the quantity of messages sent by the merging algorithms each node only starts a merger if it

picks a random value below or equals α/sizec, where sizec is the estimated number of nodes in the

current construct. We examine this scenario with α = 1 and α = 10, to compare a poor value for α

(1) to a fair one (10). The Simulation is finished after 360 minutes.
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E.1-2: Parameter Studies and Churn

In the previous scenarios we did not consider churn in order to focus on the fundamental behavior of

each tested algorithm. As a next step, we evaluate the Ring Reunion Algorithm in the presence of

churn. Again our scenario begins with the joining phase in which 1024 participating nodes form a

Chord ring. In the 180th minute, when all nodes have joined the network successfully, a group of 400

nodes is separated from the rest of the Chord ring. The duration of the isolation lasts 60 minutes. From

the 240th minute to the 360th minute, when the simulation is finished, the nodes are given time to unify

the partitioned network again. This time, churn is enabled throughout the whole simulation, to show

that our Ring Reunion Algorithm is able to handle it without loss of performance. In addition with this

last simulation setup we examine the influence of different parameter settings on the Ring Reunion

Algorithm. In simulation Setup C.3 we investigate the influence of α on the performance of our

merger and on the quantity of messages which is produced. Supplementary parameters we examine

in this scenario are the parameter which regulates the number of parallelized merger instances and

the interval within which the active contact list is iterated. We simulate the Ring Reunion Algorithm

with 4,8,16 and 32 parallel instances, each algorithm in combination with α ∈ {10,100}. The interval

with which the active contact list selects a merging candidate is set to 5 minutes. Again we simulate

10 random seeds for each combination. Furthermore we simulate the Ring Reunion Algorithm with

4,8,16 and 32 parallel instances, each combined with intervals of 5,10,15 and 20 minutes in which

merger instances are started, in order to find a configuration which represents a good compromise

between operation time and bandwidth consumption.

5.2 Simulation Results

Below, we evaluate the simulation results which have been obtained by simulating the scenario setups

from Section 5.1. In Sections 5.2.1, 5.2.2 and 5.2.3 we investigate Chord-Zip, the Ring Unification

and the Ring Reunion Algorithm on networks with 2, 3 and 5 partitions. In order to compare the

performance of the parallelized Ring Reunion Algorithm with the gossip-based Ring Unification Al-

gorithm, we tested both algorithms with 10242 nodes. The results of this scenario are studied in

Section 5.2.4. Next, in Sections 5.2.5, 5.2.6 and 5.2.7 we examine the merging algorithms in realistic

scenarios with automatic partition detection enabled. In Section 5.2.8 we prove that our Ring Reunion

Algorithm is able to unify network partitions even in complex cases in which multiple regions fail al-

most simultaneously. Finally, in Section 5.2.9, we evaluate the performance of our algorithm with the

presence of churn and we suggest a fair configuration for our Ring Reunion Algorithm by evaluating

the results of our simulations.
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5.2.1 A.1: Merging Two Rings

The results of the first simulation are shown in Figure 5.2. Figure 5.2(a) shows that the stabilize

protocol is not able to unify the two rings of 512 nodes by itself, although it was able to merge two

disrupted rings in smaller scenarios with about thirty nodes. The stabilize protocol was started by

setting one node’s successor to a random node from the second ring. Furthermore Figures 5.2(a)

and 5.2(b) reveal that both Ring Unification Algorithms and the Ring Reunion Algorithm are capable

of merging two rings without major effort and in similar time. All successor pointers are corrected

within a short period of time. In Figure 5.2(b) one can see that the Chord-Zip Algorithm needs more

time to adjust the successor pointers. In 4 of 10 simulations the Chord-Zip Algorithm was successful

to merge two rings within the simulated time. The reason why this algorithm is much slower than

the other solutions is the way it choses its alternative successor pointer, which is always taken from

the other ring. Because of this behavior the algorithm does not preserve the correct order of the

nodes it merges (see Section 2.4.3). The number of messages sent by each algorithm each minute

and the resulting bandwidth consumption are shown in Figures 5.2(c) and 5.2(d). It can be seen that

after all nodes have joined the overlay, approximately 34000 messages per minute are sent by Chord to

maintain both rings. The message overhead by the Ring Unification Algorithms and the Ring Reunion

Algorithm, parallelized or not, is quite small. From the 250th minute to the end of the simulation it

can be seen that the Chord-Zip Algorithm is sending approximately twice the amount of messages

than the other algorithms, since all its Zip-Ping messages are answered with a Zip-Pong.

5.2.2 A.2: Merging Three Rings

Figure 5.3 shows the results of the scenario setup in which three different rings are merged simul-

taneously. In Figure 5.3(a) it can be seen that the simple and the gossip-based Ring Unification

Algorithm, as well as the Ring Reunion Algorithm perform well, whereas the Chord-Zip Algorithm

has its problems. Nevertheless, as Figure 5.3(b) reveals, the Chord-Zip Algorithm manages to adjust

the successor pointers in a very slow tempo that would exceed the simulation time. Reason for this is

the above mentioned choice of the alternative successors. Figures 5.3(c) and 5.3(d) indicate that the

message and bandwidth consumption of all merger algorithms is similar, although the measurements

of the Chord-Zip Algorithm fluctuate apparently around the other values.
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(a) A.1: Two Overlays, Constructs.
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(b) A.1: Two Overlays, Correct Pointers.
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(c) A.1: Two Overlays, Messages.
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(d) A.1: Two Overlays, Bandwidth Consumption.

Figure 5.2: A.1: Merging of two networks.

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60  70  80  90

C
on

st
ru

ct
s 

[n
um

be
r]

Time [minutes]

Gossip
Simple

Reunion
Reunion2
Chord-Zip

(a) A.2: Three Overlays, Constructs.
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(b) A.2: Three Overlays, Correct Pointers.
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(c) A.2: Three Overlays, Messages.
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Figure 5.3: A.2: Merging of three networks.
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5.2.3 A.3: Merging Five Rings

In the following, we focus on Figures 5.4 and 5.5 which represent the merging of five different rings.

In this scenario only the simple Ring Unification Algorithm, the gossip-based Ring Unification Algo-

rithm, the Ring Reunion Algorithm and the Ring Reunion Algorithm with four parallel instances have

been simulated, as the Chord-Zip Algorithm has turned out to be to slow. As one can see in Figure 5.4

all algorithms behave similar in merging time. It is noticeable that a peak occurs in the measurements

of message and bandwidth consumption in Figures 5.4(c) and 5.4(d) at minute 60. This peak indicates

the begin of the algorithms, which are integrated into the gossip-based Ring Unification Algorithm

and the Ring Reunion Algorithm, to start multiple instances. Closer looks onto minute 60 reveal the

performance of the single algorithms. In Figure 5.5(a) one can see that the Ring Reunion Algorithm,

started with four parallel instances, is the fastest merger in this scenario, followed by the gossip-based

Ring Unification Algorithm. The basic Ring Reunion Algorithm without any parallelization seems

to be slowest algorithm at first, but in some cases the simple Ring Unification Algorithm has been

slower.
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(c) A.3: Five Overlays, Messages.
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(d) A.3: Five Overlays, Bandwidth Consumption.

Figure 5.4: A.3: Merging of five networks.
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(b) A.3: Five Overlays, Correct Pointers, Closeup.

Figure 5.5: A.3: Closeup on merging of five rings.
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(a) B.1: Two Large Rings, Constructs.
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(b) B.1: Two Large Rings, Correct Pointers.
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(c) B.1: Two Large Rings, Messages.
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(d) B.1: Two Large Rings, Bandwidth Consumption.

Figure 5.6: B.1: Comparison of Ring Reunion Algorithm and Ring Unification Algorithm.

5.2.4 B.1 Comparison of Performance

We decided to compare the gossip-based Ring Unification Algorithm to the Ring Reunion Algorithm

with different parallelization parameters in a scenario with 10424 nodes to get better insights on the

performance of both algorithms. As one can obtain from Figures 5.6(a) and 5.6(b) the Ring Reunion

Algorithm is the faster, the more instances it starts. Nevertheless, Figure 5.6(c) shows that not more

messages are sent with a high number of merger instances, compared to a small number of instances.
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5.2.5 C.1: Study of Passive List

Below, we will have a closer look onto scenarios in which different methods are used to find alive

nodes automatically after a network partitioning event. In Figure 5.7 the usage of a passive list is

shown in combination with the Chord-Zip Algorithm, the simple Ring Unification Algorithm, the

gossip-based Ring Unification Algorithm, the Ring Reunion Algorithm with one instance and four

parallel instances. Figure 5.7(a) reveals that the Chord-Zip Algorithm is not suitable for being com-

bined with the passive list, as it is to slow to react on multiple, simultaneous opportunities to start

different merger instances. Surprisingly, both Ring Unification Algorithms have not been able to han-

dle the network isolation event within the simulation time. In Figure 5.7(b) it can be seen that during

the isolation event about 40 percent of all correct pointers have been rearranged badly. After 240 min-

utes all network partitions have become reachable again, as the results of the Ring Reunion Algorithm

indicate, which is capable of reordering the successor pointers correctly. Furthermore one can see that

the Ring Unification Algorithm only adjusts approximately 20 percent of the failed successor point-

ers. However, the Chord-Zip Algorithm is not capable of adjusting the broken connections, as to many

instances are started which disrupt the order of the successor pointers again. The amount of messages

which are sent throughout the simulation is presented in Figure 5.7(c). During the whole simulation

the amount of messages, sent by the Chord-Zip Algorithm, rises quickly, whereas the Ring Reunion

Algorithm does not produce much more messages than Chord by itself. After the 240th minute, when

all partitions are connected again, the Ring Unification Algorithms produce more messages than usual,

because of their efforts to unify the created constructs.

5.2.6 C.2: Study of Active Contact List

As an alternative to the passive list we tested an active contact list of 160 randomly chosen nodes

which are obtained by each node from the bootstrap node during the join phase. This list is iterated

periodically in Setup C.2, in order to obtain suitable contact nodes. As Figure 5.8(b) indicates, only

the Ring Reunion Algorithm manages to adjust all successor pointers within the simulated time. Again

the gossip-based Ring Unification Algorithm forms a large amount of constructs after all network par-

titions have become reachable again, see Figure 5.8(a). It might be possible that the gossip-based Ring

Unification Algorithm is capable of merging the separated overlays again, but that would take a long

time. Further, Figures 5.8(a), 5.8(c) and 5.8(d) show that the message and bandwidth consumption of

both algorithms highly relate to the number of constructs in the underlying network.
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(a) C.1: Passive List, Constructs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350

C
or

re
ct

 P
oi

nt
er

s 
[p

er
ce

nt
ag

e]

Time [minutes]

Gossip
None

Simple
Reunion

Reunion2
Chord-Zip

(b) C.1: Passive List, Correct Pointers.
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(c) C.1: Passive List, Messages.
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(d) C.1: Passive List, Bandwidth Consumption.

Figure 5.7: C.1: Passive list used to find alive contact nodes.
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(a) C.2: Active Contact List, Constructs.
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(b) C.2: Active Contact List, Correct Pointers.
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(c) C.2: Active Contact List, Messages.
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(d) C.2: Active Contact List,Bandwidth Consumption.

Figure 5.8: C.2: Active contact list is iterated periodically to find further nodes. No probability is used
to reduce message overhead.
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5.2.7 C.3-5: Study of Probability

Next, in Setups C.3-5, we reduce the amount of messages by reducing the number of instances that

are started by a specific algorithm. Therefore we extended the algorithm with the ability to estimate

the size of the current construct a node is in. Now, each node picks a random number out of [0,1] and

starts a merger instance only if the chosen random number is less than α/sizec, where α constitutes

the number of started mergers per overlay construct and sizec is the estimated number of nodes in the

current construct. Our goal of the simulations which are represented in Figure 5.9 was to determine a

good value for α , i.e. the number of merger instances per construct. As can be seen in Figure 5.9(a)

the Ring Unification Algorithm performs the poorer the less merger instances are started. Considering

Figure 5.11(b) we see that the Ring Reunion Algorithm performs well if approximately 10 instances

per construct are started in combination with 4 parallel instances. Further we learn from this evaluation

result that for a merging algorithm it is necessary to react as quickly as possible on partitioning events

to perform well and to reduce costs.
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(a) C.3: Gossip-based Ring Unification, Constructs.
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(b) C.3: Gossip-based Ring Unification, Correct Pointers.
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(c) C.3: Gossip-based Ring Unification, Messages.
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(d) C.3: Gossip-based Ring Unification, Bandwidth Con-
sumption.

Figure 5.9: C.3: Gossip-based Ring Unification Algorithm, overlay constructs start α merger in-
stances every 4 minutes on average.
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(a) C.4: Ring Reunion, Constructs.
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(b) C.4: Ring Reunion, Correct Pointers.
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(c) C.4: Ring Reunion, Messages.
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(d) C.4: Ring Reunion, Bandwidth Consumption.

Figure 5.10: C.4: Simple Ring Reunion Algorithm in combination with alive contact list.
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(a) C.5: Ring Reunion2, Constructs.
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(b) C.5: Ring Reunion2, Correct Pointers.
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(c) C.5: Ring Reunion2, Messages.
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(d) C.5: Ring Reunion2, Bandwidth Consumption.

Figure 5.11: C.5: Ring Reunion with 4 parallel instances in combination with alive contact list.
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Chapter 5 Evaluation

5.2.8 D.1: Complex and Realistic Scenario

The last Setup D.1 considers a complex scenario in which multiple regions become separated due to

network isolations during the merging period. Figures 5.12(a) and 5.12(b) verify our expectations.

The Ring Reunion Algorithm with 4 parallel instances is able to merge all reachable regions fast

enough to handle even multiple network failures. Figure 5.12(a) also shows that the Ring Reunion

Algorithm reduces the number of constructs quickly after it rises at minutes 180, 200 and 240. In

addition one can obtain from Figure 5.12(c) that the Ring Reunion Algorithm, if configured properly,

does not produce much more messages during network partitioning events than usual. In conclusion,

our evaluation shows that the Ring Reunion Algorithm is fast enough to handle even complex use

cases with low traffic overhead.
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(a) D.1: Complex Isolation, Constructs.
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(b) D.1: Complex Isolation, Correct Pointers.
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(c) D.1: Complex Isolation, Messages.
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(d) D.1: Complex Isolation, Bandwidth Consumption.

Figure 5.12: D.1: Complex realistic scenario with usage of alive contact list and 10 started merger
instances per construct.
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5.2 Simulation Results

5.2.9 E.1-2: Parameter Studies and Churn

In this section we examine the behavior of the Ring Reunion Algorithm in the context of churn and

different parameter settings, in order to determine a suitable configuration of our algorithm for real-

istic use cases. Figure 5.13 reveals the behavior of the Ring Reunion Algorithm if multiple parallel

instances are distributed by the first initiator node. In this scenario, every 5 minutes the active contact

list tests a contact node to be reachable. In Figures 5.13(a) and 5.13(c) one can see that the merger

algorithm is able to unify the disrupted network, no matter if 10 instances per construct are started

or 100. On the contrary, if the number of parallel instances is too high, the merger algorithm oper-

ates poorly in some cases. In 50 percent of our simulations with 64 parallel instances, the number

of constructs suddenly rises after the network isolation stops, so that in the end the merger shows

to be unsuccessful, as to be seen in Figure 5.13(g). Nevertheless, Figures 5.13(b), 5.13(d), 5.13(f)

and 5.13(h) prove that the message overhead produced by the Ring Reunion Algorithm depends on

the number of overlay constructs and can be limited by reducing the number of merger attempts per

construct by adjusting parameter α . Figure 5.14 shows the results of a simulation, in which mul-

tiple parallel instances have been tested in combination with different intervals for starting merger

instances with α = 10. Considering the number of constructs in Figure 5.14, it can be observed that

high numbers of parallel instances operate the better, the less attempts are started to merge the over-

lay. Considering the quantity of messages on the other hand reveals that the number of simultaneous

instances does not affect traffic overhead and the resulting bandwidth consumption.

The behavior of the Ring Reunion Algorithm can be explained as follows: if the network is not

yet fully stabilized after a partitioning event, and in addition multiple merger instances are started, the

current overlay constructs are suddenly reordered. As a consequence the number of overlay constructs

rises in this short period of time, as can be seen best in 5.14(g) for all intervals greater than 5 minutes.

Furthermore, in some cases, the determination of the additional merger instances takes longer time

than the actual merger process or the interval within which new merger attempts are started. Hence,

the additional started merger instances tear up the current overlay constructs again. In few cases this

behavior leads to a dysfunction of the merger process which is caused by wrong parameter choices.

Another reason for this wrong behavior are changes in the routing table, due to churn. If one node

leaves the overlay suddenly, it might happen that too many instances try to unify the falsely detected

overlay partition again.

To conclude our studies, we suggest to use the Ring Reunion Algorithm in combination with an active

contact list, which attempts to start approximately 10 new merger instances every 4 to 5 minutes per

overlay construct. The parameter to limit the number of additional merger instances should be set

to 3 or 4, so that not more than 8 to 16 instances are created simultaneously and the Ring Reunion

Algorithm is able to operate smoothly, that is not producing to much overlay constructs, fast and

reliably.
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(a) E.1: 8 Instances, Constructs.
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(b) E.1: 8 Instances, Messages.
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(c) E.1: 16 Instances, Constructs.
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(d) E.1: 16 Instances, Messages.
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(e) E.1: 32 Instances, Constructs.
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(f) E.1: 32 Instances, Messages.
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(g) E.1: 64 Instances, Constructs.
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(h) E.1: 64 Instances, Messages.

Figure 5.13: E.1: Ring Reunion Algorithm with parallel instances, α ∈ {10,100}.
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(a) E.2: 8 Instances, Constructs.
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(b) E.2: 8 Instances, Messages.
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(c) E.2: 16 Instances, Constructs.
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(d) E.2: 16 Instances, Messages.
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(e) E.2: 32 Instances, Constructs.
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(f) E.2: 32 Instances, Messages.
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(g) E.2: 64 Instances, Constructs.
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Figure 5.14: E.2: Ring Reunion Algorithm with parallel instances and various values for interval
parameter, α = 10.
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Chapter Conclusion

We have investigated the quality of Chord-Zip, the Ring Unification Algorithm and the Ring Reunion

Algorithm by simulating different scenarios in this chapter. The setups of our simulations have been

described in Section 5.1. In Section 5.1.1 we have described scenarios in which the merging process

is manually initiated in order to measure the operational time of each merging algorithm. We have

enabled automatic partition detection and merging in Section 5.1.2, to simulate more realistic cases.

The results of our simulations have been discussed in Section 5.2. In Sections 5.2.1, 5.2.2, 5.2.3

and 5.2.4 we have investigated Chord-Zip, the Ring Unification and the Ring Reunion Algorithm

on networks with 2, 3 and 5 partitions and manually started merging procedures. Our results show

that only the gossip-based Ring Unification Algorithm and our Ring Reunion Algorithm are capable

of merging multiple networks if contact nodes are given to suitable initiator nodes manually by a

supervising person, e.g an administrator. In Sections 5.2.5, 5.2.6, 5.2.7 and in Section 5.2.8 we have

demonstrated that our Ring Reunion Algorithm is the only merger which is able to unify multiple

network partitions, even in complex cases.

We have proved in Section 5.2.9 that our algorithm performs well in the presence of churn. In addition,

we have suggested a good configuration for the Ring Reunion Algorithm: it should be combined with

an active contact list, which attempts to start approximately 10 new merger instances per overlay

construct every 4 to 5 minutes. The parameter to limit the number of additional merger instances

should be set to 3 or 4 to operate smoothly, fast and reliably.

70



Chapter 6

Conclusion

In this thesis we are concerned with the question, which criteria have to be met, to unify overlay

networks, especially ring-based overlays like Chord, which have been separated due to network par-

titioning. To answer this question we compare existing studies on this topic. On the one hand the

authors of [23] claim the function of Chord overlays would be disrupted during a network merger.

On the other hand two solutions are given in [11] and [10] by introducing merging algorithms that are

promised to be able to unify multiple Chord rings quickly. Nevertheless none of those studies examine

any characteristics of network partitions or criteria which foster a merger algorithm’s performance. As

a result we present our Ring Reunion Algorithm, a novel merging algorithm. We have implemented

it in an event-based peer-to-peer simulator and evaluate it extensively in this work. Furthermore we

compare our approach to the existing algorithms by examining simulations of realistic scenarios.

We show in our study that whenever multiple geographical regions are isolated for a long time, it

might occur that outdated finger entries are replaced by newer ones, which are only present in the own

region. If in addition the separated regions are connected again they do not converge to a common

ring, since all contact data is obtained only from the region one node is in. A merging algorithm

is needed to unify the overlays again. Further, it is possible that within a separated region, multiple

independent overlays are established. This behavior can be explained simply: in a Chord ring all

nodes are equally distributed, so that most of them maintain more routing information about nodes

from the other region than about nodes from the own geographic region. Hence, during isolation

events only those nodes are formed to a group, which are represented in the same set of finger entries

and successor or predecessor pointers.

Our newly designed merging algorithm is able to merge such groups of overlays effortlessly. Other

separated overlays are found by iterating a small list of randomly chosen contact nodes, which could

be obtained during the join phase or periodically updated via a background-service. Another option

would be to use a passive list as described in [11] or even a combination of both approaches. Further,

our algorithm estimates the size of the network one node is currently in, in order to determine how

71



Chapter 6 Conclusion

often a merging algorithm should be started to reduce message overhead. To increase performance of

our Ring Reunion Algorithm we have extended it with the feature to inform other nodes in a network

to start further merger instances simultaneously. Whenever a node tries to merge another node within

the same overlay, the merging algorithm is quickly terminated to reduce further costs.

As a last step the Ring Reunion Algorithm is evaluated and compared with the Ring Unification

Algorithm [11] and the Chord-Zip Algorithm [10]. The scenarios we simulate are divided into two

major groups. First, we evaluate the fundamental behavior of each algorithm by merging two, three

and five separated Chord rings manually. Second we investigate the algorithms in more realistic

scenarios in which one or multiple groups are suddenly isolated and alive nodes are found via passive

list or active contact list. Unfortunately the Chord-Zip Algorithm is inaccurately described in [10] so

that in our simulations it occurs to be too slow to react on multiple network partitions and does not

manage to terminate started merger instances properly. Although the Ring Unification Algorithm is

well described and suitable for the merging of multiple rings in a controlled environment, it suffers

from unifying multiple constructs during realistic scenarios in which arbitrary parts of a network

become isolated. Nevertheless, the Ring Reunion Algorithm is able to do so, even in complex cases

and with the presence of churn. As the evaluation proves, our mechanism to reduce message overhead

works fine in combination with multiple parallel instances.

Future Work

The overlay merging algorithm, which has been presented in this thesis, has been simulated and

evaluated with Chord mainly. Nevertheless we have developed the algorithm with respect to other

ring-based overlays, so that its techniques are transferable to them. It would be interesting to use the

Ring Reunion Algorithm as a basis to create an application for ring-based overlays like Pastry, Chord

or any of Chord’s modifications, which manages to merge the respective overlay.

We focus in this work on the routing ability of ring-based overlays. Another issue which needs to

be investigated, with respect to network partitioning in structured overlays, is the preservation of data

availability during a merger and the synchronization of data items afterwards. At this point we can not

give any advice or solution on how data consistency can be protected in case of network partitioning

events. Obviously, this problem depends on the application which handles the respective data items.

It would be possible to traverse a list of successor nodes to find a requested data item. Since current

overlay designs rarely consider network partitioning, it is still necessary to investigate which criteria

have to be met to assure data consistency and availability during and after a merging process.
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