
Fakultät für Elektrotechnik, Informatik und Mathematik

Master’s Thesis

Security Mechanism for Monitoring
Peer-to-Peer Networks

Payman Alavi

Matriculation Number: 6662777

E-Mail: Payman@uni-paderborn.de

Paderborn, February 2015

Thesis Supervisors:

Jun.-Prof. Dr.-Ing. Kalman Graffi

Prof. Dr. Christian Scheideler

Declaration

(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not
used outside sources without declaration in the text. Any concepts or quota-
tions applicable to these sources are clearly attributed to them. This thesis
has not been submitted in the same or substantially similar version, not even
in part, to any other authority for grading and has not been published else-
where.

Original Declaration Text in German:

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in
gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen worden
ist. Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden
sind, sind als solche gekennzeichnet.

Paderborn, February 2015 Payman Alavi

iii

iv

Abstract

The peer-to-peer paradigm is a promising alternative to the classic central-
ized network model. In contrast to the centralized networks in which autho-
rized nodes connect to and use resources on a single central computer, typi-
cally a server, each node connected to a peer-to-peer network often functions
as both a client and a server simultaneously. Hence, peers may provide re-
sources to other peers and also consume shared resources available from other
nodes.

The lack of a centralized management system to capture the status and per-
formance of peer-to-peer networks makes each node to be responsible for pro-
viding statistical information about itself to other nodes and also spread the
received monitoring data from other nodes through the network. However,
malicious nodes may disobey the monitoring mechanism by actions such as
producing fake statistical data about themselves, manipulating the monitoring
data received from other nodes or forwarding motoring data to peers other than
the expected ones. Consequently, the malicious nodes can adversely affect the
performance of the peer-to-peer networks.

In this thesis, we aim to analyze the impact of different types of malicious
nodes on the monitoring mechanism provided by SkyEye.KOM, a decentral-
ized and structured monitoring solution that functions by constructing a tree
structure as a monitoring layer on top of a DHT-based peer-to-peer overlay.
To illustrate, we define three types of attacks which cause different types of
anomalies in that monitoring tree and propose counter-measures against each
of our defined attacks. Afterward, we implement the three defined attacks and
one of our counter-measure solutions by employing the PeerfactSim.KOM sim-
ulation framework. We then analyze and compare the effect of different types
of malicious nodes while considering the impact of various parameter settings,
such as the branching factor of the monitoring tree and the ratio of the present
malicious nodes in the network. Lastly, we examine our implemented counter-
measure and assess the extent to which our solution is able to neutralize the
effect of malicious nodes.

1

2

Contents

1 Introduction 5

1.1 Motivation . 7

1.2 Overview on Goals . 8

1.3 Outline . 9

2 Background 11

2.1 Peer-to-peer Networks . 11

2.1.1 Structured P2P Overlay . 12

2.1.2 Unstructured P2P Overlay . 15

2.2 PeerfactSim.KOM Simulation Framework 16

2.3 Summary . 18

3 Monitoring 19

3.1 Monitoring of Peer-to-peer Networks 19

3.1.1 Structured Monitoring Systems 20

3.1.2 SkyEye.KOM Monitoring Mechanism 21

3.1.3 Unstructured Monitoring Systems 23

3.2 Summary . 26

4 Monitoring Attacks and Solutions 29

4.1 FalseLocalData Attack . 30

4.1.1 Counter-Measure against FalseLocalData Attack 31

4.2 FalseChildData Attack . 38

4.2.1 Counter-Measure against FalseChildData Attack 39

4.3 FalseParentPeer Attack . 40

4.3.1 Counter-Measure against FalseParentPeer Attack 40

4.4 Summary . 44

5 Implementation 45

5.1 Implementation of the Attacks . 45

5.1.1 FalseParentPeer Attack . 46

5.1.2 FalseLocalData Attack . 47

5.1.3 FalseChildData Attack . 47

3

Contents

5.2 Implementation of the Counter-Measure Solution 48
5.3 Summary . 49

6 Evaluation 51
6.1 Evaluation Overview . 52

6.1.1 Evaluation Goal . 52
6.1.2 Evaluation Method . 52
6.1.3 Simulation Setup . 53

6.2 Evaluation of the Attacks . 58
6.2.1 Scenario A: Comparing Different Malicious Behaviors 58
6.2.2 Scenario B: Impact of Various Branching Factors 60
6.2.3 Scenario C: Various Ratios of Malicious Nodes 61
6.2.4 Scenario D: Churn Impact . 62

6.3 Evaluation of the Security Solution 67
6.3.1 Scenario E: Acceptable Ranges Around MPs 67
6.3.2 Scenario F: Acceptable Ranges Based on Chord 68
6.3.3 Scenario G: Extended Acceptable Ranges Based on Chord . . 68

6.4 Summary . 70

7 Conclusions and Outlook 73
7.1 Conclusions . 73
7.2 Outlook . 75

Bibliography 77

List of Figures 81

List of Tables 83

4

1 Introduction

Contents

1.1 Motivation . 7

1.2 Overview on Goals . 8

1.3 Outline . 9

The Internet is one of the most popular and influencing technologies of the cen-
tury and many technologies have been introduced based on the power provided
by this platform. Since the advent of the Internet, sharing the resources has
always been the aim of many Internet users and for that purpose different so-
lutions and paradigms have been introduced and continuously improved until
now. One of the earliest solutions for sharing data and computational power is
the centralized network paradigm, also known as client/server model, in which
powerful servers provide different resources or services and authorized clients
have access to the shared resources on the servers. The client/server paradigm
is still widely used because of the ease of implementation and availability of
the effective network management mechanisms which has been improved over
years. However, the high cost of servers’ maintenance/management and the
potential problem of servers as a bottleneck in the network made computer
scientists think of new paradigms besides the centralized networks.

Based on Moore’s Law [23], the number of transistors, which can be fitted on a
chip, doubles about every two years and according to Glider’s law [11], "band-
width grows at least three times faster than computer power". Consequently,
the computation power of the users’ devices connected to the Internet and the
amount of data, which can be transferred over the Internet in a certain amount
of time, is increasing constantly. Currently, even some Personal Computers
(PCs) are powerful enough to act as a service provider to some other devices in
the network and the number of such powerful nodes connected to the Internet
is increasing every day. Thus, why not use this enormous computational power

5

1 Introduction

and the available enhanced Internet bandwidth for providing users the services
they require with the help of the user’s resources themselves?

Server

Client

Client

Client

Client

Client

Client Peer

Peer

Peer

Peer

Peer

Peer

(Client/Server Architecture) (Peer-to-Pee Architecture)

Resources

Resources

Resources

Resources

Resources

Resources

Resources

Figure 1.1: A Simplified Overview of Client/Server and Peer-to-Peer Architecture

Peer-to-peer (p2p) paradigm is an answer to the question posed above. In p2p
networks, each device connected to the network (node) may provide services
to other nodes or consume the resources provided by others. In other words,
each node acts as a client and a server at the same time and instead of commu-
nication via servers, as in centralized networks, peers communicate with each
other directly. Figure 1.1 depicts the p2p architecture in comparison to the
client/server paradigm.

Since the advent of Napster [6] in 1999 as the first successful p2p application,
millions of Internet users have been using p2p applications to share their files
with each other directly without the need to upload them to servers in advance.
The success of the p2p paradigm could be observed by having a look at the
Internet traffic statistics of the popular p2p applications such as BitTorrent [1]
and Skype [3] over the last decade. According to the study by Washington
university published in 2003 [14], p2p applications account for 60 to 80 percent
of the total Internet traffic.

However, although the p2p paradigm is quite promising, the recent researches
reveal a decrease in the share of Internet traffic by p2p applications in the
recent years [15]. We believe that one of the reasons for this decline is the
challenges in the way service providers offer a controlled level of the Quality of
Service (QoS) for users and provide a reliable platform for software developers
over the p2p networks. One of the most important elements of providing a con-
trolled level of QoS is an accurate and effective monitoring mechanism.

6

1.1 Motivation

Besides challenges in monitoring p2p networks, the possibility of malicious be-
havior by peers make the situation even more complicated. The lack of a cen-
tralized management system for monitoring the status of the network makes
each peer to be responsible for providing statistics about itself to other peers
and also spread the received monitoring information from other nodes through
the network. Providing wrong monitoring information, manipulating the moni-
toring data received from other nodes or forwarding the statistical information
to peers other than the expected ones are examples of the possible malicious
behavior which can damage the monitoring mechanism and worsen the perfor-
mance of p2p networks.

In the remainder of this chapter, we discuss the motivation and problem state-
ment for the thesis in Section 1.1 and our goals in Section 1.2. Finally, Section
1.3 briefly presents the organization and outline of this document.

1.1 Motivation

The quality of service (QoS) is defined by Schmitt [28] as "the well-defined
and controllable behavior of a system with respect to quantitative parameters".
Based on this definition, the better monitoring mechanism for p2p network, the
better control over the network behavior and consequently moving towards the
QoS. As an example, in case of detecting a long response time based on the
monitoring information, nodes can increase their routing table size by keeping
the information for more peers and, as a result, the hop count to reach a peer
will be decreased and the response time will be improved. By solving current
problems in the way of monitoring p2p networks and providing software de-
velopers an infrastructure with high and constant quality of service, we can
expect more commercial applications based on p2p platform.

Attackers in p2p networks with no counter attack strategy are able to cause
serious side-effects on monitoring results. Between the different p2p monitor-
ing strategies, which are discussed in Chapter 3, our focus in this thesis is the
possible attacks on structured monitoring mechanism. In structured monitor-
ing mechanism, malicious nodes can disobey the monitoring system by actions
such as producing false monitoring data, manipulating the received monitoring
information from other nodes, preventing the propagation of monitoring data
or forwarding the data to non-responsible peers. Attackers can become even
more harmful by initiating a combination of different attacks at the same time,
or by cooperating with other malicious nodes in the network.

Hence, this master thesis aims to simulate and measure the side-effects of dif-
ferent attacks on structured monitoring mechanism. In addition, we offer our

7

1 Introduction

solutions to detect and neutralize malicious nodes in order to move the p2p
paradigm one step ahead in the direction of achieving QoS.

1.2 Overview on Goals

In this section, we define and summarize our main goals in this thesis.

1. Defining Attacks: Our first goal is to define some possible malicious be-
haviors which can cause problems for structured monitoring mechanism. To
design the attacks, our focus is the monitoring mechanism provided by Sky-
Eye.Kom [13]. The SkyEye.Kom monitoring mechanism is explained in Section
3.1.1.

2. Proposing Security Solution for the Defined Attacks: After defining
the attacks, we look for solutions for neutralizing the effect of our previously
defined attacks. The solutions should help the structured monitoring mecha-
nism, provided by SkyEye.Kom, to produce correct statistical information with
an acceptable level of accuracy in the presence of the malicious nodes.

3. Implementing Our Attacks and Security Solution: Implementing the
defined attacks is our next goal. In addition, considering the limited time, we
also implement one of our proposed security solutions. Our work is based on
the recent implementation of SkyEye.Kom developed by Giesen [10] on top of
the PeerfactSim.KOM simulation framework [9]. We introduce and review the
most important features of PeerfactSim.Kom simulator in section 2.2.

Our implementation priority is to implement the attacks, along with our secu-
rity solution, with a systematic and clear structure which can also be employed
for the implementation of more advanced attacks and counter-attacks in the
future. We also provide an easy way for configuring the type of attacks, ratio
of malicious nodes, ratio of secured nodes and other related parameters for
simulating various security scenarios.

4. Evaluating the Attacks: The implementation of the attacks enables us
to simulate networks with different configurations in the presence of various
types and ratios of malicious nodes. The simulations are performed in the rich
simulation environment provided by PeerfactSim.Kom simulator. We evaluate
the effect of our attacks by analyzing the simulation results.

8

1.3 Outline

5. Evaluating the Effectiveness of Our Security Solution: Our last goal
is to evaluate our implemented security solution by the help of the Peerfact-
Sim.Kom simulator to observe the effectiveness of the solution. We measure
the effectiveness of our solution by simulating networks with and without the
security counter-measure and comparing the simulation results.

1.3 Outline

In this chapter we introduced the importance and challenges of monitoring
mechanisms for providing a controlled level of the Quality of Service in p2p
systems. We discussed that how malicious nodes can create problems for
structured monitoring mechanisms in p2p networks and presented our goals
and motivations for solving the security issues. The rest of this thesis is
structured as follows:

Chapter 2 gives an introduction to structured and unstructured peer-to-
peer networks. It also introduces the PeerfactSim.KOM simulation framework
and shortly its functional layers. Chapter 3 introduces structured and unstruc-
tured monitoring approaches and provides more details about SkyEye.KOM as
an example of structured monitoring mechanism. In Chapter 4 we define our
monitoring attacks and propose our solutions against them. In Chapter 5 we
provide details of our implementation for the attacks and the counter-measures
as defined in the previous chapter. In Chapter 6, after an introduction to our
simulations goals, method and setups we present our simulation results and
evaluate the attacks and our security solution by analyzing the presented
results. Finally, we conclude our thesis in Chapter 7 and give an outlook on
future work.

9

1 Introduction

10

2 Background

Contents

2.1 Peer-to-peer Networks . 11

2.1.1 Structured P2P Overlay . 12

2.1.2 Unstructured P2P Overlay 15

2.2 PeerfactSim.KOM Simulation Framework 16

2.3 Summary . 18

This chapter provides an introduction to the concept of p2p networks in Sec-
tion 2.1. Section 2.1.1, introduces the general mechanism of structured p2p
overlays. Furthermore, in this section, the Distributed Hash Table, which is an
important concept in structured overlays, is explained and the procedures of
join/leave of nodes, in addition to the reaction of structured DHT-based over-
lays to nodes failure, are reviewed. Later on, after a brief explanation of un-
structured p2p overlays in Section 2.1.2, we introduce the PeerfactSim.KOM
simulator, which has been used in this thesis for simulation and evaluation pur-
poses, in Section 2.2. We close this chapter with a short summary in Section
2.3.

2.1 Peer-to-peer Networks

Similar to other distributed systems, p2p networks follow the common goals
of sharing resources such as information, software and hardware in order to
reduce costs, enhance the availability and reliability of resources, and finally
load balancing.

However, unlike the traditional centralized network model in which servers
are responsible for providing almost all resources, in p2p networks resources
are provided voluntarily by the users of the network. Moreover, instead of

11

2 Background

management of the whole network communications via servers, peers in p2p
networks communicate and interact directly with each other without any server
intervention.

Since in p2p systems resources are widely spread over the network, the mech-
anisms for finding required data in the network are different from the central-
ized networks. Additionally, unlike servers which are supposed to be online
permanently, nodes in p2p networks are connected to the network for a limited
amount of time and join/leave the network autonomously. This behavior, known
as churn, is a norm, rather than an exception, and cause the p2p network be-
havior to become highly unpredictable.

In p2p networks, peers have mostly similar rights and roles in the network
and roles are distributed between nodes based on their capabilities. Strictly
speaking, in homogeneous overlays like Chord [29], Kademlia [21] and Gnutella
0.4 [12] peers have identical rights and roles. On the other hand, in overlays
with heterogeneity support such as Gnutella 0.6 [18] and Omicron [8], nodes
are assigned different roles based on their capabilities. These characteristics
made the management of the p2p networks different from the centralized net-
works.

The term overlay is often used for p2p networks since it is always built on top
of an existing network, the so-called underlay, and the overlay adds an extra
layer of abstraction, new potential and functionality to the underlay. In this
way, the overlay makes use of the existing underlay functionality and modifies
the underlay functions for its own use. A common distinction is to divide p2p
overlays into structured and unstructured categories. These overlay types are
explained in the following sub-sections.

2.1.1 Structured P2P Overlay

In structured p2p overlays, each node is assigned a unique ID, and peers main-
tain a routing table for sending messages to other nodes in the network. Most
structured p2p overlays, e.g., Pastry [27], Kademlia and Chord, use Distributed
Hash Table (DHT) for routing. In DHT-based overlays, identifier space is inde-
pendent of the physical location of the peers and routing of messages is based
on the nodes’ IDs. All objects in structured overlays, including resources and
peers, are identified by IDs which are commonly calculated by hashing the
object’s content and lies in the identifier space. However, there are some over-
lays which use methods other than DHT to accomplish the routing task. For
example, Globase.Kom [19] (Geographical LOcation-BAsed SEarch) uses the
geographical location of nodes in order to find the closest peers to a specific

12

2.1 Peer-to-peer Networks

location or all the peers in a given area.

In structured p2p overlays, objects and peers share a same ID space and the
ID of each resource is assigned to a single peer in the overlay. Therefore, since
each object can be identified uniquely the main functionality is to look up the
object which is identified by a given ID. To make it more clear, we will review
the Distributed Hash Table in more detail in the remainder of this section.

Distributed Hash Table (DHT)
Hash Table is a well-known data structure in computer science. It was invented
in 1953 [22], and it is available in most major programming languages. Hash
Table maps values to keys and one can look up an indexed value, fast and
efficiently, by knowing the key.

Hash („MyData“)= 1362

1400

550
630 922

1011

1123 1201

Logical view of the DHT

Real topology (Internet)

Figure 2.1: Overview on the Distributed Hash Table

Distributed Hash Table (DHT), which in comparison with Hash Table is rela-
tively a new idea, is still based on the concept of key/value pairs in Hash Table
with the difference that it is distributed between the nodes in a network. DHT is
used in most well-known structured p2p overlays such as Chord, Kademlia and
Pastry. In many p2p distributed systems, DHT is utilized for implementing a
scalable and efficient key-based routing mechanism for looking up the respon-
sible node for a given ID. DHT, as a routing table, is distributed between all
the peers in the overlay, and each peer maintains a small part of it, including a
certain number of references to some other nodes. As mentioned earlier, nodes

13

2 Background

maintaining the DHT are identified with IDs from the same identifier space as
data items.

There are various approaches for employing DHT as a routing mechanism.
However, generally the idea is that each node provides a narrow view of over-
lay by maintaining a limited number of links to other nodes. In case a node
receives a request for an object ID, which it is not responsible for itself, the
node forwards the request to the closest ID it knows based on the stored links
in its routing table. The forwarding process is repeated until the responsible ID
is found. The result of the look up can be the address of the node that contains
the looked up data item or the resource ID itself. Based on the strategy used in
overlay, a node which shares a data item, can store the address of the resource
or the resource itself on the responsible peer for the object’s ID. Figure 2.1
shows an overview of the DHT and a peer which stores its hashed data item
directly on the responsible peer with the ID of 1400.

If the resource is available in the overlay, the Distributed Hash Table guar-
antees that it is found. The DHT is scalable and produces a small amount of
overhead even in large networks with millions of nodes because each node co-
ordinates only with a few other nodes in the overlay and in case of challenges
like a new node joining or leaving, and failure of peers, only a few nodes will
be affected. To continue we explain the reaction of the DHT-based overlays to
the challenges of nodes joining and leaving as well as failure of nodes.

Join of a New Node
When a node attempts to join a structured DHT-based overlay, it firstly calcu-
lates its own ID. Afterward, the new node needs to contact an arbitrary peer
in the overlay as an entry point to the DHT. Depending on the implementation
of the DHT, the newly arrived node is positioned in the overlay and a number
of nodes update their routing information in order to consider the new node in
routing system.

At this point, the new node takes the responsibility for a part of the DHT by
reducing the responsibility range of its neighbor in the overlay. The reduction
of the responsibility range is performed when the neighboring node copies part
of the key/value pairs from its own Hash Table to the Hash Table of the new
node. The copying process is usually carried out with a configurable amount of
redundancy that can help the system in case of peers’ failure. After this step,
the new node becomes responsible for the granted range of key/value pairs in
the DHT.

Besides the nodes which join the network during the time, some other nodes
leave the network and there are also nodes which lose their connection to the

14

2.1 Peer-to-peer Networks

network without any prior notification. The procedure for leaving, and the re-
action of nodes in DHT-based overlays to failure of a node, are briefly explained
in the following paragraph.

Leaving and/or Failure of a Node
When a node attempts to leave the overlay, it copies its range of key/value pairs
to the routing table of the linked neighboring nodes and the linked neighboring
nodes would then remove this node from their routing tables.

In case of failure, a node loses its connection to an overlay without any prior
notification. Therefore, there is no time for delegating responsibilities to other
nodes. Generally, in this situation, the redundant key/value pairs become
helpful to cope with the loss of data, whereas, without an effective redundancy
strategy, failure of nodes in DHT results in data loss. In addition, other nodes
use alternative routing paths when they notice the absence of the failed node.

In this section, we introduced structured p2p overlays and Distributed
Hash Table in more detail since it is an important part of many of the well-
known structured overlays. To follow on, we introduce unstructured p2p
overlays as the other major category of p2p networks.

2.1.2 Unstructured P2P Overlay

An unstructured overlay is "an overlay in which a node relies only on its adja-
cent nodes for delivery of messages to other nodes in the overlay." [5]. Unlike
the structured overlays, unstructured P2P systems do not maintain any extra
structure, and resources are not assigned to peers but are hosted directly by
the owner of objects. Therefore, the main functionality of unstructured over-
lays is to search and find peers which provide the desired objects.

In unstructured overlays, the ID spaces for peers and objects are separated
and objects can be retrieved by searching keywords that match the description
of the object. Hence, in contrast to structured overlays, finding the desired
objects in unstructured overlays does not require knowing the objects’ ID. Al-
though unstructured overlays provide more freedom in implementing complex
queries but searches are not efficient.

Unstructured p2p overlays can be categorized mainly in three categories of
centralized like Napster, Homogeneous like Gnutella 0.4 and finally Hetero-
geneous networks such as Gnutella 0.6 and FastTrack [2]. Considering that
unstructured overlays are not the focus of this thesis, we will not be further
explaining the specifications of these categories.

15

2 Background

In addition to the introductory knowledge to p2p overlays provided in this chap-
ter, by way of important background information to this thesis, we introduce
PeerfactSim.KOM, the simulator that we will use for this thesis in the next sec-
tion.

2.2 PeerfactSim.KOM Simulation Framework

PeerfactSim.KOM [9] is an event-based simulation framework, written in Java
for simulating large scale distributed/p2p systems, with focus on the evaluation
of inter-dependencies in multi-layered p2p systems.

PeerfactSim.KOM has been developed at the Technical University of Darmstadt
in 2006 and since then has been improved and maintained at the University of
Paderborn and the University of Düsseldorf.

User Layer
User Groups, User Behavior

Si
m

u
la

ti
o

n
 E

n
gi

n
e

C
o

n
fi

gu
ra

ti
o

n

M
o

n
it

o
ri

n
g

Application Layer
File Sharing, Lookup Generator, Multicriterial Search, Structured and Unstructured
Monitoring

Service Layer
Replication, Aggregation: SkyNet.KOM, PushSum, Centralized Monitoring

Transport Layer
TCP, UDP

Network Layer
Modular Components, GNP, Simple, Mobile Ad-Hoc Network

Churn and Isolation Models
KAD Measurement-based, Exponential, Weibull, Static

Overlay Layer
Structured Overlays: Kademlia, Pastry, CAN, Chord variants:
Chord, EpiChord, Re-Chord, Ca-Re-Chord, Adaptive Chord
Unstructured Overlays: Gia, Gnutella 0.6, Gnutella 0.4
Information Dissemination Overlays: VON, pSense, Mercury

Figure 2.2: Overview on the Functional Layers of PeerfactSim.KOM

The simulator follows a layered architecture and each layer operates indepen-
dently of the others. Therefore, each layer can be modified or exchanged easily

16

2.2 PeerfactSim.KOM Simulation Framework

with slight modifications. The layered architecture of PeerfactSim.KOM is rep-
resented in Figure 2.2 and a brief introductory knowledge about each of the
layers is provided in the following.

User Layer: The user layer provides facilities for capturing user’s actions
together with creating user groups with different roles.

Application Layer: Functions such as file sharing or search application, with
custom searches based on keywords, are the examples of the application layer.
The recent extensions of the structured and the unstructured monitoring are
implemented in this layer as well.

Service Layer: The service layer consists of some enhancement protocols to
improve the management and control mechanisms which are neither part of the
application layer nor the p2p overlay. The SkyNet.KOM monitoring component
is located in this layer.

Overlay Layer: In the overlay layer, different structured overlays such as
Can, Chord, Kademlia and Pastry, unstructured overlays like Gnutella 0.4,
Gnutella 0.6 and Gia and information dissemination overlays such as VON,
pSense, Mercury are implemented. This layer operates on top of the transport
and network layer.

Transport Layer: Besides providing methods for serialization, the transport
layer covers the implementation of TCP [7] for large messages and UDP [26]
for small messages which can be used in combination with the network layer to
obtain more realistic values for throughput, delay, jitter and packet loss.

Network Layer: The network layer is responsible for modeling delay, band-
width, jitter and packet loss. It covers different network strategies such as sim-
ple network with limited configurable parameters, modular network with de-
sign goal of extendibility, mobile and finally Global Network Positioning (GNP)
[24] which provides a simulated network with many more configurable details
than the simple network. Examples of these options are Round-Trip Time (RTT),
jitter, geographical position and the real Internet packet loss.

17

2 Background

Churn Models Layer: The Churn layer, models an unexpected online/offline
behavior for nodes in the overlay. The currently available churn models are
KAD, Static, Exponential and Weibull. Currently available churn models are
implemented based on KAD measurements and weibull distribution. The static
churn model and the popular exponential churn behavior are also among the
available churn patterns.

Additionally, the simulator provides several interfaces like NetAnalyzer,
TransAnalyzer, OperationAnalyzer, ConnectivityAnalyzer, ChurnAnalyzer and
KBROverlayAnalyzer, for analyzing different aspects of simulations. The
analyzers can be used for calculating network layer statistics such as the
number of sent/received messages, bandwidth consumption, the number of
hosts connected to the network and the number of hosts affected by churn.

In this section we briefly introduced PeerfactSim.KOM and each of its
functional layers. A short summary to this chapter is provided in the next
section.

2.3 Summary

In this chapter, we studied p2p networks and compared the characteristics of
p2p and client/server networks. Following the common categorization of p2p
overlays, we discussed the major features of structured and unstructured types.
Furthermore, we reviewed the Distributed Hash Table and the characteristics
of DHT-based p2p overlays since most of the structured overlays use the DHT
for routing purposes. Finally, we introduced PeerfactSim.KOM, the simulator
that we use in this thesis for simulating and evaluating our monitoring attacks
and counter-attack.

18

3 Monitoring

Contents

3.1 Monitoring of Peer-to-peer Networks 19

3.1.1 Structured Monitoring Systems 20

3.1.2 SkyEye.KOM Monitoring Mechanism 21

3.1.3 Unstructured Monitoring Systems 23

3.2 Summary . 26

The following chapter reviews the fundamental mechanisms of monitoring p2p
networks. Following an introduction to the importance of monitoring systems
in Section 3.1, we further divide p2p monitoring approaches into two separate
categories, entitled structured and unstructured respectively. We introduce the
common characteristics of structured monitoring systems in Section 3.1.1, and
study the monitoring mechanism provided by SkyEye.KOM, as an example of
structured monitoring solution in Section 3.1.2. Section 3.1.3, introduces the
idea of unstructured monitoring systems and describes the gossiping approach
for aggregating monitoring data in networks based on the Push-Sum algorithm.
Finally, we summarize this chapter in Section 3.2.

3.1 Monitoring of Peer-to-peer Networks

Monitoring mechanisms aim to facilitate the control and management of net-
works by providing useful statistical information regarding network status at
any time. Examples of the valuable statistical information in p2p networks in-
clude the number of peers in the network, peers average online time, routing
delay, number of hop count to reach resources and network traffic.

An effective monitoring mechanism will enable p2p networks to achieve a con-
trolled level of Quality of Service. However, there exist challenges in the design

19

3 Monitoring

process of a sound monitoring system for p2p overlays due to characteristics
of p2p networks. These comprise churn, peers heterogeneity in capacity and
connectivity, unpredictability of network size and peers’ behavior.

By providing fresh statistical information, monitoring mechanisms yield a
global view on networks which can be used for optimization decisions such
as nodes stabilization frequency, or peers time-to-live factor. The global view
additionally reveals the overhead and routing speed of p2p networks, which
assist with regards to the on-the-fly automatic performance adaptation of over-
lays. Since redeployment of p2p networks is impossible, on-the-fly adaptation
is vital for modifying the monitoring mechanisms of p2p networks. In addition,
the provided statistical information contributes towards designing improved
overlay mechanisms in future releases.

Akin to p2p overlays, monitoring mechanisms of p2p networks can likewise
be grouped into structured and unstructured types. Whilst in unstructured
monitoring mechanisms nodes distribute monitoring to other random nodes,
structured monitoring systems introduce an extra overlay on top of p2p over-
lay which is fully specified for monitoring tasks. Additionally, nodes distribute
monitoring information based on the strategy, defined by the monitoring over-
lay, only to specific nodes. The rest of this chapter provides more information
about structured and unstructured monitoring mechanisms.

3.1.1 Structured Monitoring Systems

Structured monitoring mechanisms construct a so-called over-overlay on top of
p2p overlays. Peers in p2p overlay participate in the construction of structured
monitoring overlay, and each node determines its position in the monitoring
structure itself. One of the structures, commonly used in structured monitoring
systems, is the tree structure.

Usually, in addition to the ID that is used in p2p overlay, each peer also main-
tains a different ID for participating in the monitoring over-overlay. Typically,
monitoring IDs are the result of some simple calculations in order to facili-
tate an easy translation of monitoring IDs to overlay IDs and vice versa. The
monitoring ID space is used exclusively by nodes partaking in the monitoring
overlay for identification of communication partners with respect to exchang-
ing monitoring data. In order to look up the communication partners, nodes
are dependent on the look up facilities delivered by p2p overlay.

Following the introduction above with regards to the general specifications of
structured monitoring systems, in the next section, we study structured moni-
toring in more detail by concentrating on SkyEye.KOM, as a well-constructed

20

3.1 Monitoring of Peer-to-peer Networks

example of structured monitoring mechanism, introduced by Graffi et al.[13].
The SkyEye.KOM monitoring mechanism is also the base of our further imple-
mentations in this thesis.

3.1.2 SkyEye.KOM Monitoring Mechanism

SkyEye.KOM is a monitoring mechanism that operates by constructing a tree
structure as an over-overlay on top of structured DHT-based p2p overlays. In
SkyEye.KOM, each node determines its location within the monitoring tree
structure independently and matches its overlay ID with an ID from the moni-
toring ID space as it joins the overlay. The proposed ID space in SkyEye.KOM is
a unified space SID ⊆ R ranges from 0 to 1, and it is calculated by dividing the
overlay ID to the size of the overlay ID space. Leave, join or failure of a node
results in a partial or complete reconstruction of the monitoring tree. After
joining the tree, each node becomes responsible for a part of the monitoring
ID space known as domains. The responsible node for each domain is called
domain coordinator.

0.5

0.75

0.875 0.625 0.375 0.125

0.25

Domain D0

Domain D1

Domain D0
Level 0

Level 1

Level 2

Domain D1 Domain D2 Domain D2

D3 D3 D4 D4 D5 D5 D6 D6

P2P Overlay

0 1

Figure 3.1: SkyEye.KOM as an over-Overlay on Top of the p2p Overlay

Figure 3.1 visualized both the structure of SkyEye.KOM tree and its relation
to the p2p overlay. The first domain level, level 0, is the largest domain and

21

3 Monitoring

covers the whole ID space, [0, 1], with the root of the tree as the Coordinator.
Thus, the first node joining the overlay becomes the root of the tree, and the
Coordinator of domain D0 with tree ID of 0.5. According to the branching factor
value, domains are recursively divided into sub-domains. In each domain, the
node in the p2p overlay which is responsible for the tree ID in the middle of the
domain becomes the Coordinator of the domain. A Coordinator maintains the
information of all the peers, which hold their IDs within its Domain. In this way,
when bF = 2 as an example, the next node which joins the tree after the root
node becomes the Coordinator of either sub-domain [0, 0.5] or [0.5, 1].

Generally, data distribution between peers is achieved based on either pull or
push mechanism [16]. In a pull-based method, each node sends data only when
it receives a request from another node. In contrast, in push-based mecha-
nisms, nodes propagate data periodically without being asked. The current
implementation of SkyEye.KOM is based on push method which introduces
less complexity and overhead with reference to the management of monitor-
ing overlay.

In SkyEye.KOM, monitoring data is classified into three types, namely, local
metric, children aggregation and global estimation. The local metric is the
monitoring information each node generates in relation to its own status. The
children aggregation is the aggregated monitoring data from all the children
of a node. This is refreshed whenever a parent node receives new monitoring
information from one of its children. Last but not least, the global estimation
is the aggregation result of local metrics and children aggregated monitoring
data. The global estimation, aggregated at the root node, represents the status
of the whole monitoring tree.

Nodes in the tree periodically forward their own monitoring statistics, aggre-
gated with received data from their children onto their parents in each update
interval. The root node aggregates the received monitoring information from
its children with its local data, and sets the result as the network global mon-
itoring estimation. Additionally, it sends an acknowledgment message (ACK)
containing the global monitoring estimation to its children. Figure 3.2 depicts
a simplified overview of data flow in SkyEye.KOM. After receiving ACK from
the parent, the receiver applies the received global estimation and further for-
wards it, included in an ACK, to their own children whenever it receives fresh
monitoring data from one of its child nodes. Subsequently, global estimation is
pushed through the tree, and all nodes become informed of the current state of
the network.

Figure 3.3 shows an example of aggregating the maximum value at all nodes
in the SkyEye.KOM monitoring tree. As it is depicted, each node measures
its own local maximum value, and aggregates it with its children data before

22

3.1 Monitoring of Peer-to-peer Networks

Aggregation result of local metric and children aggregation

Global estimation included in ACK message

Root

Figure 3.2: Simplified Overview of the SkyEye.KOM Data Flow

forwarding the result of the aggregation to its parent node.

Leaf nodes have no children and, as such, they only forward their own local
metrics to their parents. Parents of leaf nodes compare received local data
from their children against their own local data, and forward the maximum
value as the result of maximum aggregation to their own parents periodically.
The result of aggregation at the root node represents the maximum value of
the tree which is 0.88 in our example.

In this section, we studied SkyEye.KOM as an example of a structured
monitoring mechanism. We reviewed the mechanism of data flow and the
different monitoring data types which are defined in SkyEye.KOM. In conclu-
sion, to clarify the aggregation function, we provided an example in which the
maximum values at all nodes in the tree were aggregated. The next section is
dedicated to unstructured monitoring systems as the other main category of
p2p monitoring systems besides structured mechanisms.

3.1.3 Unstructured Monitoring Systems

In unstructured monitoring mechanisms, there does not exist a separate over-
lay for monitoring. Nodes exchange monitoring data with their random neigh-
bors, or in some approaches with arbitrary nodes in p2p overlay. When nodes
receive monitoring information from other nodes, they aggregate the received
data with their own local metric, and thereafter forward the result to some

23

3 Monitoring

L:0.3

L:0.37 C:0.6

L:0.46 C:0.6

L:0.75 C:0.88

L:0.37 C:0.88

L:0.51 C:0.66 L:0.01 C:0.53 L:0.88 C:0.12

L:0.6 L:0.3 L:0.53 L:0.66 L:0.03 L:0.12 L:0.02

L: Local metric
C: Child aggregation

Figure 3.3: Aggregating the Maximum Value at All Nodes in SkyEye.KOM

other nodes. This method is also known as gossip-based monitoring strat-
egy.

Gossip protocols are round-based, and a certain number of rounds is called an
epoch. At the beginning of each epoch, nodes publish updated local metrics to
guarantee the convergence of values at all nodes to an updated value repre-
senting the actual state of the network. One of the famous implementations of
gossip-based monitoring is based on the gossip algorithm by Kempe et al. [17],
named Symmetric Push-Sum, for computing global aggregation. The Symmet-
ric Push-Sum protocol can be used as an example for calculating the sum or
the average of values at all nodes in a network within a predictable number of
rounds. The pseudo-code of the Symmetric Push-Sum Protocol is presented in
Algorithm 1.

According to the Symmetric Push-Sum algorithm, in each round, node i selects
a random node, node j, as its communication partner (line 2). Afterward, node
i halved its local value, vi, and its weight, wi, and sends the resulted values as
an aggregation message to node j. Node j, as the receiver of the aggregation
message, also halved its own local value and weight and sends them to node i

(line 6, 7). In addition, it adds the received local value and weight respectively
to its own local value and weight. By initiating vi and wi according to the values
in Table 3.1, different aggregation functions such as sum, count, average or
weighted average of values can be achieved.

24

3.1 Monitoring of Peer-to-peer Networks

Algorithm 1 Symmetric Push-Sum Algorithm

At each node i
Require: v0, w0

The initial local value, v0;
The initial local weight, w0.
Initialization:

1: (v, w) = (v0, w0)
At each cycle:

2: j ← getNode()
3: v ← v/2, w ← w/2
4: send an aggregation message to j, 〈(v, w), true〉

At event: received an aggregation message 〈(v′, w′), r〉 from j
5: if r is true then
6: v ← v/2, w ← w/2
7: send an aggregation message to j, 〈(v, w), false〉
8: end if
9: v ← v + v′, w ← w + w′

Function Description

Sum
vi = local value
wi = 1 at a single node, 0 at all other nodes

Count
vi = 1
wi = 1 at a single node, 0 at all other nodes

Average
vi = local value
wi = 1

Weighted Average
vi = local value × local weight
wi = local weight

Table 3.1: Symmetric Push-Sum Configurations for Different Aggregation Functions

Figure 3.4 depicted an overview of calculating the average value at all nodes in
a network using Symmetric Push-Sum algorithm. As it is shown, the values at
all nodes converge to the correct average value after each round until the val-
ues at all nodes become identical. Requiring no extra overlay in unstructured
monitoring mechanisms, introduces less overhead than structured mechanisms
and make them flexible and robust against churn in p2p networks.

On the other hand, structured monitoring mechanisms offer more accurate
monitoring results at a higher overhead cost. Furthermore, they are not as
flexible and churn resistant as unstructured monitoring mechanisms.

In this section, we introduced unstructured monitoring systems and specifi-
cally gossip-based monitoring mechanisms. We clarified that monitoring data

25

3 Monitoring

10

6 10

8.75

6

8.5
8.5

3

P2P
network

8

3 12

4

9

15
2

2

a) Initial state

c) After 5 rounds

b) After 1 round

P2P
network

6.87

6.87 6.87

6.87

6.87

6.87
6.87

6.87

d) After 10 rounds

P2P
network

6.85

6 5.87

6.2

5.02

5.62
6.55

6.9

Figure 3.4: Overview on Aggregating the Average Value Using the Push-Sum Mecha-
nism

is aggregated in gossiping approaches, although there is no specific node for
aggregating global monitoring information comparable to the root node in
the SkyEye.KOM monitoring overlay. Similarly, we reviewed the Symmetric
Push-Sum algorithm commonly utilized in gossiping approaches for monitoring
p2p networks. The next section provides a summary to this chapter.

3.2 Summary

In this Chapter we introduced the general idea of structured and unstructured
monitoring mechanisms, and explored them in greater details by examining an
approach of each type as an instance. Considering that our proposed moni-
toring security attacks and solutions in the subsequent chapter are based on
SkyEye.KOM, we reviewed the SkyEye.KOM monitoring algorithm as an ex-

26

3.2 Summary

ample of structured monitoring mechanism in more detail. Furthermore, we
explained the data flow in the tree structure of SkyEye.KOM monitoring over-
lay and considered the aggregation mechanism of monitoring information by
illustrating an example in which the global maximum value in the tree were
aggregating. Moreover, we highlighted the important role of the root node
in SkyEye.KOM as the center that aggregates and propagates network global
estimation representing the status of the whole network.

Subsequently, we introduced unstructured monitoring systems and reviewed
gossip-based monitoring mechanisms as a significant unstructured method for
aggregating data in p2p overlays. In addition, we studied Symmetric Push-
Sum algorithm, as an effective algorithm used in many unstructured gossip-
based monitoring systems. Finally, we compared structured and unstructured
monitoring systems and evaluated the advantages and disadvantages of each
mechanism in comparison to each other.

27

3 Monitoring

28

4 Monitoring Attacks and
Solutions

Contents

4.1 FalseLocalData Attack . 30

4.1.1 Counter-Measure against FalseLocalData Attack 31

4.2 FalseChildData Attack . 38

4.2.1 Counter-Measure against FalseChildData Attack 39

4.3 FalseParentPeer Attack . 40

4.3.1 Counter-Measure against FalseParentPeer Attack 40

4.4 Summary . 44

In this Chapter, we define our monitoring attacks and counter-attacks. All
of the attacks and security solutions in this chapter are designed based on
the monitoring mechanism provided by SkyEye.KOM. In Section 4.1, we de-
fine FalseLocalData attack in which malicious nodes generate fake monitoring
statistics about themselves. Afterward, in Section 4.1.1 we introduce our scor-
ing system as a solution to detect FalseLocalData attackers. In addition, we
suggest various enhancement strategies for the monitoring data flow in Sky-
Eye.KOM to improve the accuracy of the scoring system. We also propose
different strategies to react to malicious nodes after the detection phase. Simi-
larly, Section 4.2 describes our definition of FalseChildData malicious behavior
and Section 4.2.1 explains our counter-attack strategy against FalseChildData
attack. The FalseChildData attackers manipulate monitoring information re-
ceived from their children before aggregating and further forwarding them to
their parents. In Section 4.3, we define our last attack, named FalseParentPeer,
which makes the attackers forward monitoring data to a wrong destination, in-
stead of the expected node, and in Section 4.3.1 we explain our idea to reduce
the effect of this monitoring attack. Finally, the summary of this chapter is
provided in Section 4.4.

29

4 Monitoring Attacks and Solutions

Considering the limited time, in this thesis we concentrate on implementing
and evaluating all our defined attacks and our security solution against FalseP-
arentPeer attack. The implementation and evaluation of our proposed scoring
system, as a solution against FalseLocalData and FalseChildData attacks, is
considered as future work.

4.1 FalseLocalData Attack

In FalseLocalData attack, an attacker publishes fake monitoring information
about itself. As a result, in overlays which support heterogeneity and different
roles for peers with different capacities, the attacker can contribute as little
as the weakest nodes in the overlay, or even act as a free rider. For example,
by providing fake statistical information with low storage capacity or limited
bandwidth, the malicious node pretends to be a weak node. Therefore, it ben-
efits from the overlay without participating in the overlay routines, defined for
non-weak nodes in the overlay.

L:0.3

L:0.37 C:0.6

L:0.46 C:50

L:0.75 C:50

L:0.37 C:50

L:0.51 C:0.66 L:50 C:0.53 L:0.88 C:50

L:0.6 L:0.3 L:0.53 L:0.66 L:0.03 L:0.12 L:50

Normal node

Malicious node of type FalseLocalData

L: Local metric

C: Child aggregation

Level 1

Level 0

Level 2

Level 3

Figure 4.1: Aggregating the Maximum Value at All Nodes in the Presence of FalseLo-
calData Attackers

Figure 4.1 represents a monitoring tree with branching factor of 2 during the

30

4.1 FalseLocalData Attack

aggregation of the maximum value at all nodes. There are 15 nodes in the tree
and 2 of them are malicious nodes of type FalseLocalData as represented by
the black nodes. The rest of the nodes are non-malicious and represented by
the white nodes. In our example, the malicious nodes produce a fake value of
50 as their maximum value while the maximum local value at non-malicious
nodes ranges between 0 and 1. The figure shows how the global estimation at
the root node can be affected by the attackers. Attackers, which are closer to
the root node, can manipulate the global estimation sooner than the nodes in
the lower levels such as leaf nodes.

While we introduced the FalseLocalData attack in this section, in the fol-
lowing sub-section we propose our security solution against this attack.

4.1.1 Counter-Measure against FalseLocalData Attack

In order to neutralize the attackers who publish false monitoring information
about themselves, each parent node, as a receiver of the monitoring data, needs
to have the ability to detect improbable monitoring information coming from
its children. However, making such a decision is very challenging and, in many
cases, there is a possibility of considering genuine monitoring data as a fake
piece of information. How does a parent node decide whether the received
data is valid or not?

Our idea is that this decision can be made by utilizing an efficient scoring sys-
tem, composed of series of checks and proper comparison strategies, for com-
paring received monitoring data from a child node with data from comparable
nodes in the monitoring tree. The results of the scoring system can be normal-
ized in a way that the parent nodes assign a scoring point between 0 and 1 to
their potential malicious children after each test, and then use the average of
the malicious scores as a measure for concluding its final decision.

By integrating the fuzzy logic [30] to our scoring system, the parent nodes are
assisted in deciding to what extent a node has the potential to be malicious.
Thus, received monitoring data, that is very different from other comparable
monitoring values, is considered to be more potentially malicious than improb-
able values with lesser difference. Consequently, nodes with higher probability
of being malicious are given an average malicious score of a value closer to 1

compared with nodes with lesser probability. Below, we explain the details of
our scoring system and comparison strategies.

31

4 Monitoring Attacks and Solutions

Comparison of Received Data with Global Estimation
When a node receives data from its child, the first series of checks can be
the comparison of child aggregation with the global monitoring estimation to
detect unrealistic values. For instance, where a child node claims that its ag-
gregated count value is greater than the current global count estimation stored
at its parent, it can be considered as an indicator of malicious behavior because
in most cases the count value aggregated from the whole network is greater
than the count value from part of the tree.

However this conclusion is not always true, and we cannot say that the node is
definitely an attacker. Therefore, we consider it as a malicious indicator with
the weight of 1 − |count|

|globalCount−count| which always results in a value between 0

and 1, and the greater difference between the count and global count results in
a ratio closer to 1. By defining a threshold between 0 and 1, the secured nodes
can consider senders with the mean malicious weight, greater than a defined
threshold, as a malicious node.

Malicious Check Malicious Score

If (received Count > globalCount)

If (received Min < globalMin)

If (received Max > globalMax)

If (received Sum > globalSum)

If (received SumSqr > globalSumSqr)

If (received Variance > globalVariance)

If (received Mean > globalMean)

Table 4.1: Comparison of the Received Monitoring Data against the Global Monitoring
Estimation and the Corresponding Malicious Scores

List of various comparisons of global monitoring estimation with received value
from a child in addition to the calculation of the malicious score is provided in
Table 4.1. In continuation, we introduce more parameters and methods to make

32

4.1 FalseLocalData Attack

the process of detecting malicious nodes more precise.

Comparison of Received Monitoring Data with Typical Values from Sib-
ling’s Children
Besides comparing received monitoring data with global monitoring estima-
tion, each parent node can also compare, received child estimation from its
children, with child estimations from the children of other nodes on the same
level as the expected typical values.

1

4 5

2

6 7

3

Figure 4.2: Receiving Additional Typical Values from the Sibling’s Children Nodes

For this purpose, the current monitoring algorithm requires some modifications
in order to make each node forward monitoring data not only to its parent
but also to other nodes on the same level as its parent node. The suggested
modified monitoring tree is depicted in Figure 4.2. The Figure illustrates that
node 2 receives data not only from nodes 4 and 5, being its children, but also
from node 6 and 7 which are on the same level as its children. Similarly, node 3

receives monitoring aggregation results from the children of node 2.

By receiving data from the children of the sibling nodes, each parent can com-
pare received value from its child with values from nodes similar to its child
and decide whether its child’s reported value is probable or not. The child es-
timation is considered as malicious data where it is significantly different from
other received values, from similar nodes.

To distinguish improbable values, which are very different from other received
values, our proposal is to benefit from the k-means clustering algorithm [20].
The k-means clustering algorithm offers an effective method for grouping a
given data set into k clusters in a way that values more similar to each other are

33

4 Monitoring Attacks and Solutions

clustered in the same groups. For example, by applying the k-means clustering
algorithm with k = 2 to the following data set {1, 2, 3, 4, 5, 20} the resulting
clusters will be {1, 2, 3, 4, 5} and {20}.

Our idea of employing the k-means clustering algorithm for detecting improba-
ble received monitoring data is that, after collecting data from children and the
children of the sibling nodes, parent node groups the collected values once in 2

clusters and thereafter in 3 clusters (k-means clustering with k = 2 and k = 3).
Subsequent to each clustering round, the parent node assigns a malicious score
to the nodes which belong to the group with the minimum number of members.
The amount of malicious score can be normalized through dividing 1 by the
number of members in the smallest cluster. As a result, the malicious score
assigned to a node will be closer to 1 where there are fewer number of nodes
in the group, and it will be exactly 1 where the node is the only member of a
group.

At the end of clustering phase, the final malicious score of each node can be
normalized to a value between 0 and 1 through dividing the sum of the malicious
scores by the number of clustering rounds (e.g. by applying k = 2 and k = 3 the
number of clustering round is 2). So, for instance, by applying k=2 to the data
set {1, 2, 3, 4, 5, 20}, we will have 2 clusters of {1, 2, 3, 4, 5} and {20}. The parent
will then assign 1, as the malicious score, to the sender of the value 20. In the
next round, with k=3 we have 3 clusters of {1, 2, 3}, {4, 5} and {20}, and again
the parent node will assign another malicious score of 1 to the sender of value
20. The final malicious score is the average of various malicious scores which,
in our example, is 1 for the sender of the value 20.

By introducing a threshold to the final malicious score, the parent can decide
whether to accept data from a child or not. By increasing the threshold to-
wards 1, the number of nodes, considered as malicious, will be decreased. For
instance, by setting the threshold to 0.8, only the nodes with final malicious
score greater than 0.8 will be considered as attackers.

However, by applying the k-means clustering method even on the data sets
with no inconsistency, always some values are grouped in the smallest clus-
ter and consequently some senders will always acquire malicious score from
the scoring system. In the next paragraph, we introduce our solution to this
issue.

Reducing the Probability of Assigning Malicious Score to Non-Malicious
Nodes
As already stated, k-means clustering algorithm can help parent nodes to detect
improbable values in data sets. However, by applying the k-means clustering

34

4.1 FalseLocalData Attack

method even on a data set with no value significantly different from the other
ones like {1, 2, 3, 4, 5}, always some senders will acquire malicious score. To
illustrate the problem, if we apply the k-means clustering algorithm with k = 2

to the data set {1, 2, 3, 4, 5}, which has no value greatly different from the other
ones, we will have two clusters of {1, 2, 3} and {4, 5}, and as a result senders of
values 4 and 5 will acquire malicious scores.

To avoid this problem, a pre-condition may be defined in order to measure the
degree of variation in the data set. This can be achieved by utilizing the Coeffi-
cient of Variation measure [4], and perform the k-means clustering check only
when the degree of variation in the data set is greater than a certain thresh-
old. Coefficient of Variation is a statistical measure representing the ratio of
variability in relation to the mean of a data set. It is used to measure and
compare the degree of variation in data series. The Coefficient of Variation is
calculated via dividing the standard deviation by the mean of a data set. Com-
monly, data series, with Coefficient of Variation greater than 1, are considered
as high-variance data sets.

Hence, each parent, after receiving monitoring data from its children and the
children of its sibling nodes, will firstly apply the Coefficient of Variation on the
received values to determine the degree of variation. The data set will then
be suspected of having malicious members only if the Coefficient of Variation
is greater than 1. In this case, the parent node will proceed, by clustering the
values based on k-means clustering algorithm, and will assign malicious scores
to the nodes in the smallest clusters.

Detecting Misleading Typical Values
In case sibling’s children send fake data, the received typical values will mis-
lead the scoring system. If, however, in addition to the typical values from
the children of sibling nodes, siblings themselves interchange their own child
aggregation with each other, they can detect possible anomalies; between the
directly received data from their sibling’s children AND the reported child ag-
gregation from the sibling nodes. In the case of detecting inconsistency, the
sibling node can be reported as malicious to higher level nodes in the moni-
toring tree in order to prevent using them as typical values. Malicious nodes
may, nevertheless, abuse this solution by reporting non-malicious nodes as ma-
licious to nodes in higher levels. Therefore, to improve the solution to this
issue, a more detailed study will be required in the future.

Figure 4.3 shows the additional direct interchange of child estimation between
sibling nodes, node 2 and node 3, with the bold arrows. Using this method, even
the root node benefits by receiving inconsistency reports from its non-malicious

35

4 Monitoring Attacks and Solutions

1

4 5

2

6 7

3

Figure 4.3: Additional Direct Interchange of Child Estimation between Sibling Nodes

children.

Detecting Inconsistencies by Analyzing the History of Received Data
Analyzing the history of received monitoring data for detecting any kind of
inconsistencies can be considered as another enhancement to our scoring sys-
tem. By comparing the monitoring data received from a child and data from
the corresponding grand-children, some sort of anomalies can easily be de-
tected.

Figure 4.4: Additional Forwarding of the Monitoring Data to the Grand-Parent Nodes

36

4.1 FalseLocalData Attack

In order to provide the possibility of analyzing the history of received monitor-
ing data, nodes need to forward their monitoring aggregation results not only
to their parent nodes but also to their grand-parents. Figure 4.4 shows the ex-
tra forwarding directions of monitoring information to grand-parent nodes by
the dashed arrows.

Detecting Corrupted Aggregation Results by Analyzing the Received
Monitoring Data Itself
Without any comparison of received monitoring information with typical values,
parents can still detect some kind of corrupted aggregation results; generated
by malicious nodes. This can be achieved by analyzing the received data from
a child. For instance, based on the current available aggregation functions in
SkyEye.KOM, if the received sum from a node is less than the received min
or max, the inconsistency can be considered as an indication of malicious ac-
tions.

Malicious Check Malicious Score

If (received Max > Mean + Standard Deviation)

If (received Min < Mean - Standard Deviation)

If (received Sum < Max)

If (received Sum < Min)

Table 4.2: Detecting Corrupted Aggregation Results by Analyzing the Received Mon-
itoring Data Itself

The same conclusion can be reached if the received min is less than the
subtraction of the mean from the Standard Deviation, or max > mean +

StandardDeviation. Similar checks, in addition to the ones mentioned above
with the amount of malicious score for each, are listed in Table 4.2.

Strategies after Detecting Attackers
After detecting malicious nodes, different strategies can be defined as a reac-
tion of the parent node that receives monitoring data from a FalseLocalData
attacker. The receiver can ignore the potential malicious nodes by avoiding

37

4 Monitoring Attacks and Solutions

the use of data from the attacker in the monitoring aggregation process. How-
ever, this strategy will also result in ignoring data from all descendants of the
malicious node.

Therefore, a solution could involve the receiver contacting the children of the
malicious node and aggregating their information instead of the data from
the malicious node. Alternatively, the receiver could overwrite the monitoring
data, from the malicious node, with the data received from one of its non-
malicious children.

In this section, we introduced the FalseLocalData attack in which the at-
tacker generates false monitoring information about itself. Afterward, we
proposed the idea of utilizing a scoring system for detecting potential ma-
licious child nodes. We proposed additional enhancements to improve the
accuracy of our scoring system and, finally, we suggested some reaction
strategies following the detection phase. In the next section, we introduce
our next defined malicious behavior, named FalseChildData, and the possible
counter-measures.

4.2 FalseChildData Attack

Our second designed malicious behavior is called FalseChildData attack. In this
attack, the malicious node changes the received monitoring information from
its children before aggregating it with its local metric. In fact, the FalseChild-
Data attacker ruins the aggregation result of its children and all the nodes
below them. The degree of harm by the FalseChildData attack is increased
when the malicious nodes located on higher levels of the tree. This is because
in such cases it can manipulate the monitoring data of more nodes.

In the monitoring tree, depicted in Figure 4.5, there are 2 malicious nodes
of type FalseChildData, represented by the black nodes, that overwrite the
maximum value reported by their children with the fake value of 50. The other
13 nodes, represented by the white nodes, are not malicious and aggregate the
maximum value received from their children properly. The maximum value at
non-malicious nodes is in the range of 0 − 1. The effect of the malicious node
at level 3, the leaf node, is limited to its own children while the attacker in
level 2 damages the received aggregated data from its children as well as its
grand-children.

38

4.2 FalseChildData Attack

L:0.3

L:0.37 C:0.6

L:0.46 C:50

L:0.75 C:50

L:0.37 C:50

L:0.51 C:0.66 L:0.01 C:50 L:0.88 C:0.12

L:0.6 L:0.3 L:0.53 L:0.66 L:0.03 L:0.12 L:0.02

Normal node

Malicious node of type FalseChildData

L: Local metric

C: Child aggregation

Level 1

Level 0

Level 2

Level 3

Figure 4.5: Aggregating the Maximum Value at All Nodes in the Presence of
FalseChildData Attackers

4.2.1 Counter-Measure against FalseChildData Attack

Since the received monitoring information from a child is the aggregation re-
sult of its local data and its child estimation, the scoring system introduced
in the previous section can also be beneficial for detecting the FalseChildData
attackers that manipulate their children aggregation.

The basic concept behind our scoring system is the early detection of the
improbable monitoring information by the parent nodes before aggregation.
The improbable monitoring data can be the result of the FalseLocalData or
FalseChildData attack. As the local data and child aggregation are not sent to
parents as separate data sets, it is not easy for the parent nodes, being the
receiver of the aggregation results, to decide whether the malicious data is the
result of fake local statistics or manipulated child estimation.

Likewise, in line with the reaction strategies to the FalseLocalData attack,
the monitoring data from the children of the malicious node can be used
as the alternative information. As an another approach, the parent node
can overwrite received malicious information with the data from one of its
non-malicious child nodes.

39

4 Monitoring Attacks and Solutions

In this section, we defined the FalseChildData attack in which the attacker
manipulates the received data from its children before aggregation and further
forwarding of the aggregated result. Moreover, we highlighted why our scoring
system and the proposed reaction strategies, defined against FalseLocalData
attack in Section 4.1.1, can also be utilized as a counter-measure strategy
against FalseChildData attack. In the next section, we define our last attack
named FalseParentPeer and our counter-measure solution against it.

4.3 FalseParentPeer Attack

Based on the SkyEye.KOM algorithm, each node in the monitoring tree is ex-
pected to aggregate and forward the monitoring information to its parent node.
However, our last designed attacker aggregates the monitoring data correctly
but, instead of forwarding the aggregated result to its parent, it sends the data
to a random node in the tree other than its parent node. This attack has the
ability to damage monitoring data dramatically, since it ruins the expected data
flow in the monitoring tree, and it also has the potential to cause infinite loops
in the monitoring structure.

Figure 4.6 illustrates an example of malicious behavior by FalseParentPeer
attackers. According to the figure, there are 31 nodes in the construction of the
tree and among them there are 5 FalseParentPeer attackers, specified by the
black nodes. The forward direction of each attacker, to a random node other
than its parent, is shown with the curved arrows while the expected direction,
already violated, is depicted by the dashed arrows. The white nodes represent
the non-malicious nodes and forward monitoring data to their parents as
anticipated. In the illustrated example, the attackers can cause loops, as per
area a, or even break apart the tree for a while, as per area b.

In this section, we defined the FalseParentPeer attackers which forward
their aggregated monitoring data to a random node other than their parents.
In the following sub-section, we explain our security solution to deal with this
attack.

4.3.1 Counter-Measure against FalseParentPeer Attack

Our plan for reducing the effect of FalseParentPeer attack is that each node
must know the range of its acceptable tree IDs- based on its domain length- and
ignore monitoring data from senders outside its responsibility area. In addition,

40

4.3 FalseParentPeer Attack

Malicious node of type FalseParentPeer

Non-malicious node

Correct forwarding direction

Correct forwarding direction which is violated

Violated wrong forwarding direction

Area b

Area a

Figure 4.6: Overview on the SkyEye.KOM Monitoring Tree in the Presence of the
FalseParentPeer Attackers

each node needs to predict the possible tree IDs of its potential children and
define limited acceptable ranges in its domain based on the branching factor
(bF). As a result, receivers of the monitoring messages reduce the possibility
of accepting data from nodes other than their child nodes by ignoring senders
outside their defined acceptable ranges.

For this purpose when the secured node receives a message, it retrieves the
sender’s peer ID and compares it with its maximum and minimum domain IDs.
If the tree ID is in its domain range, the receiver applies the next validation
strategy to the received data. The secured node identifies that, where the
sender’s tree ID is greater than its own tree ID, the sender must be located on
its right-hand side, called the right domain. Analogously, senders with tree IDs
less than the receiver’s tree ID are expected to be on the left domain of the
receiver.

41

4 Monitoring Attacks and Solutions

MP MP

Left Domain Right Domain

bFS bFS bFS bFS

Figure 4.7: Definitions Used in FalseParentPeer Security Solution

At this point, the secured node divides its whole domain into bF + 1 parts with
the same length, as we call this length bFS. Afterward, the secured node con-
structs ranges around the meeting points (MPs) of the parts on its left and
right domain. An overview on the used terminology is given in Figure 4.7. In
the following, we propose three examples of acceptable ranges.

Acceptable Ranges around MPs to the Size of bFS/2 on Each Side
Our first proposed ranges are located around MPs with half of the length of
bfS on each side. Figure 4.8 depicted these ranges for a secured node in a
monitoring tree with the branching factor of 2.

MP MP

Left Domain Right Domain

bFS/2 bFS/2 bFS/2 bFS/2

Figure 4.8: Acceptable Ranges around MPs to the Size of bFS/2 on Each Side

Acceptable Ranges on the Right-Hand Side of MPs and to the Size of
bFS/2
The acceptable ranges can be varied depending on the p2p overlay. For in-
stance, in Chord the responsible nodes are the successor node, therefore, they
have a greater ID than a given node ID whereas in Pastry the closest node to

42

4.3 FalseParentPeer Attack

an ID is the responsible one. Therefore, based on the Chord overlay, a secured
node should only accept monitoring data from nodes that are greater than its
own tree ID.

MP MP

Left Domain Right Domain

bFS/2 bFS/2

Figure 4.9: Acceptable Ranges on the Right-Hand Side of MPs and to the Size of
bFS/2

Figure 4.9 depicted our second proposed acceptable ranges which consider
Chord as the p2p overlay. Since we know that the responsible peer for a node
in the Chord overlay is one of its successor nodes, we expect that most of
the children are located in the right regions of MPs. Therefore, we halve the
acceptable ranges by removing half of each range on the left side of MPs.

Acceptable Ranges Right-Hand Side of MPs to Size of bFS
In our final approach, we increase the previous ranges to the size of bFS on the
right side of MPs in order to decrease the possibility of ignoring legitimated
child nodes; which might be located out of the previous ranges. Increasing the
size of the acceptable ranges may also result in the increasing possibility of
malicious nodes being accepted by the parent nodes. Figure 4.10 shows the
proposed extended ranges.

MP MP

Left Domain Right Domain

bFS bFS

Figure 4.10: Acceptable Ranges on the Right-Hand Side of MPs and to the Size of bFS

43

4 Monitoring Attacks and Solutions

We simulate and evaluate the secured nodes with all three acceptable ranges,
which were introduced in this section, and the results of the evaluation can be
found in the evaluation chapter, Section 6.3.

In this section, we introduced our counter-measure idea to reduce the effect
of the FalseParentPeer attack. The goal of our solution was that parent nodes
predict the ID ranges of their children and accept monitoring data only from
nodes with IDs in those ranges. We explained the dependency of acceptable
ranges on p2p overlay and introduced two acceptable ranges, both based on
the Chord overlay. The following section summarizes this chapter.

4.4 Summary

In this chapter, we defined three types of malicious behavior for nodes taking
part in the SkyEye.KOM monitoring overlay and, for each attack, we intro-
duced our counter-measure solutions. In the first defined attack, FalseLocal-
Data, attackers publish false monitoring data about themselves. Our second
type of attackers, FalseChildData attackers, change monitoring data received
from their children and in FalseParentPeer, our last defined attack, attackers
send the monitoring data to a random node in the monitoring tree other than
their parent nodes.

We proposed our scoring system as a solution to detect malicious nodes of types
FalseLocalData and FalseChildData. Additionally, to improve the accuracy of
our scoring system, we introduced further modifications to the data flow in the
monitoring tree. We also suggested some reaction strategies after the detection
of the malicious nodes.

As a counter-measure solution against FalseParentPeer we introduced accept-
able ranges and suggested some example ranges based on the Chord overlay.
In the following chapters, Chapter 5 and Chapter 6, we explain the implemen-
tation and evaluation result of our counter-measure solution against FalsePar-
entPeer together with the implementation and evaluation of our three types of
attacks.

44

5 Implementation

Contents

5.1 Implementation of the Attacks 45

5.1.1 FalseParentPeer Attack . 46

5.1.2 FalseLocalData Attack . 47

5.1.3 FalseChildData Attack . 47

5.2 Implementation of the Counter-Measure Solution 48

5.3 Summary . 49

This chapter provides an overview of how our security attacks and counter-
measure solution against FalseParentPeer attack, introduced in chapter 4, are
implemented. This implementation is carried out in the application layer of the
PeerfactSim.KOM simulation framework, in Java language.

After presenting a general overview of the structure of this implementation in
Section 5.1, the details specific to the implementation of the FalseParentPeer,
FalseLocalData and FalseChildData attacks are explained in Sections 5.1.1,
5.1.2 and 5.1.3 respectively. Subsequently, Section 5.2 details the implemen-
tation of our security solution against FalseParentPeer attack and Section 5.3
summarizes this chapter.

5.1 Implementation of the Attacks

The attacks and counter-measure solution against FalseParentPeer attack are
implemented in an individual package called structuredmalicious. Most of the
classes in this package are an extension of those in the structured package. The
structured package contains the primary classes for the implementation of the

45

5 Implementation

structured monitoring. The malicious behaviors are designed to be easily con-
figured in the XML configuration files. If the newly-implemented structured-
malicious monitoring type is selected, the type of attack must be also declared
from the available options of FalseParentPeer, FalseLocalData, FalseChildData
and Non, prior to run a simulation. The ratio of available malicious nodes
in each simulation is configured by the ratioOfMaliciousNodes variable in the
simulation configuration file. For example, setting the ratioOfMaliciousNodes
variable to 0.05 will result in 5% of the nodes in the overlay behaving maliciously
according to the behavior defined by the attackType variable.

The MonitoringApplicationFactory class checks the variables related to the
selected type of monitoring, in accordance with the simulation configuration
file, and initiates the monitoring application. Following to the selection of
the overlay from the supported hosts, AdaptiveChord, Chord, EpiChord, Ma-
liciousChord, ReChord and Pastry, monitoring type is checked. The current
available monitoring types are Structured, Unstructured and StructuredMali-
cious.

Where StructuredMalicious is the monitoring type, a random number of type
double is generated and compared with the value of the ratioOfMaliciousNodes
variable before each node is generated in the overlay. If the generated ran-
dom value is greater than the ratio of malicious nodes, a non-malicious node
is created. On the other hand, if the generated value is less than the ratio of
malicious nodes, the attackType variable is checked and a malicious node of
the defined type is generated.

The false values for the FalseLocalData and FalseChildData attacks are also
configured in the configuration file. The localMaliciousVal and childMalicious-
Val variables are designed for this purpose. The following subsections provide
details about the implementation of each attack type.

5.1.1 FalseParentPeer Attack

The class FalseParentPeer is responsible for simulating the type of malicious
behavior in which the malicious node forwards the monitoring data to a peer
other than its parent node. To achieve this, the malicious node firstly generates
a random tree ID and calculates the corresponding peer ID to the generated
tree ID. Next, instead of forwarding its monitoring aggregation result to its
parent, which is responsible for this peer ID in the p2p overlay, the malicious
node sends its monitoring data set to a node with the peer ID corresponding to
the generated random tree ID.

The FalseParentPeer class is an extension of the MonitoringStructManager

46

5.1 Implementation of the Attacks

class. The MonitoringStructManager class is responsible for calculating the
position of nodes in the monitoring tree, in addition to sending monitoring data
and processing any monitoring messages received. The distributeData method,
which is responsible for distributing monitoring data, is overridden in the False-
ParentPeer class.

While the original distributeData method simply sends monitoring data to the
current node’s parent, when the current node is not the root of the tree, the
overridden method, used in the FalseParentPeer class, sends monitoring data
to a random node in the monitoring tree. The distributeData method is peri-
odically called whenever a local node needs to send its aggregated data to its
parent.

5.1.2 FalseLocalData Attack

The FalseLocalData class in the monitoring layer simulates the FalseLocalData
attack in which the malicious node provides false monitoring data about itself.
The MonitoringApplicationFactory calls the FalseLocalData class by providing
the falseVal as the argument. The falseVal is set by the localMaliciousVal vari-
able in the configuration file. FalseLocalData class creates a new data man-
ager called MonitoringStructMaliciousLocalDataManager as an extension of
the MonitoringStructDataManager class, overrides the aggregatePresentData
method and is responsible for aggregating the local data set and child estima-
tion of the current handler.

The overridden aggregatePresentData method overwrites all data entries ex-
cept count including max, mean, min, std_deviation, sum, sum_squares and
variance for each of the sinus, ziczac, dirac and rectangle functions with the
value of falseVal variable. The manipulated results are stored in a monitoring
data set named maliciousLocalDataSet, which is used as the local monitoring
data set for the final aggregation with child estimations in malicious nodes of
type FalseLocalData.

5.1.3 FalseChildData Attack

In order to generate malicious nodes that manipulate the monitoring data re-
ceived from child nodes, the FalseChildData class in the monitoring layer is
implemented. Similar to the FalseLocalData class, FalseChildData class is also
an extension of MonitoringStructManager class.

The FalseChildData class uses the MonitoringStructMaliciousChildDataMan-
ager in its constructor, which is called by the MonitoringApplicationFactory

47

5 Implementation

class, when providing false values as the argument. FalseChildData class
creates a new data manager, named MonitoringStructMaliciousChildDataMan-
ager, which is an extension of the MonitoringStructDataManager class.

The aggregatePresentData method is overridden in the MonitoringStruct-
MaliciousChildDataManager class, since this method is responsible for
aggregating local data set and child estimation in the current handler.
FalseChildData attacker overwrites all data entries received from its children
with the pre-configured value of the childMaliciousVal variable and uses the
resulting manipulated data set as child estimation.

This section explained the implementation of the attacks defined in this
thesis. The next section outlines how our security solution against FalsePar-
entPeer attack is implemented.

5.2 Implementation of the Counter-Measure

Solution

Our countermeasure against FalseParentPeer attack is implemented in the Se-
cured class, located in the monitoringlayer package. The Secured class ex-
tends the MonitoringStructManager class. Since our solution, as explained in
section 4.3.1, is based on processing the received messages, the core of our
security solution is implemented by overriding the processMsg method.

The processMsg method is responsible for processing the incoming monitor-
ing messages. In this method, if the received message is an acknowledgment
(ACK), the receiver overwrites its global estimation with the contained global
estimation in the ACK message. Otherwise, if the current node is the root of
the tree, the global estimation is calculated by aggregating the local data and
the received child estimations.

Nodes other than the root node hand over the received global estimation data
set from their parents to their children as part of the ACK messages. Messages
other than ACK type are considered as child messages and aggregated as child
estimation if the comparison of the message timestamp and the data timeout
shows the received data has not yet expired.

In the overridden version of the processMsg method, in the Secured class,
receiver of monitoring messages retrieves sender’s peer ID from the mes-
sage and calculates the sender’s tree ID by calling the calcTreeIDFromPeerID
method.

48

5.3 Summary

In the first step, after receiving monitoring data, a secured node compares the
calculated tree ID with its maximum and minimum domain values, and ignores
messages with tree ID outside its boundary of responsibility. The calculation of
the minimum and maximum boundary of domains is implemented in the calcu-
latePosition method which is part of the MonitoringStructManager class, inside
the structured monitoring package. The calculatePosition method is responsi-
ble for building and maintaining the monitoring tree structure. The minimum
and maximum values are set every time the responsibility of a node in the mon-
itoring tree changes due to restructuring of the tree and re-positioning of the
nodes.

In the second step, if the message’s tree ID is within the receiver’s domain,
the coordinator of the domain divides its domain length into bF + 1 parts
and constructs its acceptable ranges in line with the chosen strategy for
acceptable ranges introduced earlier in Section 4.3.1. By comparing the
sender’s tree ID with its own tree ID, the receiver determines that the tree
ID must be located on its right-hand side or the left hand-side domain.
The receiver only stores received child estimation only if the sender’s tree ID
is within its defined acceptable ranges and drops messages from other senders.

This section covered the implementation of our counter-measure against
FalseParentPeer attack and the dependencies of the relevant classes for
achieving this goal. In the next section, we summarize this chapter.

5.3 Summary

In this chapter, we provided the details of the implementation of our attacks
and counter-measure against the FalseParentPeer attack respectively. We in-
troduced the configuration options required for simulating overlays with a cer-
tain ratio of malicious, non-malicious and secured nodes. Furthermore, we
explained the dependencies of the classes in relation to each of the defined
monitoring attacks in the structuredmalicious package. Additionally, we re-
viewed the other classes relevant to our work and provided a description of
the newly-created classes and methods involved in generating malicious and
secured nodes.

49

5 Implementation

50

6 Evaluation

Contents

6.1 Evaluation Overview . 52

6.1.1 Evaluation Goal . 52

6.1.2 Evaluation Method . 52

6.1.3 Simulation Setup . 53

6.2 Evaluation of the Attacks . 58

6.2.1 Scenario A: Comparing Different Malicious Behaviors . . 58

6.2.2 Scenario B: Impact of Various Branching Factors 60

6.2.3 Scenario C: Various Ratios of Malicious Nodes 61

6.2.4 Scenario D: Churn Impact 62

6.3 Evaluation of the Security Solution 67

6.3.1 Scenario E: Acceptable Ranges Around MPs 67

6.3.2 Scenario F: Acceptable Ranges Based on Chord 68

6.3.3 Scenario G: Extended Acceptable Ranges Based on Chord 68

6.4 Summary . 70

In the following chapter, we evaluate our defined malicious behaviors, as well
as our security solution against FalseParentPeer attack. After providing an
overview of our evaluation goal, method and the simulation configurations,
used in the evaluation scenarios, in Section 6.1, we further split our evalua-
tion into two individual parts, including the evaluation of both the attacks and
the security solution. In Section 6.2, we evaluate the effect of our defined ma-
licious behaviors through four scenarios with different setups. In Section 6.3,
we evaluate the effectiveness of our security solution against FalseParentPeer
attack, involving three scenarios, by simulating secured nodes with the three
different acceptable ranges, as defined earlier in Chapter 4. Finally, we sum-
marize the conclusions based on our observations in Section 6.4.

51

6 Evaluation

6.1 Evaluation Overview

In this part, we firstly make our evaluation goals clear in Section 6.1.1. In
Section 6.1.2, we introduce our evaluation method and the measurement func-
tions which are employed during the whole evaluation phase. In Section 6.1.3,
we explain the action file used in our simulations alongside the simulation
setup.

6.1.1 Evaluation Goal

The aim of this evaluation is to analyze and assess the impact of FalseLocal-
Data, FalseChildData and FalseParentPeer attacks on the structured monitor-
ing mechanism, offered by SkyEye.KOM. In addition, we evaluate our security
solution against FalseParentPeer attack to assess the extent to which our solu-
tion can neutralize the effect of malicious nodes.

For each attack, we measure the effect of increasing the ratio of malicious
nodes on the monitoring results. Furthermore, we study the impact of different
branching factors on the monitoring results, in the presence of different types
of malicious nodes, to discover whether changing the branching factor can alter
the effect of malicious nodes. We also evaluate the effect of the attacks, in a
more realistic situation, by enabling churn in the simulated network.

We examine our security solution with the three acceptable ranges, de-
fined in Section 4.3.1, in order to determine which ranges help the secured
nodes produce more accurate monitoring results, in the presence of malicious
nodes.

6.1.2 Evaluation Method

Our evaluation is based on analyzing the results of a series of simulation sce-
narios, which are simulated with the help of the PeerfactSim.Kom simulation
framework. In each scenario, we take advantage of the four measurement
functions of sinus, dirac, rectangle and ziczac; provided by the simulator as
the exemplary measurements. The predictability of these functions is ideal for
our evaluation purposes since we can always compare the simulation results
against the expected values in order to observe the proximity of the measured
values, reported by the root node, in relation to the desired results.

The measurement functions are initiated based on the simulation time, as
shown in Table 6.1. The length of measure intervals, which specifies the re-

52

6.1 Evaluation Overview

Measurement Function Value

sinus

dirac

rectangle

zigzag

Table 6.1: Measurement Functions

newal periods of values, is represented by the SI variable in the table. In this
chapter, we only focus on the sinus function results and include the results of
the other functions in the appendices. This is due to the fact that the moni-
toring mechanism behaves in a similar way toward any of these four different
measurement functions.

For analyzing the results of each simulation, we use the *.dat files, generated
by the PeerfactSim.Kom simulator as output, together with their graphical rep-
resentations, produced by utilizing GnuPlot Script.

6.1.3 Simulation Setup

In PeerfactSim.KOM, the network model actions are described in the so-called
monitoring action files. The action files are *.dat files, with their content writ-
ten in a self-descriptive pseudo-code-like language, and are used to define
which action, or series of actions, should be performed by a node, or a group of
nodes, in the network during the simulation. Furthermore, action files enable
us to define the timing of actions and each action can then be scheduled to be
executed at specific intervals throughout a simulation.

Based on the content of our action file, presented in Figure 6.1, nodes join the
overlay from the beginning of the simulation, represented by minute 0, for the
duration of 60 minutes. The joining phase is equally distributed between nodes,
in a way that the first node joins the network in the first few seconds of the
joining phase and the last node in the last few seconds. After the joining phase,
a time period of 30 minutes is allocated for the stabilization of nodes.

53

6 Evaluation

#Monitoring Application Action File
reporter 1s MonitoringApplication:join
all 3s-60m MonitoringApplication:join
reporter 90m MonitoringApplication:distributeMonData
all 90m-91m MonitoringApplication:distributeMonData

Figure 6.1: Content of the Action File

The stabilization period is spent on distributing the configuration among all
the peers which joined the network in the previous phase. The amount of time,
specified for joining and the stabilization of nodes, should be determined care-
fully with reference to the number of nodes participating in each simulation.
Allocating insufficient time for these two periods will produce faulty and con-
fusing simulation results because, due to lack of time, there might exist nodes
with no responsibility assigned and consequently the positions in the monitor-
ing tree may change.

Finally during the last 90 minutes of the simulation, representing the monitor-
ing phase, nodes periodically report their monitoring data to their parents and
the simulator analyzer interface simultaneously. To ensure comparability of our
simulation results, we use the same action file in all of our simulations.

To evaluate our defined attacks, we simulate all the scenarios with 1000 and
5000 nodes in order to examine the scalability of our implemented attacks. In
this chapter, however, we study the details of the each simulation results by
focusing on the outputs with 5000 nodes. The results of all simulation runs,
with 1000 and 5000 nodes, are shown in the appendices.

simulation details • Simulator: PeerfactSim.KOM
• Number of simulated nodes: 1000 and 5000 nodes
• Overlay: Chord
• Update Interval: 30 sec
• Delay based on global network coordinates
• No Packet Loss

Network model Actions • 0-60 min: join the overlay
• From 90 min: start monitoring
• At 180 min: simulation ends

Table 6.2: General Settings

Table 6.2, presents the general settings of our simulations. According to the
evaluation result in [10], using the SkyEye.KOM monitoring approach, the op-
timal monitoring results can be achieved by setting the update interval to 30

seconds while considering the loss of precision and the adaption rate. Thus, we

54

6.1 Evaluation Overview

also benefit from the fixed value of 30 seconds as the update interval through
our simulations. The update interval defines the interval between two distribu-
tion runs of a single node.

Our evaluation is based on the SkyEye.KOM monitoring overlay on top of
Chord, with no packet loss and a network delay model based on the global
network positioning [25].

In scenario A, Section 6.2.1, we analyze and compare the effect of our defined
malicious behaviors, FalseParentPeer, FalseLocalData and FalseChildData, in a
network with 5% of malicious nodes and the branching factor of 4. The overview
of the simulations for evaluating the attacks is presented in Table 6.3. In sce-
nario B, Section 6.2.2, we study the behavior of the monitoring mechanism with
different branching factors of 2 and 4 in the networks polluted with 5% of ma-
licious nodes. An increase in the branching factor results in a decrease of the
monitoring tree’s height. Consequently, in a low height monitoring tree, data
can reach the root node in a shorter amount of time. In scenario C, Section
6.2.3, we increase the ratio of the malicious nodes by up to 20 percent. Lastly,
in scenario D, Section 6.2.4, we include the exponential churn to our simulated
network polluted with 5% of malicious nodes.

In the second phase of the evaluation, we study the effectiveness of our security
solution against FalseParentPeer attack by simulating 300 nodes, the branching
factor of 2 and the same action file that we utilized in the evaluation of attacks.
We simulate three scenarios with different acceptable ranges which were in-
troduced earlier in Section 4.3.1. In each scenario, we simulate networks once
with 95% of secured nodes, and then without any secured nodes, in order to
measure the degree of improvements in the accuracy of the monitoring results
that are produced by the secured nodes.

The simulation setups for evaluating the security solution are summarized in
Table 6.4. In scenario E, Section 6.3.1, the monitoring results from the secured
nodes with limited acceptable ranges, around MPs and to the size of bFS/2

on each side, are examined. Scenario F, Section 6.3.2, provides the result of
secured nodes with more limited acceptable ranges, reduced to the right-hand
side of MPs and to the size of bFS/2. Finally, in scenario G, Section 6.3.3, we
present the result of secured nodes, with acceptable ranges still on the right-
hand side of MPs, but this time to the size of bFS.

55

6 Evaluation

A) Comparing different malicious behaviors

Variation • Malicious node type:
 FalseParentPeer , FalseLocalData, FalseChildData

Fixed • Ratio of malicious nodes: 5%
• Branching Factore: 4
• Local False Value for FalseLocalData attack: 50
• Child False Value for FalseChildData attack: 50
• Churn: Disabled

B) Impact of various branching factors

Variation • Malicious node type:
 FalseParentPeer , FalseLocalData, FalseChildData
• Branching Factor: 2, 4

Fixed • Ratio of malicious nodes: 5%
• Local False Value for FalseLocalData attack: 50
• Child False Value for FalseChildData attack: 50
• Churn: Disabled

C) Impact of different ratio of malicious nodes

Variation • Malicious node type:
 FalseParentPeer , FalseLocalData, FalseChildData
• Ratio of malicious nodes: 5%, 10%, 20%

Fixed • Malicious node type:
 FalseParentPeer , FalseLocalData, FalseChildData
• Ratio of malicious nodes: 5%, 10%, 20%

D) Churn Impact

Variation • Malicious node type:
 FalseParentPeer , FalseLocalData, FalseChildData
• Churn: Disabled, Exponential

Fixed • Ratio of malicious nodes: 5%
• Branching Factor: 4
• Local False Value for FalseLocalData attack: 50
• Child False Value for FalseChildData attack: 50

Table 6.3: Simulation Setups for Evaluating the Attacks

56

6.1 Evaluation Overview

E) Acceptable ranges around MPs

Variation • Ratio of secured nodes: 0%, 95%

Fixed • Acceptable ranges:
 Around MPs to the size of bFS/2 on each side
• Ratio of malicious nodes: 5%
• Branching Factore: 2
• Churn: Disabled

F) Acceptable ranges based on Chord overlay

Variation • Ratio of secured nodes: 0%, 95%

Fixed • Acceptable ranges:
 Right-hand side of MPs and to the size of bFS/2
• Ratio of malicious nodes: 5%
• Branching Factore: 2
• Churn: Disabled

G) Extended acceptable ranges based on Chord overlay

Variation • Ratio of secured nodes: 0%, 95%

Fixed • Acceptable ranges:
 Right-hand side of MPs and to the size of bFS
• Ratio of malicious nodes: 5%
• Branching Factore: 2
• Churn: Disabled

Table 6.4: Simulation Setups for Evaluating the Counter-Measure Solution

57

6 Evaluation

6.2 Evaluation of the Attacks

This part is dedicated to the evaluation of our defined attacks. In Section 6.2.1,
we analyze and compare the effect of our three types of attacks, which are
FalseLocalData, FalseChildData and FalseParentPeer. In Section 6.2.2, we ex-
amine the impact of changing the branching factor on the monitoring results in
the presence of the attackers. In Section 6.2.3, we simulate networks with vari-
ous proportion of malicious to non-malicious nodes and Section 6.2.4 shows the
effect of the defined attacks on the churn enabled simulated networks.

6.2.1 Scenario A: Comparing Different Malicious Behaviors

Figure 6.2 shows the comparison of our three types of attacks, with 5% of ma-
licious nodes and the bF = 4. Figure 6.2(a), reveals the node count measured
in the networks polluted with the three types of malicious nodes, and addi-
tionally the node count measured in a network with no attackers. Since the
total number of the nodes in the tree does not change during each simulation,
the measured node count remains at the correct value of 5000 nodes once the
monitoring data from all the nodes in the tree reaches the root node.

As the attackers in FalseChildData and FalseLocalData attacks manipulate the
values of the aggregation functions, but not the number of aggregated values,
the node count in the presence of these two attackers is not affected and the
measured value in the networks polluted by them is reported correctly. How-
ever, we observe a continuous steep increase in the count value in the pres-
ence of the FalseParentPeer attackers, which begins from the first minutes of
the monitoring phase. The reason is that the FalseParentPeer attackers have a
high potential of producing loops in the monitoring tree. In addition, each time
a node in the overlay receives data from a FalseParentPeer attacker; it reports
a new increase in its count aggregation value to its parent node in the next
update interval.

Figure 6.2(b) shows the result of the minimum aggregation function, aggre-
gated from all the nodes by the root node. FalseLocalData and FalseChildData
attacks show a similar effect on the minimum value while the adaptation delay
by these two attacks is rooted in the value of the update interval which is every
30 seconds.

In the network polluted with FalseParentPeer attackers, we observe that the
minimum aggregation result converges toward the constant value of −1 in a
short amount of time; typically in less than 10 minutes from the start of the
monitoring phase. This is because the messages are not sent along the ex-

58

6.2 Evaluation of the Attacks

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

attackType=FalseChildData: Measured
attackType=FalseLocalData: Measured

attackType=FalseParentPeer: Measured
attackType=Non: Desired

(a) Node Count

-2

-1

 0

 1

 2

 3

 4

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

IN
]

Time [Minutes]

attackType=FalseChildData: Measured
attackType=FalseLocalData: Measured

attackType=FalseParentPeer: Measured
attackType=Non: Measured

attackType=FalseChildData: Desired
attackType=FalseLocalData: Desired

attackType=FalseParentPeer: Desired
attackType=Non: Desired

(b) Minimum Aggregation

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

attackType=FalseChildData: Measured
attackType=FalseLocalData: Measured

attackType=FalseParentPeer: Measured
attackType=Non: Measured

attackType=FalseChildData: Desired
attackType=FalseLocalData: Desired

attackType=FalseParentPeer: Desired
attackType=Non: Desired

(c) Mean Aggregation

 0

 20

 40

 60

 80

 100

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

A
X

]

Time [Minutes]

attackType=FalseChildData: Measured
attackType=FalseLocalData: Measured

attackType=FalseParentPeer: Measured
attackType=Non: Measured

attackType=FalseChildData: Desired
attackType=FalseLocalData: Desired

attackType=FalseParentPeer: Desired
attackType=Non: Desired

(d) Maximum Aggregation

Figure 6.2: Comparison of the Three Types of Attacks

pected structure but rather to the random nodes in the monitoring tree; which
can result in loops in the message. Message loops are very likely when the
FalseParentPeer malicious node forwards its monitoring data to one of its de-
scendants.

We observe a similar behavior for the mean aggregation in Figure 6.2(c) by
FalseParentPeer attack. The mean value is reported constantly at around 0.5

after 10 minutes from the beginning of the monitoring phase. The reason is
that the mean aggregation is the result of the sum aggregation divided by the
node count and both of these values increase dramatically, under the impact of
the loops in the tree, from the first minutes of the aggregation.

Figure 6.2(c) also reveals that the FalseChildData attack produce lesser effect
in comparison to the FalseLocalData attack, although the false value in both
cases is set to the similar value of 50. The reason for this observation is that in
the structure of the monitoring tree around half of the nodes are the leaf nodes,
which have no children. Consequently, malicious behavior by FalseChildData
attackers which are located in the lowest level of the monitoring tree cause
no harm simply because they have no children to manipulate their monitoring

59

6 Evaluation

data. Therefore, in this plot we observe that FalseChildData attack shifts the
mean aggregation result by 2 on the y-axis while the amount of shift on the
y-axis by the FalseLocalData attack is around 2.5.

Furthermore, the adaptation delay is more obvious in this plot. Due to the
update interval of 30seconds in the networks polluted with the FalseLocalData
and FalseChildData attackers, the adaptation delay is similar. This also applies
to the network with no malicious nodes.

The false value, configured for simulating the FalseLocalData and FalseChild-
Data attack, can be observed in Figure 6.2(d) which constantly shows the
maximum aggregation of 50 from the very early minutes of the monitoring
phase.

6.2.2 Scenario B: Impact of Various Branching Factors

In this section, we study the effect of different branching factors on the mon-
itoring results in the presence of different types of malicious nodes. Figure
6.3(a) illustrates the node count, aggregated in a network including 5% of
FalseParentPeer malicious nodes. In general, since the increase of the branch-
ing factor, bF, results in a tree with fewer levels, monitoring data from all the
nodes in the tree can reach the root node in a short amount of time. Therefore,
we observe that the malicious nodes show their effect on the monitoring tree
with bF = 4 quicker than with bF = 2.

Figure 6.3(b) shows the effect of the different branching factors on a network
polluted with FalseLocalData attackers. As we observe, the fake maximum
value of 50 is reported by the root node with a minor delay in both cases.
However, in our test with bF = 4 the fake maximum value is reported from the
very beginning of the monitoring phase. This type of situation arises when the
root node or a node close to the root of the tree behaves maliciously.

The result of mean aggregation with branching factor of 2 and 4, in Figure
6.3(c), shows the stronger impact of the FalseLocalData attack by the branch-
ing factor of 4. However we observe, per Figure 6.3(d), an increase in the
impact of FalseChildData attack by decreasing the branching factor due to the
increase in the number of leaf nodes. Therefore the higher the number of leaves
in the tree, the greater is the probability of FalseChildData attackers located in
a tree as the leaf nodes. As the leaf nodes have no children, FalseChildData ma-
licious nodes behave in the same manner in the network as the non-malicious
ones.

According to our observations, a lower branching factor results in an increase

60

6.2 Evaluation of the Attacks

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

bF=2: Measured
bF=4: Measured

bF=2: Desired
bF=4: Desired

(a) Node Count (FalseParentPeer)

 0

 20

 40

 60

 80

 100

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

A
X

]

Time [Minutes]

bF=2: Measured
bF=4: Measured

bF=2: Desired
bF=4: Desired

(b) Maximum Aggregation (FalseLocalData)

-2

-1

 0

 1

 2

 3

 4

 5

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

bF=2: Measured
bF=4: Measured

bF=2: Desired
bF=4: Desired

(c) Mean Aggregation (FalseLocalData)

-2

-1

 0

 1

 2

 3

 4

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

bF=2: Measured
bF=4: Measured

bF=2: Desired
bF=4: Desired

(d) Mean Aggregation (FalseChildData)

Figure 6.3: Impact of the Branching Factor Variations

in the adaptation delay. In addition, by increasing the branching factor, the
probability of having malicious nodes close to the root of the tree is increased.
The malicious nodes closer to the root node are able to falsify the global moni-
toring data, aggregated by the root node, in a shorter time.

6.2.3 Scenario C: Various Ratios of Malicious Nodes

For the purpose of evaluating the effect of various ratios of malicious nodes,
we simulate and compare three ratios of malicious nodes in the network; each
polluted with one type of our defined attackers. For each attack, we test the
ratios of 5%, 10% and 20% of malicious nodes with a fixed branching factor of
4.

Figure 6.4(a) clearly demonstrates that, by increasing the ratio of the attackers,
the mean aggregation is affected by the malicious nodes to a higher extent.
The presence of the 20% of FalseLocalData attackers means that every fifth
node propagates the false value of 50 as its local monitoring data. Therefore,
since the mean aggregation by non-malicious nodes oscillates between 0 and

61

6 Evaluation

1, the result of the global monitoring aggregation for the mean aggregation is
around 50/5. Likewise, by having 10% of attackers, every 10th node is malicious
and we further observe that the mean aggregation oscillates around the 50/10.
In the network with 5% of FalseLocalData attackers, the mean aggregation
oscillates around the value of 2.5. As anticipated, the effect of FalseLocalData
and FalseChildData attacks on the sum aggregation, presented in Figure 6.4(b)
and 6.4(d), is similar to their effect on the mean aggregation, presented in
Figure 6.4(a) and 6.4(c).

According to the most obvious observation, Figure 6.4(c) shows a smaller peak
value of the mean aggregation for the FalseChildData attack in comparison to
the FalseLocalData attack, presented in Figure 6.4(a). As mentioned earlier,
the reason for this is that more than 50% of the nodes in the monitoring tree
are the leaves and have no children. The FalseChildData attack shows an in-
crease in the peak value of the mean aggregation from 1, in the non-malicious
network, to 3 in the network with 5% of the FalseChildData attackers. By in-
creasing the ratio of the present attackers to 10%, the mean aggregation in-
creases four times more than the desired value, a value around 4. Where the
ratio is increased by 20%, the measured value reaches a value around 6.5.

In contrast to FalseLocalData and FalseChildData attacks, Figure 6.4(e) shows
that by having 5% of FalseParentPeer attackers, the mean aggregation turns
to the constant value of 0.5 after 15 minutes. The increase in the ratio of the
malicious nodes decreases this period to 8 minutes. However, we observe no
further decrease for this period where the ratio of attackers is increased from
10% to 20%. Also, increasing the ratio of the attackers, from 5% to 10%, leads
to an increase in the mean aggregation value from 0.5 to 0.7 in their constant
intervals. However, an increase in the malicious ratio to 20% does not show any
further obvious changes.

Figure 6.4(f) depicts that the sum aggregation starts to increase continuously
in the first minutes of the monitoring phase. Additionally, based on Figure
6.3(d), in the previous section, we also observed that FalseParentPeer attack
has the same effect on the node count aggregation. Therefore, by taking both
observations into account, we can explain the convergence of the mean aggre-
gation result, calculated through dividing the sum by the count aggregation, to
a constant value where FalseParentPeer attackers are present.

6.2.4 Scenario D: Churn Impact

In this section, we enable churn in order to compare the monitoring state of
a robust network with a network in which peers leave and join the overlay

62

6.2 Evaluation of the Attacks

continuously in a random manner. For simulating the churn behavior, we utilize
the exponential churn algorithm with the mean session length of 5 minutes.
For creating a better overview of the churn effect, we delay the starting time
of churn until minute 120. Therefore, the monitoring mechanism begins from
minute 90, thus allowing for 60 minutes after joining and a further 30 minutes
for the stabilization phase, and continues until the minute 120 without churn.
Afterward, the churn is enabled until the end of the simulation at minute 180.
So the monitoring works for 30 minutes without churn and then for 60 minutes
with it.

Firstly, we study the effect of churn on a network without any malicious nodes.
Figure 6.5(a) shows the node count aggregation stays mostly on zero where
churn is enabled while the desired value is around 4000. The reason is that
whenever a node leaves the tree, all of its descendants need to re-position
themselves in the tree and also reset their monitoring data. Leaving the nodes
in the higher levels of the monitoring tree, closer to the root node, results in
the re-positioning of more nodes in comparison with leaving the nodes in the
lower levels.

In the event of the failure of a child, its parent continues to retain the mon-
itoring data from the absent child until the next update interval and keeps
receiving data from its other children as well. In case the re-positioning of the
sub-tree, affected by the absent node, happens in a shorter amount of time than
the update interval, the parent will again receive the monitoring data from the
newly repositioned nodes. As a result of this aggregation, we observe inter-
vals like the last 4 minutes of the simulation in which the reported node count
aggregation is greater than the desired value.

Since FalseLocalData and FalseChildData attacks cause no effect on the count
value, we do not study them any further. Nevertheless, we observe the lack of
precision in the mean aggregation in those two attacks which are depicted in
Figure 6.5(c) and 6.5(e).

Figure 6.5(b) shows an imprecise maximum aggregation result under the im-
pact of churn. We observe a continuous wrong value, reported by the root node,
for several minutes in some intervals like during the minutes 100 to 110. This is
due to the lack of updated data reaching the root node.

The absence of fresh data, in addition to the false value reported by the ma-
licious nodes of type FalseLocalData and FalseChildData, can be observed in
the maximum aggregation depicted in Figure 6.5(d) and 6.5(f). The same lack
of precision, as well as, the fake maximum value of 50 is observed in the both
cases.

The evaluation of churn effect on the networks polluted with FalseParentPeer

63

6 Evaluation

attackers in Figure 6.5(g) shows a more severe effect on the node count. As it is
depicted, the reported node count aggregation by the root node, is either 0 or a
much greater value than the desired number. In Figure 6.5(h) the convergence
of the mean aggregation to a constant value can be observed. Furthermore, in
the intervals where the count aggregation falls below the desired value, as a
result of churn, we observe the fall of the mean aggregation too. Examples of
this effect can be seen around the minute 140 or during the last minutes of the
simulation.

64

6.2 Evaluation of the Attacks

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

maliciousRatio=0.5: Measured
maliciousRatio=0.10: Measured
maliciousRatio=0.20: Measured

maliciousRatio=0.5: Desired
maliciousRatio=0.10: Desired
maliciousRatio=0.20: Desired

(a) Mean Aggregation (FalseLocalData)

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
S

U
M

]

Time [Minutes]

maliciousRatio=0.5: Measured
maliciousRatio=0.10: Measured
maliciousRatio=0.20: Measured

maliciousRatio=0.5: Desired
maliciousRatio=0.10: Desired
maliciousRatio=0.20: Desired

(b) Sum Aggregation (FalseLocalData)

-2

 0

 2

 4

 6

 8

 10

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

ratioOfMaliciousNodes=0.05: Measured
ratioOfMaliciousNodes=0.10: Measured
ratioOfMaliciousNodes=0.20: Measured

ratioOfMaliciousNodes=0.05: Desired
ratioOfMaliciousNodes=0.10: Desired
ratioOfMaliciousNodes=0.20: Desired

(c) Mean Aggregation (FalseChildData)

-10000

 0

 10000

 20000

 30000

 40000

 50000

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
S

U
M

]

Time [Minutes]

ratioOfMaliciousNodes=0.05: Measured
ratioOfMaliciousNodes=0.10: Measured
ratioOfMaliciousNodes=0.20: Measured

ratioOfMaliciousNodes=0.05: Desired
ratioOfMaliciousNodes=0.10: Desired
ratioOfMaliciousNodes=0.20: Desired

(d) Sum Aggregation (FalseChildData)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

maliciousRatio=0.5: Measured
maliciousRatio=0.10: Measured
maliciousRatio=0.20: Measured

maliciousRatio=0.5: Desired
maliciousRatio=0.10: Desired
maliciousRatio=0.20: Desired

(e) Mean Aggregation (FalseParentPeer)

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
S

U
M

]

Time [Minutes]

maliciousRatio=0.5: Measured
maliciousRatio=0.10: Measured
maliciousRatio=0.20: Measured

maliciousRatio=0.5: Desired
maliciousRatio=0.10: Desired
maliciousRatio=0.20: Desired

(f) Sum Aggregation (FalseParentPeer)

Figure 6.4: Comparing the Different Ratios of the Malicious Nodes

65

6 Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

Measured Desired

(a) Node Count (No Malicious)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

A
X

]

Time [Minutes]

Measured Desired

(b) Maximum Aggregation (No Malicious)

-2

 0

 2

 4

 6

 8

 10

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

Measured Desired

(c) Mean Aggregation (FalseLocalData)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

A
X

]

Time [Minutes]

Measured Desired

(d) Maximum Aggregation (FalseLocalData)

-2

 0

 2

 4

 6

 8

 10

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

Measured Desired

(e) Mean Aggregation (FalseChildData)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

A
X

]

Time [Minutes]

Measured Desired

(f) Maximum Aggregation (FalseChildData)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

Measured Desired

(g) Node Count (FalseParentPeer)

-1

-0.5

 0

 0.5

 1

 1.5

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

Measured Desired

(h) Mean Aggregation (FalseParentPeer)

Figure 6.5: Attacks with Churn

66

6.3 Evaluation of the Security Solution

6.3 Evaluation of the Security Solution

In this part, we evaluate the effectiveness of our proposed solution against
FalseParentPeer attack, introduced in Section 4, through three scenarios. In
each scenario, we examine the secured nodes with one of the proposed ac-
ceptable ranges, on top of the Chord overlay. In Section 6.3.1, the examined
acceptable ranges are around MPs and to the size of bFS/2 on each side, while
the acceptable ranges in Section 6.3.2 are only on the right-hand side of MPs
and to the size of bFS. The most limited acceptable ranges, which are still de-
fined on the right side of MPs but to the size of bFS/2, are evaluated in Section
6.3.3.

6.3.1 Scenario E: Acceptable Ranges Around MPs

In this scenario, we evaluate the secured nodes with acceptable ranges lo-
cated on both sides of MPs and to the size of bFS/2 on each side, as described
earlier in Section 4.3.1. We simulate 300 nodes, including 5% of FalseParent-
Peer attackers. Figure 6.6(a), shows the result of node count with the intro-
duced acceptable ranges for secured nodes. The result indicates a significant
reduction in the number of the accepted nodes in the network with 95% of
secured nodes (securedRatio = 0.95) in comparison to the network with unse-
cured nodes (securedRatio=0.0).

In the network with no security measurement, we observe a sharp increase in
the number of the node count aggregation from the early minutes of the moni-
toring phase. In contrast, we observe a considerable decrease in the node count
aggregation, where the nodes only accept received monitoring data within their
designated acceptable ranges.

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100 120 140 160 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

securedRatio=0.0: Measured
securedRatio=0.95: Measured

securedRatio=0.0: Desired
securedRatio=0.95: Desired

(a) Node Count

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

securedRatio=0.0: Measured
securedRatio=0.95: Measured

securedRatio=0.0: Desired
securedRatio=0.95: Desired

(b) Mean Aggregation

Figure 6.6: Results of the Acceptable Ranges around MPs

67

6 Evaluation

While the node count aggregation in the unsecured network increases rapidly
from the beginning of the monitoring phase, the secured network shows an
increase at a much lower rate, and in a step-wise manner. It should be noted
that, although the secured nodes are able to filter many of the malicious nodes,
the final reported number of node count, 200000 nodes in this test, is still much
greater than the desired value of 300 nodes.

Figure 6.6(b) shows the result of the mean aggregation function. It reveals the
direct effect of the enormous increase in the node count on the mean aggre-
gation result. However, the secured network provides a relatively better result
than the unsecured network for the first 40 minutes of the monitoring phase.
Yet, after 40 minutes, the mean value in both secured and unsecured network
converges toward a constant value.

This is evidenced by the potential loops in the monitoring tree, created by the
FalseParentPeer attackers, which result in a dramatic increase in the aggre-
gated value at malicious nodes. Eventually, when a malicious node falls within
the acceptable range of a non-malicious node, its huge aggregated result is
appended to the network global monitoring aggregation.

6.3.2 Scenario F: Acceptable Ranges Based on Chord

In this scenario, we evaluate the impact of halving the acceptable ranges tested
in the previous scenario. Considering Chord as the overlay, the secured nodes
in this scenario accept messages from the senders with the tree IDs within
their acceptable ranges located on the right-hand side of MPs and to the size
of bFS/2.

Figure 6.7(a) shows a significant increase in the node count aggregation when
it reaches the constant value of 1500 nodes in its peak. Hence, the reduction
of the reported node count value can be the result of detecting more malicious
nodes. However, reducing the size of the acceptable ranges can also lead to a
situation where parents omit their legitimate child nodes. The mean value in
Figure 6.7(b) shows a slight improvement comparing to the previous case, but
again it converges toward a constant value from half way through the monitor-
ing phase.

6.3.3 Scenario G: Extended Acceptable Ranges Based on
Chord

Finally, we evaluate our last proposed acceptable ranges, which are on the right
side of MPs and to the size of bFS. In Figure 6.8(a), we observe that the node

68

6.3 Evaluation of the Security Solution

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140 160 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

securedRatio=0.0: Measured
securedRatio=0.95: Measured

securedRatio=0.0: Desired
securedRatio=0.95: Desired

(a) Node Count

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

securedRatio=0.0: Measured
securedRatio=0.95: Measured

securedRatio=0.0: Desired
securedRatio=0.95: Desired

(b) Mean Aggregation

Figure 6.7: Results of the Acceptable Ranges on the Right-Hand Side of MPs Based
on Chord

count reaches the number of 6000 with fewer steps while increasing, compared
with the first acceptable ranges tested in Section 6.3.2. Figure 6.8(b) shows a
better precision for the mean aggregation when compared with the two other
acceptable ranges tested in the previous scenarios. However, as a result of the
enormous increase in the node count aggregation, similar to the previous cases,
the mean aggregation converges toward a constant value from half through the
monitoring phase.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160 180

S
IN

U
S

 [
C

O
U

N
T
]

Time [Minutes]

securedRatio=0.0: Measured
securedRatio=0.95: Measured

securedRatio=0.0: Desired
securedRatio=0.95: Desired

(a) Node Count

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 90 100 110 120 130 140 150 160 170 180

S
IN

U
S

 [
M

E
A

N
]

Time [Minutes]

securedRatio=0.0: Measured
securedRatio=0.95: Measured

securedRatio=0.0: Desired
securedRatio=0.95: Desired

(b) Mean Aggregation

Figure 6.8: Results of the Extended Acceptable Ranges on the Right-Hand Side of
MPs Based on Chord

Since, in our simulation, the monitoring tree is implemented on top of the Chord
overlay, the expected acceptable ranges on the right-hand side of MPs produce
slightly better results although they are not satisfactory enough.

All in all, finding the proper acceptable ranges are not easily achievable. In
addition the relatively larger acceptable ranges for the nodes, located on the
higher levels of the monitoring tree, increase the probability of accepting

69

6 Evaluation

malicious nodes by the parents in higher levels in comparison to the ones in
the lower levels. The other challenge in this approach is the increase in the
probability of ignoring legitimate children by decreasing the size of acceptable
ranges.

In this section, we evaluated our proposed solution for acceptable ranges. The
results showed that employing this approach, as a single counter-measure
solution, is not sufficiently effective for a long period and further study and
additional solutions are needed. The next section provides a summary to this
chapter.

6.4 Summary

In this chapter, we evaluated the defined attacks and our proposed counter-
measure in seven different simulation scenarios. The evaluation of the defined
attacks revealed that the FalseParentPeer is the most destructive type of at-
tack among our three types of monitoring attacks. Furthermore, Between the
FalseChildData and FalseLocalData attacks, FalseChildData attackers showed
a lesser impact on the monitoring result due to the fact that more than half of
the nodes in the monitoring tree are the leaf nodes with no children.

Our examination of the different branching factors showed that by increasing
the branching factor the adaptation delay is reduced. We observed the impact
of the malicious nodes, with lesser delay, in the monitoring trees with bF = 4,
in comparison to bF = 2. On the other hand, by increasing the branching
factor, there will be more nodes on each level of the tree and consequently it is
more likely that there are malicious nodes close to the root of the monitoring
tree. Bearing in mind that the root node is responsible for aggregating and
publishing the global monitoring data, malicious nodes, located closer to the
root node, affect the global monitoring data more quickly.

The evaluation results of the various ratios of malicious nodes showed an in-
crease in the impact of the malicious nodes when the number of malicious
nodes in the network is increased. Furthermore, By evaluating the attacks in
the churn enabled networks, we noticed the high vulnerability of the moni-
toring mechanism even in the networks with no malicious nodes. The reason
behind this vulnerability is that once a node fails other nodes change their po-
sition in the tree and the monitoring tree is restructured.

The evaluation of the counter-measure against FalseParentPeer attack revealed
that our proposed solution could not make the network resistant against the

70

6.4 Summary

attackers for a long duration since, when a malicious node locates in the ac-
ceptable range of a node in the monitoring tree, it dramatically affects the net-
work. Additionally, predicting the child node’s tree IDs is not easily achievable.
However, the evaluation of the secured nodes with acceptable ranges based
on Chord showed, using this approach, by taking the overlay into account the
accuracy of monitoring result improves.

71

6 Evaluation

72

7 Conclusions and Outlook

Contents

7.1 Conclusions . 73

7.2 Outlook . 75

We conclude our work in this final chapter and suggest some further research
areas with regard to this thesis. In Section 7.1, we provide a summary of
this document and draw our conclusions. Finally, Section 7.2 gives an out-
look beyond the scope of this thesis and outlines possible enhancements to our
work.

7.1 Conclusions

Monitoring of p2p systems is a challenging task due to the absence of a cen-
tral point for collecting the monitoring data and the unquantifiable number of
nodes that autonomously join and leave the network. In addition, the possibil-
ity of the presence of malicious nodes adds an extra level of complexity to the
challenges in the way of capturing the status and performance of p2p networks.
In this thesis, we aimed to analyze the impact of different malicious nodes on
the monitoring mechanism offered by SkyEye.KOM and find solutions against
different types of attacks.

In Chapter 1, we introduced the peer-to-peer paradigm as an alternative solu-
tion for sharing resources in distributed systems. Furthermore, we explained
the important role of the monitoring systems for providing a controlled level of
the Quality of Service in networks. In the first chapter, we stated the motiva-
tion for and the goals of this thesis and then in Chapter 2 we studied the p2p
networks in more detail by reviewing the characteristics of structured and un-
structured p2p overlays. PeerfactSim.KOM, the simulation framework that we
utilized for our evaluation tasks in this work, was also introduced in the same

73

7 Conclusions and Outlook

chapter. In Chapter 3 we discussed structured and unstructured monitoring
types. In addition, we focused on the structured monitoring mechanism pro-
vided by SkyEye.KOM. We explained how the SkyEye.KOM monitoring tree is
constructed as an over-overlay on top of the DHT-based p2p overlays and how
the monitoring information is propagated and aggregated in the tree.

In Chapter 4, we introduced three possible security attacks against Sky-
Eye.KOM monitoring system, named FalseLocalData, FalseChildData and
FalseParentPeer, and for each attack we proposed our solutions. The aim of
the FalseLocalData and FalseChildData attacks both was to provide false mon-
itoring data for the parent nodes in the monitoring tree. While the strategy of
FalseLocalData attackers to achieve this goal was producing fake local mon-
itoring information, the plan of FalseChildData attackers was to manipulate
the received monitoring data from their child nodes before aggregating it with
their local monitoring information.

As a solution, we proposed our scoring system based on the statistical concepts
such as the k-means clustering and the coefficient of variation. We employed
those concepts to assist the parent nodes to judge the validity of the received
monitoring data from their children. We also suggested different reactions
to malicious child nodes after the detection phase besides the ignoring strat-
egy.

The Last defined attack, FalseParentPeer, was designed to violate the expected
flow of the monitoring data in the tree. In this attack, each malicious node for-
wards the monitoring data to a random node other than its parent node which
is the intended destination. Our idea to mitigate the effect of the FalseParent-
Peer attack was to assist the parent nodes to predict the ranges of their chil-
dren IDs and only accept the monitoring data from the nodes with IDs within
those predicted ranges. Considering the overlay, we suggested the further lim-
iting of those acceptable ranges in order to filter a larger number of malicious
nodes.

We implemented the three defined types of attacks alongside our counter-
measure against FalseParentPeer attack and, in Chapter 5, we explained the
details of the implementation phase of the thesis. The evaluation of the attacks,
per Chapter 6, shows that FalseParentPeer attack has more destructive poten-
tial than the other two types of attacks. Additionally, FalseChildData attack
showed a lesser impact than FalseLocalData attack on the monitoring result
due to the fact that more than half of the nodes in the monitoring tree are the
leaf nodes with no children. Besides, we analyzed the impact of changing the
branching factor of the monitoring tree as well as the effect of the different
ratios of the malicious nodes.

74

7.2 Outlook

We observed the vulnerability of the monitoring system in the churn enabled
networks and, by including the malicious nodes in those networks, a dramatic
decrease in the accuracy of the monitoring results was recorded. The eval-
uation of the counter strategy against FalseParentPeer attack revealed that
predicting the ID range of the child nodes is hardly achievable and, even by
defining proper limited acceptable ranges, once a malicious node positions it-
self in the acceptable range of a non-malicious node it will be able to harm the
system.

7.2 Outlook

Evaluation of the proposed scoring system can be considered as the next step.
Also, the scoring system can be further extended by appending more checks
and comparisons strategies. In addition, the possibility of receiving mislead-
ing typical values from the sibling’s children needs to be considered. The in-
troduced security solution against FalseParentPeer attack requires a greater
amount of research and improvement. For example, our solution could be im-
proved by allowing the parent nodes to dynamically define their acceptable
ranges by reference to the count value reported by the child nodes. Using this
approach a greater count value, reported by a child node, results in smaller
acceptable ranges by its parent node.

A future study may also examine networks in situations where multiple types
of attack occur at the same time. Furthermore, the definition of the currently
defined malicious behaviors could be extended and new types of attack could
be introduced. Last but not least, due to the frequency of the nodes leaving
and rejoining in real p2p networks, particular attention will need to be paid to
the impact of churn on the monitoring system.

75

7 Conclusions and Outlook

76

Bibliography

[1] BitTorrent. – http://www.bittorrent.com

[2] FastTrack. – http://en.wikipedia.org/wiki/FastTrack

[3] Skype - Peer-to-Peer Internet Telephony. – http://www.skype.com

[4] Brown, CharlesE.: Coefficient of Variation. In: Applied Multivari-
ate Statistics in Geohydrology and Related Sciences. Springer Berlin
Heidelberg, 1998, S. 155–157. – URL http://dx.doi.org/10.1007/
978-3-642-80328-4_13. – ISBN 978-3-642-80330-7

[5] Buford, John ; Yu, Heather ; Lua, Eng K.: P2P networking and applications.
Morgan Kaufmann, 2009

[6] Carlsson, Bengt ; Gustavsson, Rune: The rise and fall of napster-an evo-
lutionary approach. In: Active Media Technology. Springer, 2001, S. 347–
354

[7] Cerf, Vinton G. ; Icahn, Robert E.: Transmission control protocol. (1981).
– URL http://tools.ietf.org/html/rfc793

[8] Darlagiannis, Vasilios ; Mauthe, Andreas ; Steinmetz, Ralf: Overlay Design
Mechanisms for Heterogeneous Large-Scale Dynamic P2P Systems. In:
Journal of Network and Systems Management 12 (2004), S. 371–395

[9] Feldotto, M. ; Graffi, K.: Comparative evaluation of peer-to-peer systems
using PeerfactSim.KOM. In: High Performance Computing and Simulation
(HPCS), 2013 International Conference on, July 2013, S. 99–106

[10] Giesen, Philipp: Systematic Benchmarking of Monitoring Protocols in Dis-
tributed Systems. Master thesis, Heinrich-Heine-Universität Düsseldorf.
2014

[11] Gilder, George: Telecosm: How infinite bandwidth will revolutionize our
world. Simon and Schuster, 2000

77

http://dx.doi.org/10.1007/978-3-642-80328-4_13
http://dx.doi.org/10.1007/978-3-642-80328-4_13
http://tools.ietf.org/html/rfc793

Bibliography

[12] Gnutella: The Annotated Gnutella Protocol Specification v0.4. 2002.
– URL http://rfc-gnutella.sourceforge.net/developer/stable/
index.html

[13] Graffi, Kalman: Monitoring and Management of Peer-To-Peer Systems.
PhD thesis, Technische Universität Darmstadt. 2010

[14] Gummadi, Krishna P. ; Dunn, Richard J. ; Saroiu, Stefan ; Gribble,
Steven D. ; Levy, Henry M. ; Zahorjan, John: Measurement, modeling,
and analysis of a peer-to-peer file-sharing workload. In: ACM SIGOPS
Operating Systems Review Bd. 37 ACM (Veranst.), 2003, S. 314–329

[15] Holpuch, Amanda: Netflix and YouTube make up ma-
jority of US internet traffic, new report shows. – URL
http://www.theguardian.com/technology/2013/nov/11/
netflix-youtube-dominate-us-internet-traffic

[16] Jelasity, MÃ¡rk ; Montresor, Alberto ; Babaoglu, Ozalp: Gossip-based ag-
gregation in large dynamic networks. In: ACM Transactions on Computer
Systems 23 (2005), S. 219–252

[17] Kempe, David ; Dobra, Alin ; Gehrke, Johannes: Gossip-Based Computa-
tion of Aggregate Information. In: IEEE Symposium on Foundations of
Computer Science, 2003, S. 482–491

[18] Klingberg, T. ; Manfredi, R.: Gnutella 0.6. 2002. – URL http://
rfc-gnutella.sourceforge.net/developer/stable/index.html

[19] Kovacevic, Aleksandra ; Liebau, Nicolas ; Steinmetz, Ralf: Globase.KOM
- A P2P Overlay for Fully Retrievable Location-based Search. In: Peer-to-
Peer Computing, 2007, S. 87–96

[20] Li, Xiaokun ; Chen, Genshe ; Blasch, Erik ; Pham, Khanh: Detecting
missile-like flying target from a distance in sequence images. In: SPIE
Defense and Security Symposium International Society for Optics and
Photonics (Veranst.), 2008, S. 69680G–69680G

[21] Maymounkov, Petar ; Mazieres, David: Kademlia: A peer-to-peer informa-
tion system based on the XOR metric. 2002. – 53–65 S

[22] Mehta, Dinesh P.: Handbook of data structures and applications. CRC
Press, 2004

[23] Moore, Gordon E. u. a.: Cramming more components onto integrated cir-
cuits. 1965

78

http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://www.theguardian.com/technology/2013/nov/11/netflix-youtube-dominate-us-internet-traffic
http://www.theguardian.com/technology/2013/nov/11/netflix-youtube-dominate-us-internet-traffic
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html

Bibliography

[24] Ng, T. S. E. ; Zhang, Hui: Global network positioning: a new approach
to network distance prediction. In: Computer Communication Review 32
(2002), S. 61–61

[25] Ng, T. S. E. ; Zhang, Hui: Predicting Internet Network Distance with
Coordinates-Based Approaches. In: IEEE INFOCOM Bd. 1, 2002

[26] Postel, Jon: User datagram protocol. In: Isi (1980). – URL http://tools.
ietf.org/html/rfc768

[27] Rowstron, Antony I. T. ; Druschel, Peter: Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems. 2001.
– 329–350 S

[28] Schmitt, Jens ; Wolf, Lars: Quality of Service - An Overview / Darmstadt
University of Technology. April 1997 (TR-KOM-1997-01). – Forschungs-
bericht

[29] Stoica, Ion ; Morris, Robert ; Karger, David ; Kaashoek, M. F. ; Balakr-
ishnan, Hari: Chord: A scalable peer-to-peer lookup service for internet
applications. In: Computer Communication Review 31 (2001), S. 149–160

[30] Zadeh, Lotfi A.: Fuzzy sets. In: Information and control 8 (1965), Nr. 3,
S. 338–353

79

http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768

Bibliography

80

List of Figures

1.1 A Simplified Overview of Client/Server and Peer-to-Peer Architecture 6

2.1 Overview on the Distributed Hash Table 13
2.2 Overview on the Functional Layers of PeerfactSim.KOM 16

3.1 SkyEye.KOM as an over-Overlay on Top of the p2p Overlay 21
3.2 Simplified Overview of the SkyEye.KOM Data Flow 23
3.3 Aggregating the Maximum Value at All Nodes in SkyEye.KOM . . . 24
3.4 Overview on Aggregating the Average Value Using the Push-Sum

Mechanism . 26

4.1 Aggregating the Maximum Value at All Nodes in the Presence of
FalseLocalData Attackers . 30

4.2 Receiving Additional Typical Values from the Sibling’s Children
Nodes . 33

4.3 Additional Direct Interchange of Child Estimation between Sibling
Nodes . 36

4.4 Additional Forwarding of the Monitoring Data to the Grand-Parent
Nodes . 36

4.5 Aggregating the Maximum Value at All Nodes in the Presence of
FalseChildData Attackers . 39

4.6 Overview on the SkyEye.KOM Monitoring Tree in the Presence of
the FalseParentPeer Attackers . 41

4.7 Definitions Used in FalseParentPeer Security Solution 42
4.8 Acceptable Ranges around MPs to the Size of bFS/2 on Each Side 42
4.9 Acceptable Ranges on the Right-Hand Side of MPs and to the Size

of bFS/2 . 43
4.10Acceptable Ranges on the Right-Hand Side of MPs and to the Size

of bFS . 43

6.1 Content of the Action File . 54
6.2 Comparison of the Three Types of Attacks 59
6.3 Impact of the Branching Factor Variations 61
6.4 Comparing the Different Ratios of the Malicious Nodes 65

81

List of Figures

6.5 Attacks with Churn . 66
6.6 Results of the Acceptable Ranges around MPs 67
6.7 Results of the Acceptable Ranges on the Right-Hand Side of MPs

Based on Chord . 69
6.8 Results of the Extended Acceptable Ranges on the Right-Hand

Side of MPs Based on Chord . 69

82

List of Tables

3.1 Symmetric Push-Sum Configurations for Different Aggregation
Functions . 25

4.1 Comparison of the Received Monitoring Data against the Global
Monitoring Estimation and the Corresponding Malicious Scores . . 32

4.2 Detecting Corrupted Aggregation Results by Analyzing the Re-
ceived Monitoring Data Itself . 37

6.1 Measurement Functions . 53
6.2 General Settings . 54
6.3 Simulation Setups for Evaluating the Attacks 56
6.4 Simulation Setups for Evaluating the Counter-Measure Solution . . 57

83

List of Tables

84

List of Tables

85

	Introduction
	Motivation
	Overview on Goals
	Outline

	Background
	Peer-to-peer Networks
	Structured P2P Overlay
	Unstructured P2P Overlay

	PeerfactSim.KOM Simulation Framework
	Summary

	Monitoring
	Monitoring of Peer-to-peer Networks
	Structured Monitoring Systems
	SkyEye.KOM Monitoring Mechanism
	Unstructured Monitoring Systems

	Summary

	Monitoring Attacks and Solutions
	FalseLocalData Attack
	Counter-Measure against FalseLocalData Attack

	FalseChildData Attack
	Counter-Measure against FalseChildData Attack

	FalseParentPeer Attack
	Counter-Measure against FalseParentPeer Attack

	Summary

	Implementation
	Implementation of the Attacks
	FalseParentPeer Attack
	FalseLocalData Attack
	FalseChildData Attack

	Implementation of the Counter-Measure Solution
	Summary

	Evaluation
	Evaluation Overview
	Evaluation Goal
	Evaluation Method
	Simulation Setup

	Evaluation of the Attacks
	Scenario A: Comparing Different Malicious Behaviors
	Scenario B: Impact of Various Branching Factors
	Scenario C: Various Ratios of Malicious Nodes
	Scenario D: Churn Impact

	Evaluation of the Security Solution
	Scenario E: Acceptable Ranges Around MPs
	Scenario F: Acceptable Ranges Based on Chord
	Scenario G: Extended Acceptable Ranges Based on Chord

	Summary

	Conclusions and Outlook
	Conclusions
	Outlook

	Bibliography
	List of Figures
	List of Tables

